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Abstract

We investigate awidely popular least-recently-used (LRU) cache replacement algorithmwith semi-
Markov modulated requests. Semi-Markov processes provide the flexibility for modeling strong sta-
tistical correlation, including the widely reported long-range dependence in theWorldWideWeb page
request patterns. When the frequency of requesting a pagen is equal to the generalized Zipf’s law
c/n�, �>1, our main result shows that the cache fault probability is asymptotically, for large cache
sizes, the same as in the corresponding LRU system with i.i.d. requests. The result is asymptotically
explicit and appears to be the first computationally tractable average-case analysis of LRU caching
with statistically dependent request sequences. The surprising insensitivity of LRU caching perfor-
mance demonstrates its robustness to changes in document popularity. Furthermore, we show that the
derived asymptotic result and simulation experiments are in excellent agreement, even for relatively
small cache sizes.
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1. Introduction

The basic idea of caching is to maintain high-speed access to a subset ofk items out
of a larger collection ofN documents that cannot be accessed quickly. Originally, caching
was used in computer systems to speed up the data transfer between the central processor
unit and slow local memory. The renewed interest in caching stems from its application to
increasing the speed of accessing Internet Web documents.
One of the fundamental issues of caching is the problemof selecting and possibly dynam-

ically updating thek items that need to be stored in the fast memory (cache). The optimal
solution to this problem is often very difficult to find and, therefore, a number of heuristic,
usually dynamic, cache updating algorithms have been proposed. Among the most popular
algorithms are those based on the least-recently-used (LRU) cache replacement rule. The
wide popularity of this rule is primarily due to its high performance and ease of implemen-
tation. LRUalgorithm tends to both keepmore frequent items in the cache aswell as quickly
adapt to potential changes in document popularity, resulting in efficient performance.
In order to further the insight into designing network caching algorithms, it is important

to gain a thorough understanding of the baseline LRU cache replacement policy. Basic
references on the performance analysis of caching algorithms can be found in Section 6
of Knuth [19]. In the analysis of LRU caching scheme there have been two approaches:
combinatorial and probabilistic studies. For the combinatorial (amortized, competitive)
analysis the reader is referred to Bentley and McGeoch[3] and Sleator and Tarjan[25];
recent results and references for this approach can be found in Borodin et al.[5] and Irani
et al.[15]. In this paper we focus on the average-case or probabilistic analysis.
Early work on the probabilistic analysis of LRU caching, and the related move-to-front

(MTF) searching, algorithm with i.i.d. requests dates back to McCabe[20]. This work
has been followed by investigations of Burville and Kingman[6], Rivest[23], Bitner [4],
Phatarfod[22], Fill [12], Flajolet et al.[14] and others; a more extensive list of references
and brief historical overview can be found in[16].
Recently, for the independent referencemodel, in[16] a newanalytically tractable asymp-

totic approximation technique of the LRU fault probability was developed. However, an
equivalent understanding of LRU performance with statistically dependent request se-
quences is still lacking. Several papers, including Rodrigues[24], Dobrow and Fill[10]
and Coffman and Jelenkovi´c [8], develop representation results for the LRU cache fault
probability, but these results appear to be computationally intractable, as pointed out in
[8]. Despite the lack of analytical tractability, numerous empirical studies, e.g. see[1],
emphasize the importance of understanding the caching behavior in the presence of strong
statistical correlation, including the long-range dependence.
Inorder toalleviate theprecedingproblem, this paperprovides thefirst explicit asymptotic

characterization of the LRU cache fault probability in the case of statistically dependent
requests. Our doubly stochastic Poisson reference model, capable of capturing a broad
range of statistical correlation, is described in the following section. Using this model and
the Poisson decomposition/superposition properties, similarly as in Fill[11], in Section
3 we develop a representation theorem for the stationary search cost distribution. This
representation theorem provides a starting point for our large deviation analysis that, for the
case of generalized Zipf’s law requests, yields the main results stated in Theorems2 and3.
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Informally, our main results show that the LRU fault probability is asymptotically invari-
ant to the underlying dependency structure of the modulating process, i.e., for large cache
sizes, the LRU fault probability behaves exactly the same as in the case of independent
request sequences[16]. This may appear surprising given the impact that the statistical
correlation has on the asymptotic performance of queuing models, e.g. see[18]. Further-
more, in Section 5 extensive numerical experiments show an excellent agreement between
our analytical results and simulations. The paper is concluded in Section 6 with a brief
discussion on the impact of our findings on designing network caching systems.

2. Model description

ConsiderN items, out of whichk are kept in a fast memory (cache) and the remaining
N − k are stored in a slow memory. Each time a request for an item is made, the cache
is searched first. If the item is not found there, it is brought in from the slow memory and
replaced with the least recently accessed item from the cache. Such a replacement policy
is commonly referred to as LRU, as previously stated in the introduction. The performance
quantity of interest for this algorithm is the LRU fault probability, i.e. the probability that the
requested item is not in the cache. Our goal in this paper is to asymptotically characterize
this probability.
The fault probability of the LRU caching is equivalent to the tail of the searching cost

distribution for the MTF searching algorithm. In order to justify this claim, we note that
k elements in the cache, under the LRU rule, are arranged in increasing order of their last
access times. Each time there is a request for an item that is not in the cache, the item is
brought to the first position of the cache and the last element of the cache is moved to the
slowmemory.Weargue that the fault probability stays the same if the remainingN−k items
in the slow memory are arranged in any specific order. In particular, they can be arranged
in the increasing order of their last access times. The obtained algorithm is then the same
as the MTF searching algorithm. Additional arguments that justify the connection between
the MTF search cost distribution and LRU cache fault probability can be found in[14,11],
and[16]. Hence, we proceed with a description of the MTF algorithm.
More formally, consider a finite set of itemsL = {1, . . . , N}, and a sequence of requests

that arrive at points{�n,−∞ < n <∞} that represent aPoissonprocessof unit rate.At each
point�n, we useRn to denote the document that has been requested, i.e., the event{Rn = i}
represents a request for documenti; we assume that the sequence{Rn} is independent of
the arrival Poisson points{�n}. The dynamics of the MTF algorithm are defined as follows.
Suppose that the systemstarts at themoment�0 of 0th request with an initial permutation�0
of the list. Then, at every time instant�n, n�0, that an item, sayi, is requested, its position
in the list is first determined; ifi is in thekth position we say that the search costCN

n for
this item is equal tok. Now, the list is updated by moving itemi to the first position of the
list and items in positions 1, . . . , k− 1, are moved one position down. Note that, according
to the discussion in the preceding paragraph,P[CN

n > k] represents the stationary fault
probability for a cache of sizek.
In the remaining part of this section, we describe the dependency structure of the request

sequence{Rn}. Let {Tn,−∞ < n < ∞}, T0�0 < T1, be a point process with almost
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surely (a.s.) strictly increasing points(Tn+1 > Tn) and {JTn,−∞ < n < ∞} a finite-
state-space process taking values in{1, . . . ,M}. Then we construct a piecewise constant
right-continuousmodulating process Jas

Jt = JTn, if Tn� t < Tn+1.

We assume thatJ is stationary and ergodic with stationary distribution�k = P[Jt = k]
and independent of Poisson points{�n}. Next, for anyk,m�M, we assume the asymptotic
independence

P[Jt = k|J0 = m] → �k ast →∞. (1)

To avoid trivialities, we assume that mink �k > 0.
For each 1�k�M, let q(k)

i ,1� i�N , be a probability mass function;q(k)
i is used to

denote the probability of requesting itemi when the underlying processJ is in statek. Next,
the dynamics ofRn are uniquely determined by the modulating processJ according to the
following equation:

P[Rl = il,1� l�n|Jt , t ��n] =
n∏

l=1
q
(J�l )

il
, n�1, (2)

i.e., the sequence of requestsRn is conditionally independent given the modulating process
J. Therefore, the constructed request process{Rn} is stationary and ergodic as well.We will
use

qi = P[R = i] =
M∑
k=1

�kq
(k)
i

toexpress themarginal request distribution,with theassumption thatqi > 0 for all 1� i�N .
The preceding processes are constructed on a probability space(�,F,P).

3. Preliminary results

In this section we first prove, in Lemma1, that the search cost random variableCN
n

converges to stationarity when the request process{Rn} is stationary and ergodic; note that,
only in this lemma,we suppose thesemore general conditions on{Rn} than those assumed in
the previous section. Then, in the following subsection we give properties of the stationary
search cost distribution in Theorem1 and Proposition1. The remaining part of the section
contains the results on MTF searching with i.i.d. requests that will be used in proving our
main theorems.

Lemma 1. If the request process{Rn} is stationary and ergodic, then for any initial per-
mutation�0 of the list, the search costCN

n converges in distribution toCN asn → ∞,
where

CN�
N∑
i=1

∞∑
m=1

(1+ Si(m− 1))1[R−m = i,Ri (m− 1), R0 = i],
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Si(m) is the number of distinct items, different from i, amongR−m, . . . , R−1 and event
Ri (m)�{R−j �= i,1�j �m},m�1; Si(0) ≡ 0,Ri (0) ≡ �.

Proof. For simplicity letCn ≡ CN
n . Note that, due to the stationarity of the request process

{Rn}, Cn is equal in distribution to the search costC
(n)
0 at the moment of 0th request�0,

given that the MTF process started at time�−n with initial permutation�0. Now, each of
the summands of the following identity

C
(n)
0 =

N∑
i=1

C
(n)
0 1[R0 = i] (3)

can be represented as

C
(n)
0 1[R0 = i] =

n∑
m=1

(1+ Si(m− 1))1[R−m = i,Ri (m− 1), R0 = i]

+C
(n)
0 1[Ri (n), R0 = i], (4)

sinceC(n)
0 = 1+ Si(m− 1) on event{R−m = i,Ri (m− 1), R0 = i}. The second term in

the preceding equality is bounded byN1[Ri (n)], which, by ergodicity, satisfies a.s.

lim
n→∞ N1[Ri (n)] = 0.

