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Abstract

We investigate a widely popular least-recently-used (LRU) cache replacement algorithm with semi-
Markov modulated requests. Semi-Markov processes provide the flexibility for modeling strong sta-
tistical correlation, including the widely reported long-range dependence in the World Wide Web page
request patterns. When the frequency of requesting a pégequal to the generalized Zipf's law
¢/n*, o> 1, our main result shows that the cache fault probability is asymptotically, for large cache
sizes, the same as in the corresponding LRU system with i.i.d. requests. The result is asymptotically
explicit and appears to be the first computationally tractable average-case analysis of LRU caching
with statistically dependent request sequences. The surprising insensitivity of LRU caching perfor-
mance demonstrates its robustness to changes in document popularity. Furthermore, we show that the
derived asymptotic result and simulation experiments are in excellent agreement, even for relatively
small cache sizes.
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1. Introduction

The basic idea of caching is to maintain high-speed access to a subsitiofls out
of a larger collection oN documents that cannot be accessed quickly. Originally, caching
was used in computer systems to speed up the data transfer between the central processor
unit and slow local memory. The renewed interest in caching stems from its application to
increasing the speed of accessing Internet Web documents.

One of the fundamental issues of caching is the problem of selecting and possibly dynam-
ically updating thek items that need to be stored in the fast memory (cache). The optimal
solution to this problem is often very difficult to find and, therefore, a number of heuristic,
usually dynamic, cache updating algorithms have been proposed. Among the most popular
algorithms are those based on the least-recently-used (LRU) cache replacement rule. The
wide popularity of this rule is primarily due to its high performance and ease of implemen-
tation. LRU algorithm tends to both keep more frequent items in the cache as well as quickly
adapt to potential changes in document popularity, resulting in efficient performance.

In order to further the insight into designing network caching algorithms, it is important
to gain a thorough understanding of the baseline LRU cache replacement policy. Basic
references on the performance analysis of caching algorithms can be found in Section 6
of Knuth [19]. In the analysis of LRU caching scheme there have been two approaches:
combinatorial and probabilistic studies. For the combinatorial (amortized, competitive)
analysis the reader is referred to Bentley and McGd8tfand Sleator and Tarjaj25];
recent results and references for this approach can be found in Borodif=taaid Irani
et al.[15]. In this paper we focus on the average-case or probabilistic analysis.

Early work on the probabilistic analysis of LRU caching, and the related move-to-front
(MTF) searching, algorithm with i.i.d. requests dates back to McQabg This work
has been followed by investigations of Burville and Kingnj@h Rivest[23], Bitner[4],
Phatarfod22], Fill [12], Flajolet et al[14] and others; a more extensive list of references
and brief historical overview can be found[itg].

Recently, for the independent reference modgl &) a new analytically tractable asymp-
totic approximation technique of the LRU fault probability was developed. However, an
equivalent understanding of LRU performance with statistically dependent request se-
quences is still lacking. Several papers, including Rodrigéy Dobrow and Fill[10]
and Coffman and Jelenkav[8], develop representation results for the LRU cache fault
probability, but these results appear to be computationally intractable, as pointed out in
[8]. Despite the lack of analytical tractability, numerous empirical studies, e.d1kee
emphasize the importance of understanding the caching behavior in the presence of strong
statistical correlation, including the long-range dependence.

In order to alleviate the preceding problem, this paper provides the first explicit asymptotic
characterization of the LRU cache fault probability in the case of statistically dependent
requests. Our doubly stochastic Poisson reference model, capable of capturing a broad
range of statistical correlation, is described in the following section. Using this model and
the Poisson decomposition/superposition properties, similarly as ifil&jl] in Section
3 we develop a representation theorem for the stationary search cost distribution. This
representation theorem provides a starting point for our large deviation analysis that, for the
case of generalized Zipf's law requests, yields the main results stated in Thebagiah3.
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Informally, our main results show that the LRU fault probability is asymptotically invari-
ant to the underlying dependency structure of the modulating process, i.e., for large cache
sizes, the LRU fault probability behaves exactly the same as in the case of independent
request sequencg$6]. This may appear surprising given the impact that the statistical
correlation has on the asymptotic performance of queuing models, e.[l.8}eEurther-
more, in Section 5 extensive numerical experiments show an excellent agreement between
our analytical results and simulations. The paper is concluded in Section 6 with a brief
discussion on the impact of our findings on designing network caching systems.

2. Model description

ConsiderN items, out of whichk are kept in a fast memory (cache) and the remaining
N — k are stored in a slow memory. Each time a request for an item is made, the cache
is searched first. If the item is not found there, it is brought in from the slow memory and
replaced with the least recently accessed item from the cache. Such a replacement policy
is commonly referred to as LRU, as previously stated in the introduction. The performance
quantity of interest for this algorithm is the LRU fault probability, i.e. the probability that the
requested item is not in the cache. Our goal in this paper is to asymptotically characterize
this probability.

