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We study the stream merging problem for media-on-demand servers. Clients
requesting media from the server arrive by a Poisson process, and delivery to the
clients starts immediately. Clients are prepared to receive up to two streams at any
time, one or both being fed into a buffer cache. We present an on-line algorithm,
the dyadic stream merging algorithm, whose recursive structure allows us to derive a
tight asymptotic bound on stream merging performance. In particular, let λ be the
Poisson request arrival rate, and let L be the fixed media length. Then the long-time
ratio of the expected total stream length under the dyadic algorithm to that under
an algorithm with no merging is asymptotically equal to 3 log�λL�

2λL . Furthermore, we
establish the near-optimality of the dyadic algorithm by comparisons with experi-
mental results obtained for an optimal algorithm constructed as a dynamic program.
The dyadic algorithm and the best on-line algorithm of those recently proposed dif-
fer by less than a percent in their comparison with an off-line optimal algorithm.
Finally, the worst-case performance of our algorithm is shown to be no worse than
that of earlier algorithms. Thus, the dyadic algorithm appears to be the first near
optimal algorithm that admits a rigorous average-case analysis.  2002 Elsevier Science

(USA)
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1. INTRODUCTION

At a sequence of random times, clients request content streaming from a
given media server, e.g., videos from a video-on-demand server, with deliv-
ery for each client to begin immediately. To reduce the potentially heavy
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traffic burden created by these media streams, it is clearly desirable to com-
bine streams of the same content; this can be implemented in practice by
using multicast protocols (e.g., see [28]). With a multicast protocol in place,
a stream sent to a client can be received by all other clients at a minimal
possible usage of network resources. To see how this can be done and
still preserve immediate-start delivery, we need the following assumptions:
clients can receive two streams in parallel and each has a cache for buffer-
ing stream content. Although multimedia streaming embraces video, audio,
and data streaming, we will keep using video terminology for simplicity.
The basic idea of stream merging can be explained with the following

example. Consider a situation in which (i) client C1 arrives at t1 and requests
a video of duration L and (ii) client C0 is currently playing the same video
from a stream S0 that began at time t0 < t1. Client C1 missed the first
� �= t1 − t0 time units of the video from S0 and that part of the video
needs to be sent to C1 by the server in stream S1. However, C1 can make
use of stream S0 by buffering its content for later playback. In that way the
stream S1 can be terminated after � time units. This process is called stream
merging; in the present case, S1 was discontinued after being “merged” at
time t1 + � with the earlier starting S0.
Note that the total streaming time has been reduced from 2L, with no

merging, to a minimum achievable value of L+�. The total streaming time
is a simple and effective measure of bandwidth consumption that we will
retain throughout the paper.
Stream merging becomes much more involved as we increase the number

of streams that are candidates for merging, because then the number of
ways in which merging can be done also increases. For example, consider
the case of three clients C0� C1, and C2 arriving at times t0 < t1 < t2 and
initiating streams S0� S1, and S2 for a video of duration L. Let �i = ti − ti−1
be the interarrival times. Figure 1 illustrates an example in which the ti’s
are given by 0, 3, and 4 and L = 10. Consider the ways in which we can
merge the streams for all three clients. For the given setup, the two possible
merging patterns are shown in Fig. 1. In Fig. 1(a), S1 and S2 are merged
independently with S0 as described earlier: C1 caches S0 during �t1� t1 + �1�
and C2 caches S0 during �t2� t2 + �1 + �2�; at the end of the respective
intervals S1 and S2 are merged with S0.
The second possibility is first to merge S2 with S1 and then S1 with S0.