Thus, the last limit, monotonicity of the sum in (4) and identity (3) imply thatC(n)
0 converges

a.s. toCN asn→∞. Therefore,CN
n converges in distribution toCN asn→∞. �

3.1. Representation theorem

At this point, we will derive a representation theorem for the stationary search costCN ,
as defined in Lemma1. Note thatCN is uniquely defined by the request process{Rn, n�0}
and, therefore, it implicitly depends on{J�0+t , t �0}. However, since�0 is independent
from {Jt }, the process{J�0+t , t �0} is equal in distribution to{Jt , t �0}. Thus, without loss
of generality we can set�0 = 0. Next, let�i−1 be the last moment of timet < 0 that itemi
was requested. Then, an equivalent continuous time representation ofCN is

CN =
N∑
i=1

(1+ Si(−�i−1; J ))1[R0 = i],

where, similarly as in Lemma1, Si(t; J ) represents the number of distinct items, different
from i, that are requested in interval[−t,0). Now, using double conditioning and the last
identity, we arrive at

P[CN > x] = E

∫ ∞
0

N∑
i=1

P�t

[
Si(t; J ) > x − 1, R0 = i, �i−1 ∈ (−t,−t + dt)

]
,
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where�t is the�-algebra�(Ju,−t �u�0) andP�t [·] = P[·|�t ]. Using the fact that the
request processRn, by (2), is conditionally independent given themodulating processJt and
that the variablesSi(t; J ) and�i−1 are uniquely determined by the values of{Rn, n� − 1}
and the Poisson arrivals fort < 0, we conclude thatR0 is conditionally independent from
Si(t; J ) and�i−1, given�t , and thus

P[CN > x] = E

∫ ∞
0

N∑
i=1

q
(J0)
i P�t

[
Si(t; J ) > x − 1, �i−1 ∈ (−t,−t + dt)

]
. (5)

Next, we intend to show that variablesSi(t; J ) and�i−1 are conditionally independent
given�t . To this end, we exploit the Poisson superposition/decomposition properties of the
arrival process. LetNj(u; J ) be the number of requests for itemj in [−u,0),0< u� t and
Bj (t; J ) = 1[Nj(t; J ) > 0]. Then,Si(t; J ) can be represented as

Si(t; J ) = ∑
j �=i,1� j �N

Bj (t; J ). (6)

Now, we show that, for differentj, processes{Nj(u; J ),0 < u� t} are mutually inde-
pendent Poisson processes given�t . In this regard, for anyt �u > 0, letVn be an interval
in [−u,0) on which the modulating process stays constant, i.e.

Vn = [Tn+1 ∧ 0] − [Tn ∨ (−u)],
wherea ∧ b ≡ min(a, b) anda ∨ b ≡ max(a, b). Since, by (2), the request process is
conditionally independent given�t , and independent from the Poisson arrival points, the
Poisson decomposition theorem (see Section 4.5 of[7]) implies that the number of re-
quests for itemj in an intervalVn, given �t , is a Poisson variable with expected value

q
(JTn∨(−u))

j Vn. Furthermore, the Poisson variables for differentj and different intervals
Vn are independent given�t . Thus, given�t , aggregating the independent Poisson re-
quests for itemj over all intervalsVn ⊂ [−u,0], by Poisson superposition theorem (see
Section 4.4 of[7]) shows thatNj(u; J ) are mutually independent Poisson variables for dif-
ferentj. Furthermore, by repeating the preceding arguments over an arbitrary set of disjoint
intervals [−um,−um−1), . . . , [−u1,0),0 < u1� · · · �um−1�um� t , it easily follows
that, for differentj, {Nj(u; J ),0 < u� t} are mutually independent Poisson processes
given�t . In particular, for any fixedt, the Bernoulli variablesBj (t; J ) are conditionally
independent given�t with

P�t [Bj (t; J ) = 1] = 1− e−q̂j t , (7)

whereq̂j ≡ q̂j (t) and�̂k ≡ �̂k(t) are defined as

q̂j =
M∑
k=1

q
(k)
j �̂k and �̂k = 1

t

∫ 0

−t

1[Ju = k]du. (8)

Therefore, since{−�i−1 > t} = {Ni(t; J ) = 0}, the conditional independence of variables
Nj(t; J ) and Eq. (6) show thatSi(t; J ) and�i−1 are conditionally independent given�t .
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Using this fact and

P�t [�i−1 ∈ (−t,−t + dt)]
= P�t [Ni(t − dt; J ) = 0, Ni(t; J )−Ni(t − dt; J ) = 1]
= e−q̂i t q

(J−t )

i dt

in (5) we derive the following representation theorem.

Theorem 1. The stationary distribution of the searching costCN satisfies

P[CN > x] = E

∫ ∞
0

N∑
i=1

q
(J0)
i q

(J−t )

i e−q̂i tP�t [Si(t; J ) > x − 1]dt, (9)

with Si(t; J ), Bj (t; J ), and q̂j satisfying Eqs.(6)–(8), respectively.

Remark 1. Throughout this paper we will use the property that the variablesSj (t; J ),

Bj (t; J ), j �1, are monotonically increasing int andBj (t; J ), j �1, are conditionally
independent given�t . This conditional independence, as is apparent from the deriva-
tion, arises from the Poisson arrival structure. In general, when the request times are
not Poisson, e.g. discrete time arrivals, these variables may not be conditionally indepen-
dent. However, our approach can be extended by embedding the request sequence into a
Poisson process; for i.i.d. requests, the Poisson embedding technique was first introduced
in [13].

Remark 2. It is clear that the preceding analysis does not rely on the fact that the requests
arrive at a constant rate. Thus, our results can be generalized to the case where the arrival
rate depends on the state of the modulating processJ, i.e., the rate can be set to�k when
Jt = k. We do not consider this extension, since it further complicates the notation without
providing any significant new insight.

In the proposition that follows, we investigate the limiting search cost distribution when
the number of itemsN → ∞. Now, assume that the probability mass functionsq

(k)
i ,

1�k�M are defined for alli�1. Using these probabilities, for a givenmodulating process
J and each 1�N �∞ we define a sequence of request processes{RN

n }, whose conditional
request probabilities are equal to

q
(k)
i,N =

q
(k)
i∑N

i=1 q
(k)
i

, 1� i�N;

then, for each finiteN, letCN be the corresponding stationary search cost. In the case of the
limiting request processRn = R∞n , similarly as in (6), introduceSi(t; J ) =∑

j �=i Bj (t; J )

to be equal to the number of different items, not equal toi, that are requested in[−t,0);
Bj (t; J ) is the Bernoulli variable representing the event that itemj was requested at least
once in[−t,0). Now, we prove the limiting representation result that provides a starting
point for our large deviation analysis in Section4.
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Proposition 1. The constructed sequence of stationary search costsCN converges in dis-
tribution to C asN →∞, where the distribution of C is given by

P[C > x] = E

∫ ∞
0

∞∑
i=1

q
(J0)
i q

(J−t )

i e−q̂i tP�t [Si(t; J ) > x − 1]dt. (10)

Remark 3. For the i.i.d. case, this result was proved in Proposition 4.4 of[12].

Proof. In order to prove the convergence in distribution, it is enough to show the pointwise
convergence of distribution functions, i.e. for anyx�0, P[CN > x] → P[C > x] as
N → ∞. This is easily achieved using the Dominated Convergence Theorem. For details
see the Appendix. �

3.2. Results for i.i.d. requests

In this sectionwestateseveral results that considerLRUcachingschemewith independent
requests that will be used in proving our main results. The MTF model with i.i.d. requests
follows from our general problem formulation when the modulating process is assumed
to be a constant, i.e.Jt ≡ constant. In this case the Bernoulli variables{Bj (t), j �1} that
indicate that an itemj was requested in[−t,0) are independent with success probabilities
P[Bi(t) = 1] = 1− e−qi t . Then, using the notationSi(t) =∑

j �=i Bj (t), it is easy to see
that the distribution of the limiting stationary search costC from Proposition1 reduces to

P[C > x] =
∫ ∞
0

∞∑
i=1

q2i e
−qi tP[Si(t) > x − 1]dt. (11)

The following two results, originally proved in Lemmas 1 and 2 of[16], are restated
here for convenience. In this paper we are using the following standard notation. For any
two real functionsa(t) and b(t) and fixedt0 ∈ R ∪ {∞} we will use a(t) ∼ b(t) as
t → t0 to denote limt→t0 [a(t)/b(t)] = 1. Similarly, we say thata(t)�b(t) ast → t0 if
lim inf t→t0 a(t)/b(t)�1; a(t)�b(t) has a complementary definition.

Lemma 2. Assume thatqi ∼ c/i� asi →∞, with � > 1 andc > 0.Then, ast →∞,

∞∑
i=1

q2i e
−qi t ∼ c

1
�

�
�

(
2− 1

�

)
t−2+

1
� ,

where� is the Gamma function.

Lemma 3. Let S(t) = ∑∞
i=1 Bi(t) and assumeqi ∼ c/i� as i → ∞, with � > 1 and

c > 0.Then, ast →∞,

m(t)�ES(t) ∼ �
(
1− 1

�

)
c
1
� t

1
� .

The next straightforward lemma will be repeatedly used in the paper.
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Lemma 4. Let {Bi, i�1} be a sequence of independent Bernoulli random variables,
S =∑∞

i=1 Bi andm = E[S]. Then for any	 > 0, there exists
	 > 0, such that

P[|S −m| > m	]�2e−
	m.

The proof is given in the Appendix.�
Now, we provide a general bound on the search cost distribution for the case when the

request probabilities are reciprocal-polynomially bounded. In the following two lemmas,
we also allow for some of theqis to be equal to zero. In addition, sinceC takes values in
nonnegative integers, we assume in the remainder of the paper, without loss of generality,
thatx is integer valued as well.
Throughout the paperH denotes a sufficiently large positive constant, whileh denotes a

sufficiently small positive constant. The values ofH andhare generally different in different
places. For example,H/2= H ,H 2 = H ,H + 1= H , etc.