The fault probability of the LRU caching is equivalent to the tail of the searching cost
distribution for the MTF searching algorithm. In order to justify this claim, we note that
k elements in the cache, under the LRU rule, are arranged in increasing order of their last
access times. Each time there is a request for an item that is not in the cache, the item is
brought to the first position of the cache and the last element of the cache is moved to the
slow memory. We argue that the fault probability stays the same if the remaVnirigitems
in the slow memory are arranged in any specific order. In particular, they can be arranged
in the increasing order of their last access times. The obtained algorithm is then the same
as the MTF searching algorithm. Additional arguments that justify the connection between
the MTF search cost distribution and LRU cache fault probability can be foufid!jt1]
and[16]. Hence, we proceed with a description of the MTF algorithm.

More formally, consider a finite set of itenis= {1, ..., N}, and a sequence of requests
thatarrive at pointér,,, —oo < n < oo} thatrepresent a Poisson process of unitrate. Ateach
pointz,, we useR, to denote the document that has been requested, i.e., thg 8yenti}
represents a request for documente assume that the sequeriég, } is independent of
the arrival Poisson poin{s, }. The dynamics of the MTF algorithm are defined as follows.
Suppose that the system starts at the momgoitOth request with an initial permutatidifg
of the list. Then, at every time instant, n > 0, that an item, sal is requested, its position
in the list is first determined,; iff is in thekth position we say that the search cayt for
this item is equal t&. Now, the list is updated by moving iteito the first position of the
list and items in positions,1. ., k — 1, are moved one position down. Note that, according
to the discussion in the preceding paragraBiCy > k] represents the stationary fault
probability for a cache of sizie

In the remaining part of this section, we describe the dependency structure of the request
sequencdR,}. Let {T,,, —oc0 < n < oo}, To<0 < T1, be a point process with almost
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surely (a.s.) strictly increasing poingg,+1 > 7,) and{Jr,, —co < n < oo} a finite-
state-space process taking value$ln..., M}. Then we construct a piecewise constant
right-continuousnodulating process ds

Jy=Jr, it T, <t <T,41.

We assume that is stationary and ergodic with stationary distribution = P[J; = k]
and independent of Poisson poifits}. Next, for anyk, m < M, we assume the asymptotic
independence

PlJ; = k|Jo=m] — 1 ast — oo. (1)

To avoid trivialities, we assume that min; > 0.

For each Kk < M, let ql.(k), 1<i <N, be a probability mass functiorqf“ is used to
denote the probability of requesting iténmvhen the underlying procedss in statek. Next,
the dynamics oRR, are uniquely determined by the modulating prockascording to the
following equation:

. T (Jy)
[FD[RI =ll,1<l<n|.]t,t<fn] = Hq” ! )

n>1, (2)

i.e., the sequence of requegsis conditionally independent given the modulating process
J. Therefore, the constructed request pro¢&s$ is stationary and ergodic as well. We will
use

L
qgi=P[R=i]= Z kg,
k=1

k)

to express the marginal request distribution, with the assumptiogythad forall 1<i < N.
The preceding processes are constructed on a probability §Rage P).

3. Preliminary results

In this section we first prove, in Lemm that the search cost random varialglgf
converges to stationarity when the request pro¢Rgssis stationary and ergodic; note that,
only inthis lemma, we suppose these more general conditiof®,4rthan those assumed in
the previous section. Then, in the following subsection we give properties of the stationary
search cost distribution in Theoreland Propositiori. The remaining part of the section
contains the results on MTF searching with i.i.d. requests that will be used in proving our
main theorems.

Lemma 1. If the request procesiR, } is stationary and ergodichen for any initial per-

mutationIIg of the list the search cosCflV converges in distribution t€” asn — oo,
where

N e’}
CNEY S L+ Si(m—1)AR_, =i, Ri(m — 1), Rg = il,
i=1m=1
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S;(m) is the number of distinct itemsglifferent from j amongR_,,, ..., R_; and event
Ri(m)2{R_j #i,1<j<m},m>1;S;(0)=0,R;(0) = Q

Proof. For simplicity letC,, = C/ . Note that, due to the stationarity of the request process
{R,}, C, is equal in distribution to the search cmﬁ” at the moment of Oth requesg,
given that the MTF process started at tims, with initial permutation/Io. Now, each of

the summands of the following identity

can be represented as

CPURo = 1= 3 (1+ 8,(m — DYUR_, = i, Rim — 1), Ro = 1]

m=1

+C{"1[Ri(n), Ro = il, (4)

smceC(”) =1+ S;(m—21oneven{R_,, =i, R;(m — 1), Rg = i}. The second term in
the precedlng equality is bounded MA[R; (n)], which, by ergodicity, satisfies a.s.

lim N1[R;(m)] =0

Thus, the last limit, monotonicity of the sum i) @nd identity 8) imply thatC(") converges
a.s.toCN asn — oo. ThereforeCY converges in distribution t6" asn — oco. [