This scenario is illustrated in Fig. 1(b). Figure 2 breaks down Fig. 1(b) into
the individual schedules for C1 and C2. Client C1 plays S1 and caches S0
during �t1� t1 + �1�. Thereafter, C1 plays from its buffer which is only fed
by S0 during the last L− 2�1 time units of the video. Client C2 caches S1
and plays from S2 during �t2� t2 + �2�, at which point S2 is discontinued,
and play proceeds from C2’s buffer. Client C2 continues to cache S1, but in
addition, it caches the remainder of S0 (in a suitably chosen region of the
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FIG. 1. Stream merging examples. The position of the video runs diagonally. The x-axis
represents time. By following the zig-zag lines one obtains which part of the video is being
played from which stream. The dashed lines show where the play of the video changes from
one stream to another.

cache where the two buffering operations cannot overlap). This continues
until t2 + �1 + �2 at which point S1 is shut down and S0 becomes the only
active stream while it is supplying the last L − 2��1 + �2� time units of
the video to the buffer of C2. In this process, C2 has played the first �2
time units of the video directly from S2, the next �1 + �2 time units from a
cached segment of S1, and the last L− �1 − 2�2 time units from a cached
segment of S0.
At any given time, a vertical line in Fig. 2 crosses each of the streams

currently being received. Accordingly, in the schedules for C1 and C2 the

3 6 10 0 3 6 104 8 4 8

S

S

S0

S
S

0

1
1

2

0

t t t t t t0 01 2 1 2

∆ ∆∆ ∆1 2 1 2

21C   schedule C   schedule

tt

FIG. 2. Individual schedules for the clients C1 and C2 in Fig. 1(b).
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bold lines incident to the vertical lines at time t indicate that the buffer
content at time t consists of the corresponding segments of S0 and S1.
Note that, although the streaming at C1 is the same as that in the first

merging example, S1 does not terminate at time t1 + �1 when no longer
needed by C1; the media server must still send S1 to C2 until C2 can switch
to S0, which occurs at t2 + �1 + �2. Stream S1 is “extended” in order to
facilitate the requirements of C2. Without such an extension C2 would not
be in a position to receive all parts of the movie. Note also that the cost
(sum of stream durations) of the second merging pattern is 16 compared
to 17, the cost of the first pattern. In general, the best merge pattern for
an arrival at time t depends not only on arrival times before t but also
on the arrival times after t. As will become clear in the next section, for
this example the solution that our dyadic tree algorithm yields corresponds
to Fig. 1(b).
The technique of stream merging originated with Eager et al. [11, 12]

as a model of the pyramid broadcasting scheme introduced by Viswanathan
and Imielinski [36, 37]. This paradigm provides the multicast basis for shar-
ing streams and is built upon the assumption that clients can receive more
bandwidth than they need for play-out. The skyscraper broadcasting scheme
[15, 22, 31] is another example of these new techniques. A number of
related techniques go under the names of batching [1, 9, 10], patching [6, 16,
21], tapping [7, 8], and piggy-backing [2, 18, 19, 29] and the general problem
has several parameters and useful performance metrics. Other parameters
include delay guarantees, receiving bandwidth, server bandwidth, and buffer
size [5, 13–15, 17, 20, 23–27, 30–35]. The maximum number of streams is
another metric that is of greater interest in certain circumstances. In this
setting, the algorithm of this paper has the properties:

• It is on-line; i.e., the media server does not know arrival times in
advance.

• It gives a zero-delay guarantee; i.e., all video requests are satisfied
immediately.

• It restricts the number of streams being received by a client at any
one time to at most two—the receive-two model.

• The buffer size can accommodate up to half of the video.

The last two assumptions are justified in the papers by Bar-Noy and Ladner
[3, 4], which supply the primary motivation for the work here. In particu-
lar, most of the improvement of merging streams is already present in the
receive-two model. The L/2 buffer size limit comes about because our algo-
rithm does not attempt merging with an existing stream that is already at
least half over. As Bar-Noy and Ladner argue, this convenience does not
lead to increased average cost even for only moderately large arrival rates.
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For further discussion of the literature on stream merging, we refer the
reader to the mini-survey of [3].
Many excellent numerical/experimental studies have appeared in the

stream-merging literature, but the absence of mathematical foundations
has stood out, at least until the work in [3, 4], which focuses on compet-
itive, or worst-case, analysis. Here, we give what appears to be the first
rigorous average-case analysis of a near-optimal algorithm.
The paper is organized as follows. In Section 2 we present the dyadic tree

algorithm and state our main results. Section 3 contains numerical experi-
ments that verify the algorithm’s performance and conclusions. The proofs
of the main results can be found in Section 4.