Lemma 5. If 0�qi �H/i� for some fixed� > 1, then for anyx�1,

P[C > x]� H

x�−1 .

Proof. If there are finitely manyqis that are positive, then we can always find a large
enough cache size such that the fault probability is equal to zero and the bound trivially
holds. Hence, without loss of generality we can assume thatqi > 0 for infinitely many
i�1. Therefore,m(t) = ∑∞

i=1 Bi (t) ↗ ∞ monotonically ast ↗ ∞, implying that the
inversem−1(t) exists for anyt �0. Next, definex	 = (1− 	)(x − 1), for arbitrarily chosen
0< 	 < 1. Now, usingSi(t)�S(t) in (11), we derive

P[C > x] �
∫ m−1(x	)

0

∞∑
i=1

q2i e
−qi tP[S(t) > x − 1]dt

+
∫ ∞
m−1(x	)

∞∑
i=1

q2i e
−qi t dt

� I1(x)+ I2(x).

Then, sinceS(t) is a non-decreasing function int,

I1(x) � P[S(m−1(x	)) > x − 1]
∫ m−1(x	)

0

∞∑
i=1

q2i e
−qi t dt

= P[S(m−1(x	)) > x − 1]
∞∑
i=1

qi(1− e−qim
−1(x	))

� P[S(m−1(x	)) > x − 1],
which, bym(m−1(x	)) = (1− 	)(x − 1), Lemma4, and settingε = 	/(1− 	), implies

I1(x)�2e−
εx = o

(
1

x�−1

)
asx →∞. (12)
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Next,

I2(x) =
∫ ∞
m−1(x	)

∞∑
i=1

q2i e
−qi t dt

=
∞∑
i=1

qi e
−qim

−1(x	)

� 1

m−1(x	)

x∑
i=1

qim
−1(x	)e

−qim
−1(x	) +

∞∑
i=x+1

qi. (13)

Since supy �0(y e
−y) = e−1 implies qim

−1(x	)e−qim
−1(x	)�e−1 for all i and∑∞

i=x+1 qi �
∫∞
x

(H/u�)du, the preceding inequality renders

I2(x)�
xe−1

m−1(x	)
+ H

(�− 1)x�−1 . (14)

Next, fromqi �H/i� followsm(t) =∑∞
i=1(1− e−qi t )� ∑∞

i=1(1− e−Ht/i�); and, using

Lemma3, we derivem(t)�Ht
1
� , implyingm−1(x	)�hx�. Therefore

I2(x)�
H

x�−1 ,

which, in conjunction with (12), proves the result.�

Lemma 6. If 0�qi �H/i�, � > 1, then

∞∑
i=1

qie
−qi t �Ht−1+

1
� .

Proof. Similarly as in the proof of Lemma5, the claim follows easily from
supy �0(ye

−y) = e−1, the assumptionqi �H/i�, and

∞∑
i=1

qie
−qi t � 1

t

�t 1� �∑
i=1

qite
−qi t +

∞∑
i=�t 1� �

qi,

where�y� is the integer part ofy; we omit the details. �

4. Main results

In this section we derive our main results in Theorems2and3. These results fully gener-
alize Theorem 3 of[16] that was proved for the independent reference model. Furthermore,
our method of proof, which uses probabilistic and sample path arguments, provides an
alternative approach to the Tauberian technique used in[16].
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4.1. Lower bound

In preparation for our main results, we prove the following lower bound that holds for
the entire class of stationary and ergodic modulating request processes, as defined in
Section2.

Proposition 2. Assume thatqi ∼ c/i� asi →∞ and� > 1.Define

K(�)�
(
1− 1

�

) [
�

(
1− 1

�

)]�

, (15)

where� is the Gamma function. Then, asx →∞
P[C > x]�K(�)P[R > x].

Proof. For any 1> 	 > 0, let {B−	
i (t), i�1} be a sequence of independent Bernoulli ran-

dom variables withP[B−	
i (t) = 1] = 1− e−qi (1−	)t , S−	(t)�

∑∞
i=1B

−	
i (t) andm−	(t)�

ES−	(t) =∑∞
i=1(1− e−(1−	)qi t ). Note that, using the independent reference model inter-

pretation from the beginning of Section3.2, S−	(t) represents the number of distinct items
requested in interval[−t (1− 	),0). Therefore, we can assume thatS−	(t) is constructed,
on a possibly extended probability space, monotonically non-decreasing int.
We also define

�(t)� max
1�k�M

|�̂k − �k|, (16)

which for all� ∈ {�(t)�	} and 1�k�M implies

�k(1− 	)� �̂k ≡ �̂k(t)��k(1+ 	),

and therefore

qi(1− 	)� q̂i ≡ q̂i (t)�qi(1+ 	), (17)

for all i�1. This and (7) further imply that for every� ∈ {�(t)�	}
P�t [Bi(t; J ) = 1] = 1− e−q̂i t �1− e−(1−	)qi t = P[B−	

i (t) = 1].
Therefore, for every� ∈ {�(t)�	}, (by stochastic dominance, e.g. see Exercise 4.2.2,
p. 277 of[2]) the total number of distinct itemsS(t; J ) ≡ Si(t; J ) + Bi(t; J ) requested
in [−t,0) satisfies

P�t [S(t; J ) > x]�P[S−	(t) > x]. (18)

Then, representation expression (10) and equations (17)–(18) render

P[C > x] � E

∫ ∞
0

∞∑
i=1

q
(J0)
i q

(J−t )

i e−q̂i tP�t [S(t; J ) > x]dt

� E

∫ ∞
0

∞∑
i=1

q
(J0)
i q

(J−t )

i e−qi (1+	)tP[S−	(t) > x]1[�(t)�	]dt.
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Now, using the last expression and monotonicity ofS−	(t) we derive for anyg	 > 0

P[C > x]� P[S−	(g	x
�) > x]

×
∫ ∞
g	x�

∞∑
i=1

e−qi (1+	)tE
[
q
(J0)
i q

(J−t )

i 1[�(t)�	]
]
dt. (19)

The ergodicity ofJ, asymptotic independence from (1) and finiteness of its state space
implies that uniformly ink, l and allt large enough (t � t	)

P[�(t)�	, J0 = k, J−t = l]�(1− 	)�k�l ,

which yields for alli�1 andt large,

E
[
q
(J0)
i q

(J−t )

i 1[�(t)�	]
]

�(1− 	)q2i . (20)

Next, if we choose

g	 = (1+ 2	)�

c(1− 	)[�(1− 1
� )]�

,

then, it is easy to check that, by Lemma3,m−	(g	x
�) ∼ (1+2	)x asx →∞, from which,

for all x large (x�x	), it follows thatm−	(g	x
�)�(1+ 	)x. Therefore, by Lemma4, for

all sufficiently largex

P[S−	(g	x
�) > x]�1− 	.

Thus, replacing the last inequality and (20) in (19), we conclude that for all largex

P[C > x]� (1− 	)2

(1+ 	)2

∫ ∞
g	x�

∞∑
i=1

(qi(1+ 	))2e−qi (1+	)t dt. (21)

In order to estimate the last integral, we observe that, by Lemma2, for all t � t	

∞∑
i=1

(qi(1+ 	))2e−qi (1+	)t �(1− 	)
((1+ 	)c)1/�

�
�

(
2− 1

�

)
t−2+

1
� .

Using this last estimate in (21) and computing the integral results in

P[C > x]� (1− 	)3

(1+ 	)2
((1+ 	)c)

1
�

�− 1
�

(
2− 1

�

) (
g	x

�)−1+ 1
� ,

which, in conjunction with the definition ofg	, yields, for all sufficiently largex

P[C > x]� (1− 	)4− 1
�

(1+ 2	)�−1(1+ 	)2− 1
�

K(�)
c

(�− 1)x�−1 .

The last bound and the asymptotic behavior of the request distributionP[R > x] ∼
c/((�− 1)x�−1) further imply

lim inf
x→∞

P[C > x]
P[R > x]�

(1− 	)4− 1
�

(1+ 2	)�−1(1+ 	)2− 1
�

K(�),

which, by passing	 ↓ 0, concludes the proof.�
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4.2. General modulation

In this section we prove our first main result for the general, stationary and ergodic,
underlying processJ, as defined in Section2, with sufficiently fast rate of convergence of
its empirical distribution.

Theorem 2. If qi ∼ c/i� asi →∞, � > 1,and for any	 > 0

max
1�k�M

P[|�̂k(t)− �k| > 	] = o
(
t
1
�−2

)
as t →∞, (22)

then

P[C > x] ∼ K(�)P[R > x] as x →∞, (23)

withK(�) as defined in(15).