3.1. Representation theorem

At this point, we will derive a representation theorem for the stationary searcli'¢ost
as defined in Lemma Note thaiC" is uniquely defined by the request procéRs, n <0}
and, therefore, it implicitly depends di’;,+., t <0}. However, sincerg is independent
from {J;}, the proces$J,,+,, t <0} is equal in distribution tg.J;, r < 0}. Thus, without loss
of generality we can sety = 0. Next, Ietri1 be the last moment of time< 0 that itemi
was requested. Then, an equivalent continuous time representatidhief

N .
N = (14 Si(—t 4 I)A[Ro = i].

i=1

where, similarly as in Lemma, S;(¢; J) represents the number of distinct items, different
from i, that are requested in interviatz, 0). Now, using double conditioning and the last
identity, we arrive at

oo N .
PICY > x]=E[ Y P, [Si(t; J)>x—1Ro=i1 € (—t —t +dt)] ,
0 =1
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whereg, is thecg-algebras(J,, —t <u <0) and Py, [-] = P[-|o/]. Using the fact that the
request proces®,, by (2), is conditionally independent given the modulating processd
that the variables; (¢; J) andrl;1 are uniquely determined by the valueq &f,, n < — 1}
and the Poisson arrivals for< 0, we conclude thaRy is conditionally independent from
Si(t; J) andt’_;, givena,, and thus

PICN > x] = E/ Y 4P, [S,- 0 >x—1.1 € (—t, 1+ dt)] )
0 =1

Next, we intend to show that variablés(z; J) andv:’;1 are conditionally independent
givena;,. To this end, we exploit the Poisson superposition/decomposition properties of the
arrival process. LeX; (u; J) be the number of requests for itgrim [—u, 0), 0 < u <t and
Bj(t; J) =1[N,(t; J) > Q. Then,S;(¢; J) can be represented as

Si(t; J) = > Bj(t; J). (6)
JAFLLIS jSKN

Now, we show that, for differerj{ processe$N; (u; J), 0 < u <t} are mutually inde-
pendent Poisson processes givenin this regard, for any>u > 0, letV,, be an interval
in [—u, 0) on which the modulating process stays constant, i.e.

Vi =[Thy1 A 0] — [T v (—uw)],

wherea A b = min(a, b) anda v b = max(a, b). Since, by ), the request process is
conditionally independent givesy, and independent from the Poisson arrival points, the
Poisson decomposition theorem (see Section 4.Ffimplies that the number of re-
quests for itenj in an intervalV,, givena;, is a Poisson variable with expected value

q/(.JT”V(’”)Vn. Furthermore, the Poisson variables for differ¢rénd different intervals

V, are independent given,. Thus, giveng,, aggregating the independent Poisson re-
quests for itenj over all intervalsV,, C [—u, O], by Poisson superposition theorem (see
Section 4.4 of7]) shows thatV; (u; J) are mutually independent Poisson variables for dif-
ferentj. Furthermore, by repeating the preceding arguments over an arbitrary set of disjoint
intervals[—u,,, —um—1),...,[—u1,0),0 < u1< -+ <wupy-1<u, <t, it easily follows

that, for differentj, {N;(u; J),0 < u <t} are mutually independent Poisson processes
giveng;. In particular, for any fixed, the Bernoulli variabless;(¢; J) are conditionally
independent given; with

Po,[Bj(t; J) =1 =1 —e 9", @)

whereg; = ¢, (1) andw; = 7 (¢t) are defined as
- .10
qj = > q; Tk and = ;/ 1[J, = k] du. (8)
k=1 —t

Therefore, since‘g—r"_1 > t} = {N;(¢t; J) = 0}, the conditional independence of variables
N;(t; J) and Eq. 6) show thatS;(z; J) andr"_1 are conditionally independent given.
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Using this fact and
Pg,[t" 4 € (—t, —t + d1)]
= Py, [Ni(t —dt; J) =0, N;i(t; J) — Ni(t —dt; J) = 1]
= e 9q o

in (5) we derive the following representation theorem.
Theorem 1. The stationary distribution of the searching casY satisfies
N o) U)o
PICY > x] = E/ Y ¢ g e, 1S ) > x — 114k, (9)
0 i=1

with S;(z; J), B;(t; J), andg; satisfying Eqs(6)—(8), respectively

Remark 1. Throughout this paper we will use the property that the variaSlgs; J),

Bj(t; J), j =1, are monotonically increasing inand B;(t; J), j > 1, are conditionally
independent giverr,. This conditional independence, as is apparent from the deriva-
tion, arises from the Poisson arrival structure. In general, when the request times are
not Poisson, e.g. discrete time arrivals, these variables may not be conditionally indepen-
dent. However, our approach can be extended by embedding the request sequence into a
Poisson process; for i.i.d. requests, the Poisson embedding technique was first introduced
in [13].

Remark 2. Itis clear that the preceding analysis does not rely on the fact that the requests
arrive at a constant rate. Thus, our results can be generalized to the case where the arrival
rate depends on the state of the modulating prodeiss., the rate can be set fg when

J; = k. We do not consider this extension, since it further complicates the notation without
providing any significant new insight.