2. ALGORITHM AND RESULTS

The problem of stream merging can be posed as a problem on trees (see
[3, 4]). A merge tree is a representation of a stream merging diagram, such
as those shown in Fig. 1. Each stream of the merging diagram corresponds
to a node in the associated merge tree. Thus, the number of nodes in the
merge tree is equal to the number of requests placed with the server, i.e.,
the number of clients. If stream Sj is merged directly to an earlier starting
stream Si, then the node associated with Sj is a child of the node associated
with Si. It is convenient to label the nodes with the arrival times of the
corresponding streams.
A root stream is merged with no other stream; i.e., it is the root in a

merge tree. The length of the root stream is always the full length of the
video, L. The start rule below provides a simple way to determine which
streams are roots; i.e. it defines a sequence of merge trees. Let t0� t1�    be
the stream starting times.

Start Rule. Node t0 is a root. If ti is a root, then tj = inf	tk � tk ≥ ti +
L/2� is a root.

In other words, the start rule says that a node will be in a given tree only
if the root stream of that tree started less the L/2 time units ago. As noted
earlier, this constraint simplifies the algorithmics; there is a sacrifice in
efficiency, but only when traffic is low. For example, suppose that we have a
root stream starting at time t0 and an arrival at time t1 with t0 +L/2 < t1 ≤
t0 + L. If t1 is made a descendant of t0, then no other node arriving after
t0 +L can be merged with t1 without extending its length to L. Hence, some
gain is achieved only if there are no arrivals in the interval �t0 +L� 2t1 − t0�.
However, this is an unlikely scenario under high traffic load.
When the arrivals are Poisson, the sequence of merge trees becomes a

renewal process. This fact allows us to focus our analysis on a single merge
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tree rooted at t0. Let 	tn�∞n=0 be a sample path of a Poisson process with
rate λ on the non-negative reals, and assume for convenience that t0 = 0.
The total length of all streams in a merge tree is defined as

T ≡ T �L�λ� �=
∞∑
n=0

ln1	tn < L/2�� (1)

where ln denotes the length of the stream initiated by the arrival at time tn;
the indicator function 1	A� is equal to 1 if A is true and is equal to 0 oth-
erwise. By definition l0 = L. The quantity T will measure the effectiveness
of stream merging algorithms.
Our new stream merging algorithm is implicit in the following algorithm

for constructing merge trees from a given root.

The Dyadic Tree Algorithm. The input is a sequence of n > 0
arrival times t0�    � tn with t0 = 0, and the output is a tree of n nodes. The
arrival at time 0 determines the root. To find the children of the root, first
divide the interval �0� L/2� into dyadic subintervals Ii = �2−i−1L� 2−iL�
with lengths 2−i−1L� i = 1� 2�    , as shown in Fig. 3. If Ii contains at least
one arrival time, then t�i� denotes the earliest such time; otherwise, t�i� = 0.
Each t�i� > 0 is made a child of the root. Then for each t�i� > 0, the algo-
rithm is applied recursively to the interval �t�i�� 2−iL� to determine the
subtree rooted at t�i�.

It is not difficult to verify that this algorithm can be formulated as an
on-line algorithm, as we show at the end of this section. In particular, the
decision as to where a node ti should be attached to an existing tree is
unaffected by arrivals after time ti. The following theorem gives our first
result, a uniform bound on total stream length. We postpone the proof until
Section 4. Throughout the paper we use log to denote log2.

Theorem 2.1. The total cost of the dyadic tree algorithm satisfies

1
4
L log�λL� − 1

4
L ≤ ƐT �L�λ� ≤ 3

4
L� log�λL�� + 3L

Furthermore, it can be shown that the upper bound of the preceding
theorem is asymptotically tight for large values of λL. A detailed proof of
the next theorem is given in Section 4.