Remark 4. This result and Theorem3 of the following subsection show that LRU fault
probability is asymptotically invariant under changes of themodulating process and behaves
the same as in the case of i.i.d. requests with frequencies equal to the marginal distribution
{qi}. The constantK(�) is monotonically increasing in� with lim�→1K(�) = 1 and
lim�→∞K(�) = e
 ≈ 1.78, where
 is the Euler constant; this was rigorously proved in
Theorem 3 of[16]. �

Remark 5. In order to illustrate the restriction imposed by condition (22), we consider a
class of modulating processesJ that are obtained by embedding a stationary and ergodic
finite-state Markov chain into an independent stationary renewal process.Within this class,
weshow that condition (22) excludes thoseprocesseswhoseautocorrelation functionsdecay
slower thant (1/�)−2, in particular long-range dependent modulating processes.
Consider a stationary renewal process{Tn,−∞ < n < ∞}, T0�0 < T1. The renewal

intervals{Tn−Tn−1, n �= 1} are strictly positive i.i.d. variables with common distributionF
having a finite mean�, and are independent of the interval(T0, T1). In order for this process
to be stationary, the interval(T0, T1) that covers the origin has to have a special distribution,
e.g. see Section 1.4.1 of[2] (see also Chapter 9 of[7]),

P[−T0 > y, T1 > x] = �−1
∫ ∞
x+y

(1− F(u))du, (24)

this is often referred to as Feller’s paradox, and the distribution ofT1 is called the excess
(residual) distribution ofF. Next, let{Jn}bean irreducible andaperiodic finite-stateMarkov
chain in stationary regime that is independent of the renewal process{Tn}. Now,weconstruct
the modulating processJ according to

Jt = Jn for Tn� t < Tn+1. (25)

Suppose that for some� > 0, d > 0, the inter-arrival distribution satisfiesP[T2 − T1 > t]
∼ �d�/t1+� ast →∞, implying, by (24),

P[T1 > t] ∼ d

t�
ast →∞.
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Then, Theorem 7 of[17] shows that the autocorrelation function ofJ satisfies

�(t) ∼ P[T1 > t] ast →∞,

this implies that for 0< ��1,
∫∞
1 �(t)dt = ∞, i.e.,J is long-range dependent. On the

other hand, sinceJ0 is independent ofT1,

P[|�̂k(t)− �k| > 	] � P[|�̂k(t)− �k| > 	, T1 > t]
= P[|1[J0 = k] − �k| > 	]P[T1 > t]
∼ d1

t�
ast →∞,

whered1�dP[|1[J0 = k] − �k| > 	]. Therefore, when��2− (1/�),

lim inf
t→∞ (t2−

1
� P[|�̂k − �k| > 	])� lim inf

t→∞ (d1t
2− 1

�−�)�d1,

which violates condition (22). In particular, assumption (22) excludes the long-range
dependent processes with 0< ��1 since 2− (1/�) > 1.
When the embedding renewal process is Poisson, the class of modulating processesJ

from (25) is equivalent to stationary and ergodic finite-state Markov processes. For Markov
processes it is well known that, e.g. see Section 3.1.2 of[9], the empirical distribution̂�k(t)

converges exponentially fast to its stationary probability and, thus, estimate (22) holds. In
general, by using the large deviation inequality from Corollary 1.6 of[21], it can be shown
that, for the previously constructed class of processes, as defined in (25), condition (22) is
satisfied whenE(T2− T1)

1+� <∞ for � > 2− (1/�). We do not prove this claim since in
the following subsection, using a different proof, we show in Theorem3 that the asymptotic
result from (23) holds for a more general class of semi-Markov processes. In particular,
in the context of processes considered in this remark, Theorem3 will show that the result
(23) holds as long asE(T2− T1)

1+� <∞ for any� > 0. Therefore, Theorem3 extends to
long-range dependent processes.

Proof of Theorem 2. By Proposition2 andP[R > x] ∼ c/((� − 1)x�−1) asx → ∞, it
sufficies to prove

lim sup
x→∞

(P[C > x]x�−1)�K(�)
c

�− 1
.

UsingS(t; J ) ≡ Si(t; J )+Bi(t; J )�Si(t; J ) and the representation in (10), for anyh > 0

P[C > x] � E

∫ hx�

0
f̂ (t)P�t [S(t; J ) > x − 1]dt

+E

∫ ∞
hx�

f̂ (t)P�t [S(t; J ) > x − 1]dt
� I1(x)+ I2(x), (26)

where

f̂ (t)�
∞∑
i=1

q
(J0)
i q

(J−t )

i e−q̂i t �
∞∑
i=1

q
(J0)
i = 1. (27)
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Furthermore, the empirical distributions are uniformly bounded byq̂i =∑M
k=1 �̂kq

(k)
i �∑M

k=1 q
(k)
i � q̄i�qi/mink �k < ∞, since mink �k > 0. Then, we define a sequence of

independent Bernoulli random variables{B̄i(t), i�1}, withP[B̄i(t) = 1] = 1− e−q̄i t and
S̄(t) = ∑∞

i=1 B̄i(t); similarly as in the proof of the lower bound,S̄(t) can be constructed
non-decreasing int. Note that for every�,P�t [Bi(t; J ) = 1]�P[B̄i(t) = 1]and, therefore,
we obtainP�t [S(t; J ) > x − 1]�P[S̄(t) > x − 1] uniformly in�. Using this observation
and the monotonicity of̄S(t), we arrive at

I1(x)�
∫ hx�

0
P[S̄(t) > x − 1]dt �hx�P[S̄(hx�) > x − 1]. (28)

Now, due to Lemma3, ES̄(t)�Ht
1
� , and therefore, we can always findh small enough

such that for any	 > 0 and allx large enough

ES̄(hx�) < (1− 	)(x − 1). (29)

Then, using (28), (29), Lemma4 and settingε = 	/(1− 	), we derive asx →∞

I1(x)�Hx�e−h
εx = o

(
1

x�−1

)
. (30)

Then, by using�(t) as defined in (16), we obtain

I2(x) = E

∫ ∞
hx�

f̂ (t)P�t [S(t; J ) > x − 1]dt

= E

∫ ∞
hx�

f̂ (t)P�t [S(t; J ) > x − 1]1[�(t)�	]dt

+E

∫ ∞
hx�

f̂ (t)P�t [S(t; J ) > x − 1]1[�(t) > 	]dt
� I21(x)+ I22(x). (31)

Note that, by assumption of the theorem, for any� > 0 andt large enough,P[�(t) >

	]��/t2− 1
� and, therefore, using (27), for all x large enough

I22(x) �
∫ ∞
hx�

�
t2−1/�

dt = �

(1− 1
� )h

1−1/�x�−1 .

Thus, since� can be arbitrarily small

I22(x) = o

(
1

x�−1

)
asx →∞. (32)

Next, wewill provide the estimate forI21(x). Similarly as in the proof of the lower bound,
we defineS	(t)�

∑∞
i=1B	

i (t), where{B	
i (t), i�1} is a sequence of independent Bernoulli

random variables withP[B	
i (t) = 1] = 1− e−qi (1+	)t . As before,S	(t) can be constructed

non-decreasing int. Therefore, by stochastic dominance, for every� ∈ {�(t)�	},
P�t [S(t; J ) > x − 1]�P[S	(t) > x − 1].
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Furthermore, since for all� in {�(t)�	} inequality (17) holds, by using (27) we obtain that
for any constantg	 > 0

I21(x) � E

∫ ∞
0

∞∑
i=1

q
(J0)
i q

(J−t )

i e−q̂i tP[S	(t) > x − 1]1[�(t)�	]dt

�
∫ g	x

�

0
P[S	(t) > x − 1]dt +

∫ ∞
g	x�

∞∑
i=1

E
[
q
(J0)
i q

(J−t )

i

]
e−(1−	)qi t dt.

(33)

If we select

g	 = (1− 2	)�

c(1+ 	)[�(1− 1
� )]�

,

then, due to Lemma3, ES	(g	x
�) ∼ (1− 2	)x, which implies that for allx large enough

(x�x	),

ES	(g	x
�) < (1− 	)(x − 1).

Hence, sinceS	(t) is non-decreasing, by using the previous inequality and applying
Lemma4with ε = 	/(1− 	), we conclude that forx large∫ g	x

�

0
P[S	(t) > x − 1]dt �g	x

�P[S	(g	x
�) > x − 1]

�Hx�e−
ε(1−3	)x = o

(
1

x�−1

)
. (34)

At this point, it remains to derive an estimate of the second integral in (33). Similarly as
in the proof of the lower bound, sinceJ satisfies (1), and has finitely many states, for all
i�1 andt large (t � t	)

E[q(J0)
i q

(J−t )

i ]�(1+ 	)q2i .

This implies that forx large enough, the second term in (33) is bounded by

1+ 	
(1− 	)2

∫ ∞
g	x�

∞∑
i=1

((1− 	)qi)
2e−(1−	)qi t dt.

Bounding the preceding expression is analogous to evaluating the integral in (21), i.e., we
use Lemma2 to upper bound the sum under the integral for largex and then compute the
integral for the choseng	.
Therefore, combining the bound obtained in this way with (34), (33), (32), (31),(30), and

(26), we derive

lim sup
x→∞

(P[C > x]x�−1)� (1+ 	)2−1/�

(1− 2	)�−1(1− 	)2−1/�
K(�)

c

(�− 1)
,

which, by passing	 ↓ 0, finishes the proof. �
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4.3. Semi-Markov modulation

In order to cover cases when condition (22) is not satisfied, e.g., those examples from
Remark5 that exhibit long-range dependence, we assume the followingmore specific struc-
ture of the modulating process. We consider the class of finite-state, stationary and ergodic
semi-Markov processesJ. In the following paragraph, we provide an explicit construction
of such a process, which is similar to the one presented in Section 1.4.5 of [2] (for an
alternative treatment of semi-Markov processes see Chapter 10 of[7]).
Let {pij } be a stochastic matrix of an irreducible Markov chain with finitely many states

M and unique stationary distribution{�k}. For each 1�k�M, let Fk be the cumulative
distribution function of some strictly positive and proper random variable (Fk(0) = 0 and
Fk(∞) = 1), having finite mean

�k =
∫ ∞
0

(1− Fk(t))dt <∞.

Next, we construct a point process{Tn,−∞ < n < ∞}, T0�0 < T1, on the same
probability space. First, we construct variables(T0, T1,J0) according to

P[J0 = k,−T0 > x, T1 > y] = �k
�

∫ ∞
x+y

(1− Fk(u))du, x�0, y�0, (35)

where��∑M
k=1 �k�k. Then, we construct a Markov sequence{Jn,−∞ < n < ∞} that

is conditionally independent from the pair(T0, T1) givenJ0. To this end, using the initial
stateJ0 and the transition probabilities{pij }, we construct a sequence of Markov vari-
ables{Jn, n�0}; similarly, starting from the initial stateJ0 and the reversed transition
probabilities{qij = pji�j /�i}, we create a Markov sequence{Jn, n�0}.
Now, let {Un,−∞ < n < ∞} be i.i.d. random variables on the same probability space

that are uniformly distributed on[0,1] and independent from{Jn}, T0, T1. Then, given
the already constructed{Jn}, T0, T1, the pointsTn, for n�1 andn� − 1, respectively, are
recursively defined by

Tn+1= Tn + F−1Jn
(Un) for n�1,

Tn = Tn+1− F−1Jn
(Un) for n� − 1,

whereF−1k (·) is the inverse ofFk(·). Finally, we define a semi-Markov processJt , t ∈ R,
by

Jt = Jn, for Tn� t < Tn+1.