In the proposition that follows, we investigate the limiting search cost distribution when
the number of itemgv — oco. Now, assume that the probability mass functiqﬂg,
1<k < M are defined for all > 1. Using these probabilities, for a given modulating process
Jand each X N < oo we define a sequence of request procegRég, whose conditional
request probabilities are equal to

" g
0= ——. 1<i<N;

N k)’
2 ic1 9

then, for each finité\, let CV be the corresponding stationary search cost. In the case of the
limiting request procesB, = R:°, similarly as in @), introduces; (t; J) = Z#i Bj(t; J)

to be equal to the number of different items, not equdl tbat are requested ir-¢, 0);

Bj(t; J) is the Bernoulli variable representing the event that itemas requested at least
once in[—z, 0). Now, we prove the limiting representation result that provides a starting
point for our large deviation analysis in Sectin
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Proposition 1. The constructed sequence of stationary search eo¥tsonverges in dis-
tribution to C asN — oo, where the distribution of C is given by

0 o0 J ~
P[C > x] = [E/ Y ¢ ¢ e P, 1S5 T) > x — 1. (10)
0 i=1

1

Remark 3. For the i.i.d. case, this result was proved in Proposition 4[4 2j

Proof. In order to prove the convergence in distribution, it is enough to show the pointwise
convergence of distribution functions, i.e. for ang0, P[CY > x] — P[C > x] as

N — oo. This is easily achieved using the Dominated Convergence Theorem. For details
see the Appendix. O

3.2. Results for i.i.d. requests

Inthis section we state several results that consider LRU caching scheme withindependent
requests that will be used in proving our main results. The MTF model with i.i.d. requests
follows from our general problem formulation when the modulating process is assumed
to be a constant, i.e/; = constant. In this case the Bernoulli variab{é (1), j > 1} that
indicate that an itemwas requested ifi-z, 0) are independent with success probabilities
P[B;(t) = 1] = 1 — e %', Then, using the notatios (1) = Z#i Bj(1), itis easy to see
that the distribution of the limiting stationary search dd$tom Propositionl reduces to

PIC > x] = / ozoj qize“fi’P[Si(t) > x — 1] dr. (12)
0 i=1

The following two results, originally proved in Lemmas 1 and 2[D6], are restated

here for convenience. In this paper we are using the following standard notation. For any
two real functionsa(r) and b(r) and fixedrg € R U {oo} we will usea(r) ~ b(t) as

t — o to denote lim_,, [a(¢)/b(t)] = 1. Similarly, we say that () >b(r) ast — 1o if
liminf,_; a@®)/b@)>1;a)<Sh(t) has a complementary definition.

Lemma 2. Assume thag; ~ ¢/i* asi — oo, witha > 1andc¢ > 0.Thenast — oo,
5 et - r(2-2) 2
i=1 K @ @ ’

wherel is the Gamma function

Lemma 3. Let S(r) = > {2, Bi(t) and assumg; ~ c/i* asi — oo, with « > 1 and
¢ > 0.Thenast — oo,

11
o,

m()=ES@) ~ T (1 — 2) crt

The next straightforward lemma will be repeatedly used in the paper.
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Lemma 4. Let {B;,i >1} be a sequence of independent Bernoulli random variables
S =Y, B; andm = E[S]. Then for any > 0, there existd), > 0, such that

P[|S — m| > me] < 2e 0o

The proof is given in the Appendix.]

Now, we provide a general bound on the search cost distribution for the case when the
request probabilities are reciprocal-polynomially bounded. In the following two lemmas,
we also allow for some of thg;s to be equal to zero. In addition, sinCdakes values in
nonnegative integers, we assume in the remainder of the paper, without loss of generality,
thatx is integer valued as well.

Throughout the papédt denotes a sufficiently large positive constant, whikenotes a
sufficiently small positive constant. The valuestdindh are generally different in different
places. For examplé//2 = H, H2 = H, H + 1 = H, etc.

Lemma 5. If 0<g; < H/i* for some fixed: > 1, then for anyx >1,

PIC > x]<

x*1

Proof. If there are finitely many;s that are positive, then we can always find a large
enough cache size such that the fault probability is equal to zero and the bound trivially
holds. Hence, without loss of generality we can assumegthat 0 for infinitely many

i>1. Thereforem(r) = > 2, B;i(t) /' oo monotonically ag ' oo, implying that the
inversem —1(r) exists for any >0. Next, definer, = (1 — ¢)(x — 1), for arbitrarily chosen

0 < ¢ < 1. Now, usings; (r) < S(¢) in (11), we derive

m~L(x) oo

pw>x]</ 3 gf e RIS >« — 1l
0

oo [e’e]
+/ 3 gfe il dr

m—1(x;) i=1

£ I(x) + I(x).
Then, sinceS(¢) is a non-decreasing function in
(Xs) [ee]