L/2L/4L/8
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0

FIG. 3. Dyadic partition of the interval.
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Theorem 2.2. The total cost of the dyadic tree algorithm satisfies

lim
λL→∞

ƐT �L�λ�
L log�λL� = 3

4


Observe that, by Theorem 2.2, the long-time ratio of the expected total
stream length under the dyadic algorithm to that under an algorithm with
no merging is asymptotically equal to 3 log�λL�/�2λL�.
Here we point out that, by Lemma 1 of [3], the length l of the non-root

stream initiated at time t > 0 is given by

l = 2tl − t − tp� (2)

where tp is its parent and tl is the last stream that merges with it. If t is a
leaf then tl = t; i.e., l = t − tp.
In order to consider the worst-case performance we examine a slightly

different model. This modification is necessary owing to the fact that in the
original model the number of requests in �0� L/2� is unbounded, so that
the worst case performance is meaningless. Let time be slotted and let the
video have a length of 2n time slots. We assume that in each of the slots
at most one stream can be initiated. According to the start rule a merge
tree is being built on n slots. The total stream length achieves its maximum
when a stream is initiated in every time slot. In [4] it is proved that the
worst-case performance of the optimal algorithm is ��n log n�.
Let T �2n� denote the total stream length for the worst-case merge tree

built on n slots, 0�    � n − 1. It is easy to show by induction that T �n�
is monotonic in n; hence, one can assume that n is a power of 2. Next,
consider two merge trees built on n/2 slots each; i.e., 0�    � n/2 − 1 and
n/2�    � n − 1. The key fact is that in these two cases only the lengths of
streams initiated in the 0th and n/2-th slot differ. This follows from the fact
that the length of the stream initiated at t depends only on t and starting
times of the parent stream and the last stream that merges with it (see (2)).
In the first case the lengths of streams initiated at t = 0 and t = n/2
are 2n and 3n/2, respectively. In the second case the lengths are equal to
n. Thus, the difference is 3n/2 and one obtains T �2n� = 2T �n� + 3n/2.
The solution to this recurrence has the form T �n� = ��n log n�. Thus, the
dyadic algorithm is within a constant factor of optimal in the worst case. A
more detailed numeric comparison of the dyadic algorithm and the optimal
algorithm is made in the next section.
We conclude this section with a straightforward on-line implementation

of the algorithm.

On-Line Dyadic Stream Merging. Let S be a stack with push and pop
operations defined for triples of numbers �ta� tr� te�. Each triple corresponds
to a stream: ta is the time at which the stream was initiated, tr is the time
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after which newly arrived streams will not be allowed to merge with it, and
te is the time when the stream terminates.
At time t = 0 push the root triple �0� L/2� L� onto S. At time t < L/2

of a new request:

1. pop the triples �ta� tr� te� from S until tr > t; at this point let
�t̂a� t̂r � t̂e� be the top of the stack,

2. for all but the root triple increase the last component by 2t − te −
tp, where tp is the arrival time of the parent of �ta� tr� te�.

3. add the new stream to the stack by performing push �t� t ′� 2t − t̂a�,
where t ′ = t̂a + �t̂r − t̂a�max	2−k+1 � 2−k�t̂r − t̂a� < t − t̂a�; the stream
started at t is the child of the stream started at t̂a.

This procedure uniquely and explicitly defines the merge tree as well as the
stream termination times.

3. NUMERICAL RESULTS AND CONCLUSIONS

This section provides a numerical validation of the asymptotic approxi-
mation

T ′ ≡ T ′�L�λ� �= L log�λL�
The first example investigates the dependency of the total cost on the length
of the stream for fixed values of the arrival rate λ. The parameter values are
set within the regions that are plausible for real-life systems. In particular,
we set L = 20i min, i = 1�    � 9, and plot the ratio ƐT/T ′ in Fig. 4, where
ƐT is obtained by simulating 10,000 trees for each set of values. Points
marked with “◦,” “+,” and “×” correspond to λ−1 equal to 5, 20, and 60 s,
respectively. Note that for �λ−1� L�= (60 s, 20 min), the merge tree consists
of only 11 nodes on average.
In the second example we fix L and look at ƐT �λ�L� as a function of the

first argument. The simulation results of ƐT/T ′ are plotted in Fig. 5. As in the
previous case we simulated 10,000 trees for each point. Values of L are set to
120, 60, and 30 min and are denoted, respectively, by the symbols “◦,” “+,”
and “×.” Using approximation T ′ with the appropriate multiplicative factor
yields excellent engineering estimates for all reasonable values of L and λ.
Finally, we compare the performance of the dyadic tree algorithm to the

performance of the optimal off-line algorithm. The cost of the latter can be
determined by a dynamic program (see [2]). Let Topt�i� j� be the optimal
cost of the merge tree for streams initiated at 0 ≤ ti < · · · < tj < L/2. The
optimal merge tree satisfies the preorder traversal property [4] and, hence,