We also assume thatJt satisfies the asymptotic independence relation stated in (1), which
follows from a mild assumption of{Jn, (Tn+1 − Tn)} being aperiodic (see Theorem 6.12,
p. 347 of[7]).We need this assumption in order to apply Proposition2 for the lower bound.
However, in the context of this section we would like to point out that assumption (1) can
be omitted. This would require a different proof of the lower bound that uses analogous
arguments to those that will be presented in Eqs. (68)–(69) of Section7.
Here, we state some of the basic properties of the stationary semi-Markov processJ that

will be used in the remainder of the paper. From the preceding construction we see that at
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each of the jump pointsTn the next state of the semi-Markov processJas well as the length
of the sojourn (holding) timeTn+1−Tn are probabilistically determined by the current state
JTn . Also, the intervals{Tn+1−Tn} are conditionally independent given the processJ with
the conditional distribution forn �= 0 given byP[Tn+1− Tn�x|JTn = k] = Fk(x) and for
n = 0 given by (35). The stationary distribution�k�P[J0 = k] of J satisfies�k = �k�k/�.
In addition, we note that when the sojourn timesTn+1 − Tn are exponentially distributed,
the constructed processJ is a Markov process. Furthermore, when{Tn,−∞ < n < ∞}
is a stationary renewal process and{Jn} is aperiodic, then the constructedJ reduces to the
class of processes described in Remark5.
ForJ as described above, we state our second main result.

Theorem 3. Assume that J is semi-Markov withmaxk E[(T2 − T1)
1+�|JT1 = k] <∞, for

some� > 0. If qi ∼ c/i� asi →∞, � > 1, then

P[C > x] ∼ K(�)P[R > x] as x →∞,

withK(�) as defined in(15).

In preparation for the proof we define the epochs of reversed jump pointsTn�
− T−n, n�0; this notation is convenient sinceC of (10) depends onJt for values oft �0.
In addition, the assumption maxk E[(T2− T1)

1+�|JT1 = k] <∞, implies, for alln�0,

E(Tn+1− Tn)
1+� �

M∑
k=1

E[(Tn+1− Tn)
1+�|J−Tn+1 = k]

=
M∑
k=1

E[(T2− T1)
1+�|JT1 = k] <∞, (36)

and, by (35) and Markov’s inequality,

P[T0 > x|J0 = k] = P[T1 > x|J0 = k]� H

x�
= o(1) asx →∞, (37)

this estimate will be used repeatedly in the proof of Theorem3.
Heuristic outline of the proof: The lower bound follows from Proposition2. Hence, in

order to complete the proof, we need to prove the upper bound. To this end, we observe that
f̂ (t), as defined in (27), is a randomvariablemeasurablewith respect to�t . Therefore, using
S(t; J )�Si(t; J ) andP�t [S(t; J ) > x] = E�t1[S(t; J ) > x], the integral representation
in (10) is bounded by

P[C > x] � E

∫ ∞
0

f̂ (t)1[S(t; J ) > x − 1]dt

= E

∫ T0

0
+E

∫ T�x1/3�
T0

+E

∫ ∞
T�x1/3�

� I1(x)+ I2(x)+ I3(x). (38)

For a given initial stateJ0 = k, the integral representation inI1(x) approximately corre-
sponds to the case of i.i.d. requests, represented in (11), whereqi is replaced byq

(k)
i and the
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integration is truncated by a random timeT0. Thus, if we condition onT0 being respectively
greater or smaller thanhx� with appropriately chosenhwe derive

I1(x) �
M∑
k=1

∫ ∞
0

∞∑
i=1

(q
(k)
i )2e−q

(k)
i tP[S(k)

i (t) > x − 2]P[J0 = k, T0 > hx�]dt

+
∫ hx�

0
P[S̄(t) > x − 1]dt.

In the preceding bound, if we use the fact thatP[T0 > x] → 0 asx →∞ and Lemma5 in
the first term, and the monotonicity ofS̄(t) and Lemma4 in the second integral term, we
estimateI1(x) = o(1/x�−1) asx →∞.
Next, observe that, forx large enough,T�x1/3� ≈ x1/3�. Then, by usingf̂ (t)�1 and the

definition ofS̄(t) from the proof of Theorem2, we conclude

I2(x) �
∫ x1/3�

0
P[S̄(t) > x − 1]dt

� x1/3�P[S̄(x1/3�) > x − 1]
= o

(
1

x�−1

)
asx →∞,

where in the last equality we exploited Lemmas3 and4.
Finally, due to ergodicity of the processJ, for t large enougĥqi ≈ qi and, therefore,

from the definitions ofBi(t; J ) andS(t; J ), we deduce thatS(t; J ) ≈ S(t), whereS(t)
corresponds to the number of distinct requests in[−t,0) for the case of i.i.d. requests with
distributionqi , as defined in Section3.2. Hence, forx large enough,I3(x) is approximately

I3(x) ≈ E

∫ ∞
x1/3�

f̂ (t)1[S(t; J ) > x − 1]dt

≈
∫ ∞
x1/3�

∞∑
i=1

e−qi tE[q(J0)
i q

(J−t )

i ]P[S(t) > x − 1]dt

�
∫ ∞
0

∞∑
i=1

e−qi t q2i P[Si(t) > x − 2]dt,

since, by (1), E[q(J0)
i q

(J−t )

i ] ≈ q2i andSi(t)�S(t) − 1. The last displayed expression is
equal to the case of i.i.d. requests stated in Eq. (11) (with x replaced byx − 1) and can be
estimated using either Theorem 3 of[16] or our Theorem2.A rigorous proof of the theorem
is much more involved and very technical and, therefore, we present it in the separate
Section7 of this paper.

5. Numerical examples

In this subsection, we provide three simulation experiments that illustrate Theorems
2 and 3. We consider the case where the underlying processJt is a two-state({0,1})
semi-Markov process with parameters implying strong correlation. Since the asymptotic
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Fig. 1. Illustration for Example 1.

results were obtained first by passing the list sizeN to infinity and then investigating the tail
of the limiting search cost distribution, it can be expected that the asymptotic expression
gives a reasonable approximation forP[CN > k]when bothNandkare large (withNmuch
larger thank). However, it is surprising how accurately the approximation works even for
relatively small values ofN and almost all values ofk < N .
In each experiment, before we conduct measurements, we allow 107 units of warm-up

time (approximatelyn ≈ 107 requests) for the system to reach stationarity; our preliminary
experiments showed that using larger delays did not lead to improved results. In addition,
we increase the accuracy of each simulation by running each experiment from two different
initial positions of the list. We select these initial positions uniformly at random and ac-
cording to the inverse order of the items popularity. In all experiments, the measured results
are almost identical for these different initial conditions. The actual measurement time is
set to be 107 units long. In all the experiments, the measurements are conducted for cache
sizesk = 50j,1�j �16, and are presented with star “*” symbols in Figs.1–3, while our
approximation,K(�)P[R > k], is represented with the solid line on the same figures.
The total number of documents in all three experiments is set toN = 1000. The Marko-

vian transitions of the two-state modulating process arep01 = p10 = 1. We use�0 and�1

to denote the variables equal in distribution to the sojourn times corresponding to states 0
and 1, respectively. In the first two experiments�0 and�1 are discrete random variables,
while in the third experiment they are continuous.

Example 1. In this experiment we choose discrete random variables�0 and �1 to be
distributed asP[�1 = 10i] = P[�0 = 10i] = a(1/(10i)3 − 1/(10(i + 1))3), where
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Fig. 2. Illustration for Example 2.

i ∈ {1, . . . ,104} anda = 103(1−1/(104+1)3)−1. In state 0, only odd items are requested
according toq(0)

2i+1 = H 0
N/(2i+1)1.4 (i = 0,1, . . . ,499),q(0)

2i = 0 (i = 1, . . . ,500), where

1/H 0
N =

∑499
i=0 1/(2i+1)1.4, while in state 1, the probabilities are concentrated exclusively

on even documents,q(1)
2i = H 1

N/(2i)1.4 (i = 1, . . . ,500),q(1)
2i+1 = 0 (i = 0,1, . . . ,499),

where1/H 1
N =

∑500
i=1 1/(2i)1.4.Theexperimental results arepresented inFig.1.Thismodel

corresponds to the case where two different classes of clients request documents from dis-
joint sets. Even in this extreme scenario, our approximationK(�)P[R > k] matches very
precisely the simulated results.

Example 2. Here, we select variables�0 and �1 to be distributed asP[�1 = 10i] =
P[�0 = 10i] = b(1/(10i)0.8 − 1/(10(i + 1))0.8), where i ∈ {1, . . . ,104} and b =
100.8(1−1/(104+1)0.8)−1. In state 0, items are requested according to distributionq

(0)
i =

H 0
N/i1.4, where 1/H 0

N =
∑N

i=1 1/i1.4, and in state 1, the popularity of documents is

given byq(1)
i = H 1

N/i4, where 1/H 1
N =

∑N
i=1 1/i4. Our intention in this experiment

is to show that only the heavier tailed probability distribution impacts the LRU perfor-
mance. This follows from our asymptotic results and the fact that for largek, k � N ,
P[R > k] ≈ 1.25H 0

N/k0.4, i.e. the marginal distribution is dominated by the heavier tailed

probability distributionq(0)
i . The simulation results in this case are presented in Fig.2. As

in the preceding experiment, we obtain accurate agreement between the approximation and
simulation.
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Fig. 3. Illustration for Example 3.

Example 3. Now, we illustrate the case whereP[�1 > t] = e−3t , t ∈ [0,∞) (exponential
distribution) andP[�0� t] = 1/t0.8, t ∈ [1,105] andP[�0� t] = 0 for t > 105. In state 0,
items are requested according to distributionq

(0)
i = H 0

N/i3, where 1/H 0
N =

∑N
i=1 1/i3.