1(x) < P[S(m~ um>x—u/ > qrent

=P[S(m(x) > x — 1] Z gi(1— e—q,-m—locs))
i=1

< PISn(x) > x — 1],

which, bym(m~1(x;)) = (1 — ¢)(x — 1), Lemma4, and setting = ¢/(1 — ¢), implies

L(x)<2e 0% = 0( > asx — oo. (12)

yo—1
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Next,
o0 [e%e}
I>(x) =/ 3 qiz e il gy
m—1(xy) i=1
& -1
— Z qi e_Qim (xg)
i—1
1 X 1 -1 oS
<—— 2 gm Hxp)e i 4 3 g (13)
m=(xg) =1 =+l
Since sup.o(ye™) = e implies gim~(xp)e Mm@ <el for all i and

Zf’ixH qi < fxoo(H/u“) du, the preceding inequality renders

xe 1 H

PSS T et

(14)

Next, fromg; < H/i* follows m(t) = 3 72,(1 — 79" < 372, (1 — e H*/7"); and, using
Lemma3, we derivem (1) < Ht% , implying m~1(x,) > hx*. Therefore

H
L(x) < m,
which, in conjunction with 12), proves the result. [

Lemma 6. If 0<q; < H/i% o > 1,then

3

1
gie i <H1a

1
N

Proof. Similarly as in the proof of Lemmab, the claim follows easily from
sup, > o(ye™) = e7%, the assumptiog; < H/i%, and

117
o0 o o0
>oae <= Y qire ™+ Y g,
i=1 -] =k

where| y| is the integer part of; we omit the details. [

4. Main results

In this section we derive our main results in Theor&asd3. These results fully gener-
alize Theorem 3 offL6] that was proved for the independent reference model. Furthermore,
our method of proof, which uses probabilistic and sample path arguments, provides an
alternative approach to the Tauberian technique usgtbin
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4.1. Lower bound

In preparation for our main results, we prove the following lower bound that holds for
the entire class of stationary and ergodic modulating request processes, as defined in
Section2.

Proposition 2. Assume thag; ~ ¢/i* asi — oo anda > 1. Define

K= (1 — %) [r (1 — 2)]1 (15)

wherel is the Gamma function. Theasx — oo

P[C > x]ZK(x)P[R > x].
Proof. Forany 1> ¢ > 0, let{B; “(r), i >1} be a sequence of independent Bernoulli ran-
dom variables WithP[ B *(t) = 1] = 1 — e 4 1=91 ' §_ (23" B7*(r) andm_,(t)=
ES_o(r) = Y 2,1 — e~(1-94i"y Note that, using the independent reference model inter-
pretation from the beginning of Secti@2, S_.(¢) represents the number of distinct items
requested in intervdl-z (1 — &), 0). Therefore, we can assume tifat,(¢) is constructed,

on a possibly extended probability space, monotonically non-decreasing in
We also define

V()2 max |7te — 7kl (16)

\\

which for allw € {v(r) <e} and 1<k < M implies

(1 — &) <7y = me(t) S (1+ ),
and therefore

qi(1—8)<qi =qi(t)<qi(l+e), 17)
forall i > 1. This and 7) further imply that for everyn € {v(¢) <e¢}

Po[Bi(t; J) =1 =1— e @' >1 - e 194" = P[B~(r) = 1].

Therefore, for everyn € {v(r) <e}, (by stochastic dominance, e.g. see Exercise 4.2.2,
p. 277 of[2]) the total number of distinct item$(s; J) = S;(¢; J) + B;(¢; J) requested
in [—t, 0) satisfies

Po, [S(t; J) > x] =2 P[S_(2) > x]. (18)
Then, representation expressid@)and equationsl(?)—(18) render

P[C >x] > E 2 g"Vq" e P, [St; T) > x]dt
0

> E Z g\ q et THPLS_(1) > x12v(r) <el dr.
0
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Now, using the last expression and monotonicitysof(r) we derive for anyg, > 0

PIC > x]> P[S_¢(gex™) > x]

e Z e_‘Iz(l-i-L)t[E I:ql(JO) l( —t 1[V(t) <F]i| dr. (19)
gex*i=1
The ergodicity of], asymptotic independence fror) @nd finiteness of its state space

implies that uniformly ink,  and allt large enoughz( ¢;)

Pvin<e, Jo=k, J, =121 - e)mem,
which yields for alli > 1 andt large,

E [q,”f” gt 11v(t) <s]] >(1-e)g2 (20)

Next, if we choose
(14 2e)*
cl—oI@d-5H

8e =

then, itis easy to check that, by Lem@an _.(g.x*) ~ (1+ 2¢)x asx — oo, from which,
for all x large ( > x;), it follows thatm_,(g.x*) > (1 + ¢)x. Therefore, by Lemm4, for
all sufficiently largex

P[S—s(gsxa) >x]>1—¢.