Topt�0� n� = min
1≤k≤n

{
Topt�0� k− 1� + Topt�k� n� − �L− 2tn + tk + t0�

}
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FIG. 4. ƐT/T ′ as a function of the stream length for three values of the arrival rate.
Expected interarrival times are 5 s (“◦”), 20 s (“+”), and 60 s (“×”).

with Topt�i� i� = L. The last term represents the gain from a merge of
optimal trees rooted at t0 and tk. We used the fact that the length of the
stream t is given by (2).
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FIG. 5. ƐT/T ′ as a function of the arrival rate for three values of the stream length. The
stream length is set to 120 min (“◦”), 60 min (“+”), and 30 min (“×”).
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FIG. 6. Performance of the algorithm in comparison with the optimal off-line algorithm.
The length of the stream is equal to 2 h.

For numerical comparison, let the length of the video be 2 h and let the
value of the expected interarrival time vary from 5 to 60 s in steps of 5 s.
For every pair �λ�L� we simulated 1,000 trees and based on that computed
the average cost for two algorithms. The increase in expected cost when we
used the dyadic tree algorithm instead of the optimal off-line algorithm is
rather small as shown in Fig. 6. For all parameter values the increase did
not exceed 8%.
In summary, we have been able to prove the tight asymptotic average-

case behavior 3
4L log�λL� for the dyadic stream merging algorithm and

to show in addition that its average-case and worst-case performances are
comparable to those of the best on-line algorithms known to date.

4. PROOFS

We start by introducing a recursive procedure for labeling the arrival
times in �0� L/2�. For the purposes of the proof these labels replace the ti
labels. The procedure can be thought of as a function �L� T �→ ω that maps
a set T of arrival times to the space of indices ω. Each index ω consists
of a number of digits equal to the depth of the node in the merge tree
that corresponds to the given arrival. In general, ω = ω1ω2 · · ·ωn, where
ωi ∈ � for i = 1� 2    , and the parent of the node labeled ω is a node
labeled with the prefix ω′ = ω1 · · ·ωn−1. The algorithm labels the arrivals
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FIG. 7. An illustration of the labeling algorithm. In this example there are seven points
that need to be labeled. On the first call of the procedure three points are assigned labels (1,
2, and 4). The recursive algorithm is applied until all points are labeled.

as follows. The interval �0� L/2� is divided into dyadic intervals in increasing
order from the root as shown in Fig. 3. If a point t is the first point in the
subinterval Ii then its label is i. Label the rest of the points in �t� 2−iL�
recursively by using the parent’s label as a prefix for childrens’ labels. An
example of how the points are labeled is shown in Fig. 7.

4.1. Proof of Theorem 2.1

Lower Bound. By applying the above labeling procedure, it is not hard
to verify that (1) becomes

T �L�λ� = L+
∞∑
n=1

ln1	tn < L/2� = L+
∞∑
n=1

∑
ω=ω1···ωn

lω1···ωn
� (3)

where lω1···ωn
is the length of the stream starting at the point labeled

ω1 · · ·ωn. If for a particular realization of the Poisson process there is no
point with label ω1 · · ·ωn, then lω1···ωn

= 0.
Next, we estimate the expected values of lω1···ωn

. Let η� 	ηn�∞n=1 be a set
of i.i.d. exponential random variables with mean λ−1, and consider first the
streams that are children of the root, i.e., the streams whose indices consist
of a single digit. Given that, for a particular realization of the Poisson
process, there exists a stream with label ω1, its length must be at least
2−ω1L/2 according to (2). Therefore,

lω1
≥ L/2

2ω1
1
{
∃n � L/2

2ω1
≤ tn <

L/2
2ω1+1

}

≥
(
L/2
2ω1

− inf
{
tn −

L/2
2ω1

� tn >
L/2
2ω1

})+
�
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where �·�+ ≡ max�·� 0�. After taking into account the memoryless property
of the Poisson process, we conclude that