In state 1, the popularity of documents isq(1)
i = H 1

N/i1.4, where 1/H 1
N =

∑N
i=1 1/i1.4.

This experiment shows that even in the case whenE�0 = 46� E�1 = 1/3, the tail of the
search cost distribution is asymptotically dominated by the heavier tail of requests in state
1. Again, the excellent agreement of the approximation with simulated results is apparent
from Fig.3.

6. Concluding remarks

In this paper we investigated the asymptotic behavior of the LRU cache fault probability,
or equivalently the MTF search cost distribution, for a class of semi-Markov modulated
request processes. This class of processes provides both the analytical tractability and flexi-
bility ofmodelingawide rangeof statistical correlations, including theempiricallymeasured
long-range dependence (see[1]). When the marginal probability mass function of requests
follows generalized Zipf’s law, our main results show that the LRU fault probability is
asymptotically proportional to the tail of the request distribution. These results assume the
same form as recently developed asymptotics for i.i.d. requests[16], implying that the LRU
cache fault probability is invariant to changes to the underlying, possibly strong, depen-
dency structure in the document request sequence. This surprising insensitivity suggests
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that one may not need to model accurately, if at all, the statistical correlation in the request
sequence. Hence, this may simplify the modeling process of the Web access patterns and
further improve the speed of simulating network caching systems.
Our results are further validated using simulation. The excellent agreement between

the analytical and experimental results implies the potential use of our approximation in
predicting the performance and properly engineeringWeb caches. The explicit nature, high
degree of accuracy, and low computational complexity of our result contrast the lengthy
procedure of simulation experiments.

7. Proof of Theorem3

In order to prove the theorem we will need the following technical lemma. Recall the
definition ofTn from Section4.3.

Lemma 7. If maxk E[(T1 − T0)1+�|J−T1 = k] < ∞, then there existss > 0 such that,
uniformly for alln�sx,

n−1P[Tn − T0 > x]�o

(
1

x1+�

)
as x →∞.

Proof of Lemma 7.We construct a sequence{Xi, i�n} of i.i.d. random variables with

F̄ (x)�P[Xi > x] = max
1�k�M

(1− Fk(x)),

whereFk(x), 1�k�M, is defined at the beginning of Section4.3. Therefore,P[Xi >

x]�P[Ti − Ti−1 > x|J−Ti
] and

P[Tn − T0 > x] = P

[
n∑

i=1
(Ti − Ti−1) > x

]

= E

[
P

[
n∑

i=1
(Ti − Ti−1) > x

J−Tj
,1�j �n

]]

� P

[
n∑

i=1
Xi > x

]
= P

[
n∑

i=1
Xi − nEX1 > x − nEX1

]
.

Now, since maxk E[(T1−T0)1+�|J−T1 = k] <∞, we concludeEX1+	
1 < H <∞, for any

0�	�� and some large constantH and therefore, uniformly for alln�sx, we obtain

P[Tn − T0 > x]�P

[
n∑

i=1
Xi − nEX1 > x − sHx

]
.

Now, by takings > 0 such thatsH = 1/2 and applying Corollary 1.6 of [21] we conclude
the proof. �

Proof of Theorem 3. In view of the heuristic outline of the proof from Section4.3, we
proceed by deriving the upper bounds for the expressionsIj (x) defined in (38). In order to
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estimateI1(x), we first condition onT0 being respectively greater or smaller thanhx�:

I1(x) = E

∫ T0

0

∞∑
i=1

(q
(J0)
i )2e−q

(J0)
i t1[S(t; J ) > x − 1]dt

� E

∫ T0

0

∞∑
i=1

(q
(J0)
i )2e−q

(J0)
i t1[S(t; J ) > x − 1]1[T0 > hx�]dt

+E

∫ T0

0
1[S(t; J ) > x − 1]1[T0�hx�]dt

� I11(x)+ I12(x).

Next, we defineS(k)
i (t)�∑

j �=i B
(k)
j (t), S(k)(t) = S

(k)
i (t) + B

(k)
i (t), where{B(k)

i (t),

i�1} is a sequence of independent Bernoulli random variables withP[B(k)
i (t) = 1] =

1− e−q
(k)
i t . Then, from the definition ofS(t; J ) it follows thatP[S(t; J ) > x|J0 = k, t <

T0] = P[S(k)(t) > x]. Thus, using this fact,q(k)
i � q̄i �H/i�, Lemma5, and Eq. (37), we

obtain

I11(x) �
M∑
k=1

P[J0 = k, T0 > hx�]
∫ ∞
0

∞∑
i=1

(q
(k)
i )2e−q

(k)
i tP[S(k)

i (t) > x − 2]dt

� MP[T0 > hx�] H

x�−1 = o

(
1

x�−1

)
asx →∞. (39)

In estimatingI12(x) we useT0�hx� and exactly the same arguments as in (28)–(30),
rendering

I12(x)�hx�P[S̄(hx�) > x − 1] = o

(
1

x�−1

)
asx →∞.

Thus, the preceding bound and (39) imply

I1(x) = o

(
1

x�−1

)
asx →∞. (40)

At this point, we provide an estimate forI2(x). If we define

I ∗n (x)�E

∫ Tn

Tn−1
f̂ (t)1[S(Tn; J ) > x − 1]dt,

then

I2(x)�
�x1/3�∑
n=1

I ∗n (x) (41)

and

I ∗n (x) = E

∫ Tn

Tn−1
f̂ (t)1[T0 > hx�]1[S(Tn; J ) > x − 1]dt
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+E

∫ Tn

Tn−1
f̂ (t)1[T0�hx�]1[S(Tn; J ) > x − 1]dt

� I ∗n,1(x)+ I ∗n,2(x).

Next, when we replace the bound

f̂ (t)�
∞∑
i=1

q
(J0)
i q

(J−Tn )

i e−q
(J0)
i T0e−q

(J−Tn
)

i (t−Tn−1) for t ∈ (Tn−1, Tn] (42)

in I ∗n,1(x) and evaluate the integral, we derive

I ∗n,1(x)�E
∞∑
i=1

1[T0 > hx�]q(J0)
i e−q

(J0)
i hx�

(1− e−q
(J−Tn

)

i (Tn−Tn−1)).

Then, using 1− e−x �x for x�0, max(q(J0)
i , q

(JTn )

i )� q̄i �H/i� and supy �0 ye
−y

= e−1, similarly as in (13), we arrive at

I ∗n,1(x) � E
x∑

i=1
e−11[T0 > hx�]

hx� q̄i (Tn − Tn−1)

+E
∞∑
i=x

1[T0 > hx�](q̄i)
2(Tn − Tn−1)

� E[(Tn − Tn−1)1[T0 > hx�]]H
x� . (43)

Since the random variables(Tn−Tn−1), n�1, and 1[T0 > hx�] are conditionally indepen-
dent givenJ0, we derive

E[(Tn − Tn−1)1[T0 > hx�]]
= E[E[Tn − Tn−1|J0]P[T0 > hx�|J0]]
�

(
max

1�k�M
E[Tn − Tn−1|J0 = k]

)
P[T0 > hx�]

�
(

max
1�k�M

�k

)
P[T0 > hx�]. (44)

Thus, the proceeding bound, (43), and (37) yield, uniformly inn,

I ∗n,1(x) = o

(
1

x�

)
asx →∞. (45)

Next, we compute an estimate forI ∗n,2(x). Using (42) and computing the integral in
I ∗n,2(x) result in

I ∗n,2(x) � E
∞∑
i=1

1[T0�hx�, S(Tn; J ) > x − 1]q(J0)
i e−q

(J0)
i T0

×(1− e−q
(J−Tn

)

i (Tn−Tn−1))

� P[T0�hx�, S(Tn; J ) > x − 1]
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� P[S(Tn; J ) > x − 1, T0�hx�, S(T0; J )�	x − 1]
+P[T0�hx�, S̄(T0) > 	x − 1], (46)

since S̄(t) stochastically dominatesS(t; J ). Let S(u, t; J ), 0 < u < t , be the number
of distinct items requested in[−t,−u); then, it is easy to see thatS(Tn; J )�S(T0; J ) +
S(T0, Tn; J ). Thus, if we chooseh small enough such thatES̄(hx�)�(	x − 1)/(1+ 	) for
largex, then, by Lemma4, we obtain (x�x	)

I ∗n,2(x) � P[S(T0, Tn; J ) > (1− 	)x] + P[S̄(hx�) > 	x − 1]
� P[S̄(Tn − T0) > (1− 	)x] +He−h
	x. (47)

Now, if we pickh small enough such thatES̄(hx�) < x(1− 	)/(1+ 	) for all largex, we
obtain that, uniformly for alln�x1/3,

P[S̄(Tn − T0) > (1− 	)x]
�P[S̄(hx�) > (1− 	)x] + P[Tn − T0 > hx�]
�P[S̄(hx�) > (1− 	)x] +

n∑
i=1

P

[
Ti − Ti−1 >

hx�

n

]

�He−h
	x + o

(
1

x�−2/3

)
asx →∞, (48)

where in the second inequality we used the union bound, and in the last expression
Lemma4, (36) and Markov’s inequality. This impliesI ∗n,2(x) = o(1/x�−2/3) asx → ∞,
uniformly for all n�x1/3. Therefore, in conjuction with (45) and (41), we derive

I2(x) = o

(
1

x�−1

)
asx →∞. (49)

In order to derive asymptotics forI3(x), we use the fact that the semi-Markov processJ
observed at its jump points{J−Tn

, n�0} is a Markov chain. Define the amount of time that
J spends in statek in T0,n ≡ (−Tn,−T0) as

�k(T0,n)�
n−1∑
i=0

1[J−Ti+1 = k](Ti+1− Ti ),

Then, by ergodicity of the Markov chain{J−Ti
}, asn→∞,

E�k(T0,n)=
n−1∑
i=0

P[J−Ti+1 = k]E[Ti+1− Ti |J−Ti+1 = k]
∼ n�k�k = n��k. (50)

For any 1�k�M, a well-known large deviation result on finite state ergodicMarkov chains
(e.g., see Section 3.1.2 of[9]) shows that for any	 > 0, there is
k,	 > 0, such that the
number of timesNn(k) thatJ−Ti

visits statek for 1� i�n, i.e.Nn(k) =∑n
i=1 1[J−Ti

= k],
satisfies

P[|Nn(k)− �kn| > 	n]�e−
k,	n. (51)

Next, let{Ti (k)}be i.i.d. randomvariables that are independent ofNn(k)andhavea common
distributionequal toFk(x) = P[T1−T0�x|J−T1 = k]. Then, it is easy to see that�k(T0,n) is
equal in distribution to

∑Nn(k)
i=1 Ti (k), and, by (50), for all n largeE�k(T0,n) < (1+	)�k�kn,
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implying

P[�k(T0,n) < (1− 	)E�k(T0,n)]
�P

[
Nn(k)∑
i=1

Ti (k) < (1− 	2)�k�kn

]

�P

[
Nn(k) <

(
1− 	2

2

)
�kn

]
+ P

[
(1−(	2/2))�kn∑

i=1
(�k − Ti (k)) >

	2

2
�k�kn

]
.