Thus, replacing the last inequality arDf in (19), we conclude that for all large

_ 2 00 0
El n ;2 1.21(%(1“)) e 4o gy, (21)
8eX

In order to estimate the last integral, we observe that, by Le@)rfa all t > ¢,

= 1/a
> (qi(1+e)Pe e > (1 - s)m%r (2 - }> 1725
i=1

PIC > x]>

o
Using this last estimate ir2() and computing the integral results in
1
(1-9% (L +o)0)> 1 142
P[C > ry2-- x* x
[C > x] 119 a1 " (gex”)
which, in conjunction with the definition qf;, yields, for all sufficiently large

1- 8)4_% K@)
(14 26)%1(1 4 g)%> 5 (o0 — Dx-1

The last bound and the asymptotic behavior of the request distribl#tién > x] ~
¢/((a — )x* 1y further imply

PIC > x]>

i
lim inf PIC > x] > (=9 K(),

7= PIR > x]7 (14 20 1(1 4 £)2 2
which, by passing | 0, concludes the proof.]
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4.2. General modulation

In this section we prove our first main result for the general, stationary and ergodic,
underlying process, as defined in Sectiol, with sufficiently fast rate of convergence of
its empirical distribution.

Theorem 2. If g; ~ ¢/i* asi — oo, o > 1,and for anye > 0

N 1_
max Pl —ml > &l = o (m 2) ast — 00, (22)

1\\

then
PIC > x] ~ K(®)P[R > x] as x — o0, (23)
with K (o) as defined ir{15).

Remark 4. This result and Theorer of the following subsection show that LRU fault
probability is asymptotically invariant under changes of the modulating process and behaves
the same as in the case of i.i.d. requests with frequencies equal to the marginal distribution
{g:}. The constant («) is monotonically increasing i with limy,_1 K(z) = 1 and
limy,_ 0 K(0) = € &~ 1.78, wherey is the Euler constant; this was rigorously proved in
Theorem 3 0f16]. O

Remark 5. In order to illustrate the restriction imposed by conditi@®)( we consider a
class of modulating processéshat are obtained by embedding a stationary and ergodic
finite-state Markov chain into an independent stationary renewal process. Within this class,
we show that conditior2) excludes those processes whose autocorrelation functions decay
slower tharr/® =2 in particular long-range dependent modulating processes.

Consider a stationary renewal procé®s, —oo < n < oo}, To<0 < Ty. The renewal
intervals{7,, — T,—1, n # 1} are strictly positive i.i.d. variables with common distributien
having a finite meap, and are independent of the inter¢a, 71). In order for this process
to be stationary, the intervély, T1) that covers the origin has to have a special distribution,
e.g. see Section 1.4.1 [#] (see also Chapter 9 §7]),

Pl-To > y, T1 > x] = ,u_lfoo (1— F(u)) du, (24)
x+y

this is often referred to as Feller's paradox, and the distributiofy @$ called the excess
(residual) distribution of. Next, let{.7, } be anirreducible and aperiodic finite-state Markov
chainin stationary regime that is independent of the renewal prégsow, we construct
the modulating proceskaccording to

Ji=J, forT,<t < Tp41. (25)
Suppose that for somg> 0, d > 0, the inter-arrival distribution satisfié§ 7, — Ty > ¢]
~ udp/t¥F ast — oo, implying, by @4),

d
P[T1 > t] ~ — ast — 0.
th
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Then, Theorem 7 dfL7] shows that the autocorrelation functionJdatisfies
p(t) ~ P[T1 > t] ast — oo,

this implies that for O< <1, ffo p(t)dt = oo, i.e.,Jis long-range dependent. On the
other hand, sincedy is independent of,

Pl @) — m| > €] > Pla(@) — m| > & T1 > 1]
= P[|1[Jo = k] — m| > e]P[T1 > 1]

d1
~ — ast — o0,
B

whered1£dP[|1[Jo = k] — mx| > ¢]. Therefore, whef <2 — (1/a),
liminf (23 P[|7 — 1| > &]) > liminf (dyr2 5Py > dy,
11— 00 11— 00

which violates condition 22). In particular, assumption2®) excludes the long-range
dependent processes with<0f <1 since 2— (1/a) > 1.

When the embedding renewal process is Poisson, the class of modulating prdcesses
from (25) is equivalent to stationary and ergodic finite-state Markov processes. For Markov
processes it is well known that, e.g. see Section 3.1/2]pfhe empirical distributioriy (1)
converges exponentially fast to its stationary probability and, thus, esti2@gtadlds. In
general, by using the large deviation inequality from Corollary 1R, it can be shown
that, for the previously constructed class of processes, as defin2g) jcgndition @2) is
satisfied wherE (7> — 7)1 < oo for p > 2—(1/a). We do not prove this claim since in
the following subsection, using a different proof, we show in The@¢nat the asymptotic
result from @3) holds for a more general class of semi-Markov processes. In particular,
in the context of processes considered in this remark, The8neith show that the result
(23) holds as long a&(T> — T1)**# < oo for any f > 0. Therefore, Theoreextends to
long-range dependent processes.