Ɛlω1
≥ Ɛ

(
L/2
2ω1

− η1

)+


A node with label of form ω1ω2 is a child of the node with label ω1.
Considering the preceding inequality, the recursive nature of the merging
algorithm, and the size of the problem in which node ω1 is the root one
obtains

Ɛlω1ω2
≥ Ɛ



(
L/2
2ω1 − η1

)+
2ω2

− η2




+

= Ɛ

(
L/2

2ω1+ω2
− η2 −

η1

2ω2

)+


The recursive structure of the merging algorithm shows that for a stream
with an arbitrary index ω1ω2 · · ·ωn,

Ɛlω1···ωn
≥ Ɛ

(
L/2

2ω1+···+ωn
− ηn −

n−1∑
i=1

ηi

2ωi+1+···+ωn

)+

with the understanding that the sum in the above expression is equal to
zero if n = 1. If W �=∑∞

i=0 ηi2−i then for all n and x ≥ 0

��W > x� ≥ �

[
ηn +

n−1∑
i=1

ηi

2ωi+1+···+ωn
> x

]
and, hence, the expected value of an individual stream length is further
lower bounded by

Ɛlω1···ωn
≥ Ɛ

(
L/2

2ω1+···+ωn
−W

)+
 (4)

Now observe that the number of indices with a digit sum equal to k is 2k−1;
i.e.,

∞∑
n=1

∑
ω=ω1···ωn

1
{ n∑
i=1

ωi = k

}
= 2k−1� (5)

since the above sum is equal to the number of ways one can partition a set
of cardinality k. Rearrange the sum in (3), use the bound (4), and apply
(5) to find

ƐT �L�λ� = L+
∞∑
k=1

∑
∑

ωi=k

Ɛlω1···ωn

≥ L+
∞∑
k=1

2k−1Ɛ
(
L/2
2k

−W

)+

≥ L+
∞∑
k=1

2k−1
(
L/2
2k

− 2
λ

)+
�
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where the last step follows from Jensen’s inequality. Finally, simple manip-
ulations of the preceding bound yield

ƐT �L�λ� ≥ L+ L

4

∞∑
k=1

(
1− 2k+2

λL

)+

= L+ L

4

�log λL
4 �∑

k=1

(
1− 2k+2

λL

)

= L+ L

4

⌊
log

λL

4

⌋
− 2

λ

�log λL
4 �−1∑

k=0
2k

≥ L

4
log�λL� − L

4
�

from which we conclude that the lower bound holds.

Upper Bound. Consider the streams that are children of the root. For
such streams we have by (2)

lω1
≤ 3

L/2
2ω1

 (6)

The inequality is tight when there is an arrival right after time 2−ω1L/2 and
an arrival just before time 2−ω1L. Next we examine the streams that can be
reached from the root in exactly two steps. An upper bound on their length
is

lω1ω2
≤ 3

(
L/2
2ω1 − inf

{
tn − L/2

2ω1 � tn > L/2
2ω1

}
2ω2

)+
� (7)

whereupon the memoryless property of the Poisson process gives

Ɛlω1ω2
≤ 3Ɛ

(
L/2

2ω1+ω2
− η2

2ω2

)+


Note that (6) and (7) are of the same form. In the first inequality the size
of the problem is L/2 while in the second the size is �2−ω1L/2 − inf	tn −
2−ω1L/2 � tn > 2−ω1L/2��+. Since the merging algorithm is recursive, for
streams that have depth n ≥ 2 in the merge tree one can conclude that

Ɛlω1···ωn
≤ 3Ɛ

(
L/2

2ω1+···+ωn
−

n∑
i=2

ηi

2ωi+···+ωn

)+

≤ 3Ɛ
(

L/2
2ω1+···+ωn

− η

2ωn

)+
 (8)
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Recall (5) in order to verify that the number of indices with the digit sum
k and last digit i is equal to 2k−i−1; i.e., for 1 ≤ i ≤ k− 1