(52)

Since the random variables�k − Ti (k) are bounded from the right (�k − Ti (k)��k), using
a large deviation (Chernoff) bound, e.g. see Theorem 1.5, p. 14 of[26], we conclude that
the second term in (52) is exponentially bounded, and, in conjuction with (51), we arrive at

P[�k(T0,n) < (1− 	)E�k(T0,n)]�e−
	n, (53)

for some
	 > 0. Therefore, the probability of the complement of the set

A(n)� ⋂
1�k�M

{�k(T0,n)�(1− 	)n�k�k}

is exponentially bounded:P[Ac(n)]�Me−
	n.
At this point, using the bounds from the preceding paragraph, we estimateI3(x) by

decomposing it as

I3(x) � E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[Ac(n)]dt

+E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[S(t; J ) > x − 1]1[A(n)]dt. (54)

Now, replacing (42) in the first expressionof thepreceding inequality, computing the integral
and bounding it by 1, and, then, using the exponential bound onP[Ac(n)] lead to

E
∞∑

n=�x1/3�
1[Ac(n)]

∫ Tn+1

Tn

f̂ (t)dt �
∞∑

n=�x1/3�
P[Ac(n)] = o

(
1

x�−1

)
asx →∞.

Hence, applying the preceding estimate in (54) and conditioning on the length ofT0 imply,
asx →∞,

I3(x) � E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[S(t; J ) > x − 1, T0 > hx�,A(n)]dt

+E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[S(t; J ) > x − 1, T0�hx�,A(n)]dt

+o

(
1

x�−1

)

� I31(x)+ I32(x)+ o

(
1

x�−1

)
. (55)
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Next, in estimatingI31(x), note that for all� ∈ A(n)

M∑
k=1

�k(T0,n)q(k)
i �(1− 	)n

M∑
k=1

q
(k)
i �k�k = (1− 	)n�

M∑
k=1

q
(k)
i �k = (1− 	)n�qi,

and therefore, fort ∈ (Tn, Tn+1],

f̂ (t)1[A(n)]�
∞∑
i=1

q
(J0)
i q

(J−Tn+1)
i e−q

(J0)
i T0e−�nqi(1−	)e−q

(J−Tn+1)

i (t−Tn)1[A(n)].
(56)

Therefore, by using (56) in I31(x), then completing the integration and applying 1−e−x �x,
x�0, we derive

I31(x) � E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[T0 > hx�,A(n)]dt

� E
∞∑

n=�x1/3�

∞∑
i=1

e−�nqi(1−	)q
(J0)
i e−q

(J0)
i hx�

q
(J−Tn+1)
i 1[T0 > hx�](Tn+1− Tn)

� HE

[
1[T0 > hx�]

∞∑
i=1

q
(J0)
i e−q

(J0)
i hx�

]
,

where the last inequality uses double conditioning,E[Tn+1 − Tn|J−Tn+1]� max1�k�M

�k, q
(J−Tn )

i � q̄i , and
∑∞

n=�x1/3� e
−�nqi(1−	) = O (1/q̄i). Hence, upper-bounding the

preceding sum, as in (13), and usingP[T0 > hx�] = o(1) as x → ∞, we easily
arrive at

I31(x) = o

(
1

x�−1

)
asx →∞. (57)

In evaluatingI32(x), we condition on the length ofTn+1− Tn:

I32(x)= E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[S(t; J ) > x − 1, T0�hx�, Tn+1− Tn > hx�,A(n)]dt

+E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[S(t; J ) > x − 1, T0�hx�, Tn+1− Tn�hx�,A(n)]dt.
(58)

Thus, using (56) andq(J0)
i � q̄i , after upper-bounding and integrating the first term of the

preceding equality we obtain

E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[S(t; J ) > x − 1, T0�hx�, Tn+1− Tn > hx�,A(n)]dt
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�E
∞∑
i=1

∞∑
n=�x1/3�

q̄ie
−(1−	)�nqi (1− e−q

(J−Tn+1)

i (Tn+1−Tn))1[Tn+1− Tn > hx�].
(59)

Furthermore, we can upper-bound (59) by splitting the sum, using 1− e−x �1 and

1− e−x �x (both forx�0) andq
(J−Tn+1)
i � q̄i as follows:

E
∞∑
i=1

∞∑
n=�x1/3�

q̄ie
−(1−	)�nqi (1− e−q

(J−Tn+1)

i (Tn+1−Tn))1[Tn+1− Tn > hx�]

�
x∑

i=1

∞∑
n=�x1/3�

q̄ie
−(1−	)�nqi P[T1− T0 > hx�]

+
∞∑

i=x+1
q̄i

∞∑
n=�x1/3�

q̄ie
−(1−	)�nqi E[(T1− T0)1[T1− T0 > hx�].

Now, if in the preceeding expression we use the following estimates:P[T1− T0 > hx�] =
O(1/x�(1+�)), E[(T1− T0)1[T1− T0 > hx�]] = o(1) asx →∞,

∞∑
n=�x1/3�

q̄ie
−(1−	)�nqi �

∫ ∞
�x1/3�−1

q̄ie
−(1−	)�qiy dy�1/((1− 	)�min

k
�k)

andqi ∼ c/i� asi →∞, then in conjunction with (59) the first term of (58) satisfies

E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[S(t; J ) > x − 1, T0�hx�, Tn+1− Tn > hx�,

A(n)]dt = o

(
1

x�−1

)
asx →∞. (60)

Therefore, replacing expression (60) for the first sum of (58) yields, asx →∞,

I32(x) = E
∞∑

n=�x1/3�

∫ Tn+1

Tn

f̂ (t)1[S(Tn+1; J ) > x − 1, T0�hx�, Tn+1

−Tn�hx�,A(n)]dt + o

(
1

x�−1

)

� E
�	x��∑

n=�x1/3�

∫ Tn+1

Tn

+E
�g	x

��∑
n=�	x��

∫ Tn+1

Tn

+E
∞∑

n=�gεx��

∫ Tn+1

Tn

+o

(
1

x�−1

)

� I
(1)
32 (x)+ I

(2)
32 (x)+ I

(3)
32 (x)+ o

(
1

x�−1

)
, (61)

for someg	 > 0 and 0< 	 < g	 (from the later choice ofg	 it will be clear that such	
exists).
In what follows we will evaluate the expressionsI

(k)
32 (x) from (61). Recalling the defini-

tion of S(u, t; J ) and using similar arguments as in (46) and (47), it is easy to show

1[S(Tn+1; J ) > x − 1, T0�hx�, Tn+1− Tn�hx�]
�1[S(T0, Tn; J ) > (1− 2	)x] + 1[S(hx�; J ) > 	x − (1/2)]
+1[S(Tn, Tn + hx�; J ) > 	x − (1/2)], (62)
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and, therefore, replacing (56) in I
(1)
32 (x) and completing the integration results in

I
(1)
32 (x) � E

�	x��∑
n=�x1/3�

∞∑
i=1

q
(J0)
i e−(1−	)nqi�

×(1− e−q
(J−Tn+1)

i (Tn+1−Tn))1[S(T0, Tn; J ) > x(1− 2	)]
+2	x�P[S̄(hx�) > 	x − (1/2)],

whereh is small enough to ensureES̄(hx�)�(	x−1/2)/(1+ 	) for largex. Next, applying

Lemma 4, max(q(J0)
i , q

(J−Tn+1)
i )�Hqi , 1 − e−x �x (x�0), the fact that

(Tn+1 − Tn) and 1[S(T0, Tn; J ) > (1− 2	)x] are conditionally independent givenJ−Tn

and (36) renders, asx →∞,

I
(1)
32 (x) � H

�	x��∑
n=�x1/3�

∞∑
i=1

q2i e
−(1−	)n�qi

×E[E[Tn+1− Tn|J−Tn
]P[S(T0, Tn; J ) > x(1− 2	)|J−Tn

]]
+o

(
1

x�−1

)

� H
�	x��∑

n=�x1/3�

∞∑
i=1

q2i e
−(1−	)n�qi P[S̄(Tn − T0) > x(1− 2	)]

+o

(
1

x�−1

)
.

Now, byusing theargument as in inequality (48) andLemmas2and7,wederive, asx →∞,

I
(1)
32 (x)� H

x�(1+�)

�	x��∑
n=�x1/3�

1

n1− 1
�

+ o

(
1

x�−1

)
= o

(
1

x�−1

)
, (63)

when	 is smaller thanshwith sas in Lemma7.
Now, we estimateI (2)

32 (x) by replacing (56) in I
(2)
32 (x), completing the integration and

applying similar arguments as in (62) and, therefore, asx →∞,

I
(2)
32 (x) � E

�g	x
��∑

n=�	x��

∞∑
i=1

q
(J0)
i e−(1−	)nqi�

×(1− e−q
(J−Tn+1)

i (Tn+1−Tn))1[S(T0, Tn; J ) > (1− 2	)x] + o

(
1

x�−1

)
.