Proof of Theorem 2. By Proposition2 andP[R > x] ~ ¢/((e — 1)x*1) asx — oo, it
sufficies to prove
lim sup(P[C > x]x* 1) < K (o) ——.
X—>00 o —
UsingS(t; J) = S;(¢; J)+ B (t; J) > S;(t; J) and the representation ih@), for anysz > 0
hx®

P[C > x] < E fOPG[SE: J) > x — 1] dr
0

+E | f)Ps,[St: J) > x — 1] dr

hx*

I1(x) + Ix(x), (26)

where

N o0 A s o0
FO2 Y qfq et <y g =1 (27)
i=1 i=1
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Furthermore, the empirical distributions are uniformly bounded; by Z,’{Wzl ;qu[(k) <
Z,i”:l ql.(k) <GiZqi/ ming 1 < oo, since min i, > 0. Then, we define a sequence of
independent Bernoulli random variablgs; (1), i >1}, with P[B; (1) = 1] = 1 — e %' and
S(r) = p ] Bi(1); similarly as in the proof of the lower bound(r) can be constructed
non-decreasing inNote that for every, Py, [B; (1; J) = 1] <P[B;(¢) = 1] and, therefore,
we obtainPg, [S(t; J) > x — 1] < P[S(t) > x — 1] uniformly in . Using this observation
and the monotonicity of (), we arrive at

hx*
I1(x) < / P[S(t) > x — 1]dr <hx*P[S(hx®) > x —1]. (28)
0

Now, due to Lemma, ES(¢) SHt%, and therefore, we can always filndsmall enough
such that for any > 0 and allx large enough
ES(hx*) < (1 —e)(x — 1). (29)

Then, using28), (29), Lemma4 and setting = ¢/(1 — ¢), we derive agx — oo

1
() < Hxe 0 — ( H) | (30)
X

Then, by using(¢) as defined in16), we obtain
o

Lx) =E| Ff@OPs[St:J)>x—1]dr
hx?

el FOP,ISE:; T) > x — 11[v(r) <el dt

hx*

+E - fOP,[St; J) > x — 11[v(r) > &l dr

hx*

£ I(x) + La(x). (31)

Note that, by assumption of the theorem, for any 0 andt large enoughP[v(r) >
g] < 5/t2_% and, therefore, usin@{), for all x large enough
Iro(x) < foo 0 dr = 0 .
o 1271/ (1— %)hl—l/ocxoz—l

Thus, since can be arbitrarily small

I»o(x) =0 <%) asx — oo. (32)
X

Next, we will provide the estimate fdp1(x). Similarly as in the proof of the lower bound,
we defines, ()= D] B (t), where{B{(t), i >1} is a sequence of independent Bernoulli
random variables WitlP[ Bf (1) = 1] = 1 — e~ %1497, As pefore S, (¢) can be constructed
non-decreasing ih Therefore, by stochastic dominance, for everg {v(r) <&},

Pe, [S(t; J) > x = 1] <P[Se(t) > x —1].
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Furthermore, since for alb in {v(¢) <&} inequality (L7) holds, by usingZ7) we obtain that
for any constang, > 0

Ii(x) < f Z q?q" e PLS, (1) > x — 1v(r) <eldr

gex”
g[ PLS(r) > x — 1] dt+/ Z [E[ (g0 | e mvat g,
0 8eX
(33)

If we select
B (1—2e)*
S c(4or@- e

then, due to Lemm3, ES;(g.x*) ~ (1 — 2¢)x, which implies that for alk large enough
(-x 2-)(:8)!

ES:(gex™) < (1—o)(x — D).

Hence, sinceS,(¢) is non-decreasing, by using the previous inequality and applying
Lemma4d with ¢ = ¢/(1 — ¢), we conclude that fox large

gsxa
/ PIS,(1) > x — 1]di < gox P[Si(gex™) > x — 1]
0

1
< Hx%e 0:A=3x — ( a_l) . (34)
x

At this point, it remains to derive an estimate of the second integr@3n Eimilarly as
in the proof of the lower bound, sincesatisfies 1), and has finitely many states, for all
i>1andtlarge ¢ >1,)

Elg g 1< (L + 2.

This implies that foix large enough, the second term 88) is bounded by

1te (% 1 oon2e-A-oat
a0t ). El((l £)gi)’e dr.
Bounding the preceding expression is analogous to evaluating the integ?d),in€., we
use Lemma to upper bound the sum under the integral for laxgend then compute the
integral for the chosep,.