∞∑
n=2

∑
ω=ω1···ωn

1

{
n∑

j=1
ωj = k�ωn = i

}
= 2k−i−1 (9)

The length of the root stream is always L so (3), (6), (8), and (9) yield

ƐT �L�λ� = L+
∞∑

ω1=1
Ɛlω1

+
∞∑
k=2

k−1∑
ωn=1

Ɛlω1···ωn
1

{
n∑

j=1
ωj = k

}

≤ L+ 3
∞∑
k=1

L/2
2k

+ 3
∞∑
k=2

k−1∑
i=1

2k−i−1Ɛ
(
L/2
2k

− η

2i

)+

≤ 5
2
L+ 3

4
L

∞∑
k=2

k−1∑
i=1

2−iƐ

(
1− η

2k+1−i

L

)+


A simple computation shows that Ɛ�1−η�+ = 1−λ−1�1− exp�−λ��; there-
fore, by changing the order of summation and setting m = k + 1 − i one
obtains

ƐT �L�λ� ≤ 5
2
L+ 3

4
L

∞∑
k=2

k−1∑
i=1

2−i

(
1− 2k+1−i

λL

[
1− e−λL2−k−1+i])

= 5
2
L+ 3

4
L

∞∑
i=1

∞∑
m=2

2−i

(
1− 2m

λL

[
1− e−λL2−m])

= 5
2
L+ 3

4
L

∞∑
m=2

(
1− 2m−log�λL�[1− e−2

−m+log�λL�])
 (10)

Finally, straightforward but tedious calculations show that
∞∑
j=1

(
1− 2j

[
1− e−2

−j ]) ≤ 1/2

which in conjunction with bound (10) and the monotonicity of the function
1− 2x�1− e−2

−x� yields

ƐT �L�λ� ≤ 5
2
L+ 3

4
L

∞∑
j=2−�� log�λL���

(
1− 2j

[
1− e−2

−j ])

≤ 5
2
L+ 3

8
L+ 3

4
L

0∑
j=2−�� log�λL���

1

≤ 3
4
L�log�λL�� + 23

8
L

This concludes the proof.
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4.2. Proof of Theorem 2.2

The upper bound is a direct consequence of Theorem 2.1. Below we pro-
vide the proof of the lower bound. Let Pε ≡ P�λ� ε� �= 1 − e−λε denote
the probability of having at least one Poisson arrival in an interval of
length ε. By conditioning on an arrival in both �2−ω1−1L� 2−ω1−1L+ ε� and
�2−ω1L− ε� 2−ω1L� one obtains from (2)

Ɛlω1
≥ P2

ε

(
3L/2
2ω1

− 3ε
)+



Extending the above reasoning to the streams with two-digit labels yields a
lower bound on their expected lengths

Ɛlω1ω2
≥ P3

ε

(
3L/2
2ω1+ω2

− 3ε
2ω2

− 3ε
)+



In the above inequality we conditioned on the position of the stream ω1ω2,
its parent and the last stream that will merge to it. Due to the recursive
structure of the algorithm, for a stream with an arbitrary label ω1 · · ·ωn the
lower bound has the following form

Ɛlω1···ωn
≥ Pn+1

ε

(
3L/2

2ω1+···+ωn
−

n∑
i=2

3ε
2ω2+···+ωn

− 3ε
)+

≥ Pn+1
ε

(
3L/2

2ω1+···+ωn
− 6ε

)+


Next, the preceding inequality, (1), and (5) result in

ƐT ≥
∞∑
k=1

2k−1Pk+1
ε

(
3L/2
2k

− 6ε
)+

≥
�log�λL��∑

k=1
Pk+1
ε

(
3L
4

− 3ε2k
)

≥ 3
4
P log�λL�+1
ε L�log�λL�� − 6ελL

Finally, setting ε = λ−1 log log�λL� and using log e > 1 yield

lim
λL→∞

P log�λL�
ε = lim

λL→∞
(
1− e− log log�λL�)log�λL� = 1

and, therefore,
T

L log�λL� ≥ 3
4
P log�λL�+1
ε

�log�λL��
log�λL� − 6

log log�λL�
log�λL� −→ 3

4

as λL → ∞

This concludes our proof.
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