Then, by usingmax(q(J0)
i , q

(J−Tn+1)
i )�Hqi , 1−e−x �x (x�0), (36), the fact that(Tn+1−

Tn) and 1[S(T0, Tn; J ) > (1− 2	)x] are conditionally independent givenJ−Tn
, we obtain,

asx →∞,

I
(2)
32 (x) � H

�g	x
��∑

n=�	x��

∞∑
i=1

q2i e
−(1−	)nqi�

×E
[
E[Tn+1− Tn|J−Tn

]P
[
S (T0, Tn; J ) > x(1− 2	)

J−Tn

]]
+o

(
1

x�−1

)



P.R. Jelenkovi´c, A. Radovanovi´c / Theoretical Computer Science 326 (2004) 293–327 323

� H
�g	x

��∑
n=�	x��

∞∑
i=1

q2i e
−(1−	)nqi�

×P
[
S

(T0, T�g	x��; J
)
> x(1− 2	)

]+ o

(
1

x�−1

)
.

Define

B(x)� ⋂
1�k�M

{�k(T0,�g	x��)�(1+ 	)�k�kg	x
�}.

Then, asx →∞,

I
(2)
32 (x) � H

�g	x
��∑

n=�	x��

∞∑
i=1

q2i e
−(1−	)�nqi P

[
S

(T0, T�g	x��; J
)
> x(1− 2	),B(x)

]

+H
�g	x

��∑
n=�	x��

∞∑
i=1

q2i e
−(1−	)�nqi P[Bc(x)] + o

(
1

x�−1

)
. (64)

Now, we will evaluate the two sums from the preceding inequality. Due to the weak law
of large numbers,P[�k(T0,�g	x��) > (1+ 	)�k�kg	x

�] → 0, implyingP[Bc(x)] → 0 as
x →∞, which, in conjunction with Lemma2, yields asx →∞

H
�g	x

��∑
n=�	x��

∞∑
i=1

q2i e
−(1−	)�nqi P[Bc(x)] = o(1)

�g	x
��∑

n=�	x��
n−2+

1
� = o

(
1

x�−1

)
. (65)

Next, we estimate the probabilityP[S(T0, T�g	x��; J ) > (1− 2	)x,B(x)]. LetBi(u, t; J ),
0 < u < t , be a random variable indicating whether itemi is requested in[−t,−u).
Define S∗(x) = ∑∞

i=1B∗i (x), where {B∗i (x), i�1} is a sequence of independent

Bernoulli random variables withP[B∗i (x) = 1] = 1− e−(1+	)
∑M

k=1 q
(k)
i ��kg	x

�
; similarly as

before,S∗(x) is constructed non-decreasing inx. Then, for every� ∈ B(x),

P�T�g	x��
[
Bi

(T0, T�g	x��; J
) = 1

] = 1− e−
∑M

k=1 q
(k)
i �k(T0,�g	x��)

� P[B∗i (x) = 1].
Therefore, by stochastic dominance, for every� ∈ B(x)

P�T�g	x��
[
S

(T0, T�g	x��; J
)
> (1− 2	)x

]
�P

[
S∗(x) > (1− 2	)x

]
. (66)

If we select

g	 = (1− 4	)�

(1+ 	)c��
[
1− 1

�

]� ,
it is easy to check, using Lemma3, that for allx large enough

ES∗(x) =
∞∑
i=1

(1− e−(1+	)
∑M

k=1 �k�g	x
�q

(k)
i ) < (1− 3	)x.

This inequality, (66), and Lemma 4 imply, after settingε = 	/(1 − 3	), for all x large
enough,

P
[
S

(T0, T�g	x��; J
)
> (1− 2	)x,B(x)

]
�P

[
S∗(x) > (1− 2	)x

]
�He−
	x,
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for some positive constant
	. Therefore, by using Lemma2, the upper bound on the first
expression in (64) is

�g	x
��∑

n=�	x��

∞∑
i=1

q2i e
−(1−	)�nqi P

[
S∗(x) > (1− 2	)x

] = o

(
1

x�−1

)
asx →∞,

which in conjunction with (65) implies

I
(2)
32 (x) = o

(
1

x�−1

)
asx →∞. (67)

Finally, after replacing (56) in I
(3)
32 (x), computing the integral, applying 1− e−x �x,

x�0 and using double conditioning, we obtain for any integer��1

I
(3)
32 (x) � E

∞∑
n=�g	x��

∞∑
i=1

q
(J0)
i q

(J−Tn+1)
i �J−Tn+1

e−qi�n(1−	)

� E
∞∑
j=0

∞∑
i=1

E[q(J0)
i |J−T�g	x��+j�

]e−(1−	)�(�g	x
��+j�)qi

�g	x
��+(j+1)�∑

n=�g	x��+j�
E[q(J−Tn+1)

i �J−Tn+1
|J−T�g	x��+j�

]; (68)

in the last inequality we split the first sum, apply the conditional independence ofJ0 and
{J−Tn

, �g	x
�� + j��n��g	x

�� + (j + 1)�} givenJ−T�g	x��+j�
and use the monotonicity

of e−x . Now, by ergodicity of the Markov chain{J−Tn
} (see Theorem 2.26 on p. 160 of[7])

and finiteness of its state space, for� large enough, allj �0 and alli�1
�g	x

��+(j+1)�∑
n=�g	x��+j�

E[q(J−Tn+1)
i �J−Tn+1

|J−T�g	x��+j�
= l]

=
M∑
k=1

q
(k)
i �k

�∑
n=0

E[J−Tn+1 = k|J−T0 = l]�(1+ 	)�qi�.

Therefore, after summing over allj and taking expectation, we derive

I
(3)
32 (x)�

∞∑
i=1

q2i (1+ 	)�e−qi�(1−	)�g	x
�� �
1− e−��qi (1−	)

=
∫ ∞
�g	x��

∞∑
i=1

q2i (1+ 	)�e−qi�(1−	)t qi��(1− 	)
1− e−��qi (1−	) dt.

Now, sincex/(1 − e−x) → 1 asx → 0, we can choosei0 such thatqi��(1 − 	)/
(1− e−��qi (1−	))�1+ 	 for all i� i0; thus, we can further upper boundI

(3)
32 (x) as

I
(3)
32 (x)�Hi0e

−hqi0x
� +

∫ ∞
�g	x��

∞∑
i=1

q2i (1+ 	)2�e−qi�(1−	)t dt. (69)

At last, since the first term in the preceding expression equalso(1/x�−1) asx →∞, using
Lemma2 and the expression forg	, we compute

lim sup
x→∞

I
(3)
32 (x)

P[R > x]�K(�)
(1+ 	)3− 1

� (1− 	)−2+ 1
�

(1− 4	)�−1
.
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By passing	→ 0 in the last inequality and then replacing it together with estimates (67)
and (63) in (61), we derive

lim sup
x→∞

I32(x)

P[R > x]�K(�). (70)

Finally, (70), (57), (55), (40), (49), and Proposition2 conclude the proof. �
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Appendix A.

Proof of Proposition 1. By Theorem1, for any finiteN, the stationary search cost is
given by

P[CN > x] = E

∫ ∞
0

N∑
i=1

q
(J0)
i,N q

(J−t )

i,N e−q̂i,N tP�t [Si,N (t; J ) > x − 1]dt. (71)

Clearly, the termunder the integral in the preceding equation converges to the corresponding
term in (10) asN → ∞. Hence, in order to apply the Dominated Convergence Theorem,
it remains to show that, uniformly inN, the integrand in (71) is bounded by an integrable
function. To this end, let̂qi,N , i�1, correspond to the empirical distribution defined in (8)
with q

(k)
i replaced byq(k)

i,N . Then, since
1∑N

i=1 q
(k)
i

↘ 1 asN →∞, there existsN0�1, such

that for allN �N0, 1� i�N , and 1�k�M,

q
(k)
i �q

(k)
i,N �2q(k)

i .

Thus, the function under the integral in (71) is almost surely bounded by

4
∞∑
i=1

q
(J0)
i q

(J−t )

i e−q̂i t . (72)

Since−d(e−q̂i t ) = e−q̂i t d(
∑M

k=1 q
(k)
i

∫ 0
−t
1[Ju = k]du) = e−q̂i t q

(J−t )

i dt , and, due to

ergodicity,q̂i t = ∑M
k=1 q

(k)
i

∫ 0
−t
1[Ju = k]du→∞ ast →∞ a.s., we conclude that the

function in (72) is integrable, i.e.,

E

∫ ∞
0

4
∞∑
i=1

q
(J0)
i q

(J−t )

i e−q̂i t dt = −4E

∫ ∞
0

∞∑
i=1

q
(J0)
i d(e−q̂i t ) = 4. �

Proof of Lemma 4. Letmi�EBi , i�1. For an arbitrary 0< 	 < 1

P[|S −m| > m	] = P[S > m(1+ 	)] + P[−S > −m(1− 	)]. (73)
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Now, using Markov’s inequality, for any
 > 0 we obtain

P[S > m(1+ 	)] = P[e
S > e
m(1+	)]� Ee
S

e
m(1+	)
. (74)

Since{Bi, i�1} are independent Bernoulli random variables,

Ee
S =
∞∏
i=1

Ee
Bi =
∞∏
i=1

(e
mi + (1−mi))�
∞∏
i=1

emi(e
−1) = em(e
−1),

and, therefore, using (74), we derive

P[S > m(1+ 	)]�em(e
−1−
(1+	)).

We can choose
 > 0 such that e
 − 1− 
(1+ 	) = −
(1)
	 < 0. Similarly, the second

expression of (73) is bounded by e−
(2)
	 m for some
(2)

	 > 0. By taking
	 = min(
(1)
	 , 
(2)

	 ),
we complete the proof.�
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