Therefore, combining the bound obtained in this way wa#) ((33), (32), (31),(30), and
(26), we derive

. o—1 d+ 8)2_1/1 ¢
I|)rcnﬁsolip(P[C > x]x"7 )< (1= 2611 )21/~ K (a) (x—1)

which, by passing | 0, finishes the proof. [J
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4.3. Semi-Markov modulation

In order to cover cases when conditid®2®) is not satisfied, e.g., those examples from
Remarks that exhibit long-range dependence, we assume the following more specific struc-
ture of the modulating process. We consider the class of finite-state, stationary and ergodic
semi-Markov processek In the following paragraph, we provide an explicit construction
of such a process, which is similar to the one presented in Sectos df [2] (for an
alternative treatment of semi-Markov processes see Chapter[I]) of

Let {p;;} be a stochastic matrix of an irreducible Markov chain with finitely many states
M and unique stationary distributidmy}. For each Kk < M, let F; be the cumulative
distribution function of some strictly positive and proper random variabj€Q) = 0 and
Fi(00) = 1), having finite mean

i :/ (1— Fi (1)) dr < o0.
0

Next, we construct a point proce$s,, —oo < n < oo}, Tp<0 < Ti, on the same
probability space. First, we construct variabl@&s, T1, Jo) according to

o0
PlJo =k, ~To> x,T1 > y] = V—"f (1— Fyw)du, x>0, y>0, (35)
n x+y

whereu2 Z,’le vkl - Then, we construct a Markov sequericg, —oco < n < oo} that

is conditionally independent from the paify, 71) given Jo. To this end, using the initial
state 7o and the transition probabilitielp;;}, we construct a sequence of Markov vari-
ables{7,, n >0}; similarly, starting from the initial state¢/p and the reversed transition
probabilities{q;; = p;iv;/v:}, we create a Markov sequengg,, n <0}.

Now, let{U,, —occ < n < oo} be i.i.d. random variables on the same probability space
that are uniformly distributed ofD, 1] and independent froMi7,}, To, T1. Then, given
the already constructgdr, }, To, T1, the pointsT,,, forn >1 andn < — 1, respectively, are
recursively defined by

Tua=T,+ F;'(Uy) forn>1,
Ty =Thi1 — Fil(Un) forn< —1,

whereFk‘l(-) is the inverse o (-). Finally, we define a semi-Markov procegs: € R,
by

Jy =T, forT,<t < Tyy1.

We also assume thd} satisfies the asymptotic independence relation statet) imvbich
follows from a mild assumption af7,, (T,.1 — T,,)} being aperiodic (see Theorem 6.12,
p. 347 of{7]). We need this assumption in order to apply Proposiitor the lower bound.
However, in the context of this section we would like to point out that assumptjorab
be omitted. This would require a different proof of the lower bound that uses analogous
arguments to those that will be presented in E§8)(69) of Section?.

Here, we state some of the basic properties of the stationary semi-Markov pidcats
will be used in the remainder of the paper. From the preceding construction we see that at
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each of the jump point§, the next state of the semi-Markov procdsss well as the length
of the sojourn (holding) timé&,, 1 — T, are probabilistically determined by the current state
Jr,.Also, the interval§7,, .1 — T, } are conditionally independent given the procgswith
the conditional distribution fot # 0 given byP[7,,+1 — T, <x|J7, = k] = Fi(x) and for
n = 0 given by 85). The stationary distribution,=P[Jo = k] of J satisfiest;, = Vi g/ 1
In addition, we note that when the sojourn tin#gs.1 — 7,, are exponentially distributed,
the constructed processs a Markov process. Furthermore, whighy, —co < n < oo}
is a stationary renewal process gl } is aperiodic, then the constructddeduces to the
class of processes described in Rerark

For J as described above, we state our second main result.

Theorem 3. Assume that J is semi-Markov witlax, E[(7> — T1)1+‘3|JT1 = k] < oo, for
somed > 0.1f g; ~ ¢/i* asi — oo, o > 1,then

PIC > x] ~ K()P[R > x] as x — o0,
with K () as defined ir{15).

In preparation for the proof we define the epochs of reversed jump pGjrfts
— T_,, n>0; this notation is convenient sin€zof (10) depends on, for values oft <0.
In addition, the assumption mak[(T> — T1)1+‘3|JTl = k] < oo, implies, for alln >0,

E(Tni1 — T)*0 < kzl E{(Tns1 — T 017, = K]
M
= Y E[(T2 — )Y Jgy, = k] < oo, (36)
k_

and, by B85) and Markov’s inequality,
H
P[76>x|Jo=k]=P[T1>x|Jo=k]<—s=0(1) asx — 00, (37)
x(

this estimate will be used repeatedly in the proof of TheoBem
Heuristic outline of the proafThe lower bound follows from Propositich Hence, in
order to complete the proof, we need to prove the upper bound. To this end, we observe that
£ (1), as defined inZ7), is a random variable measurable with respet td herefore, using
S@t; J)=Si(t; J) andPq, [S(t; J) > x] = E5, 1[S(¢; J) > x], the integral representation
in (10) is bounded by

P[C > x] < [Efoo FOLS@; J) > x — 1] dr

To 1/3J
S [ [ [
T 13

I1(x) + Ix(x) + I3(x). (38)

For a given initial statdp = k, the integral representation lia(x) approximately corre-
sponds to the case of i.i.d. requests, representddjnwherey; is replaced byjl.(k) and the
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integration is truncated by a random tifmg Thus, if we condition offp being respectively
greater or smaller thalw* with appropriately chosehwe derive

M2 020q®t o - ”
hex) <3 Y (g% % PSP () > x — 2PLJg =k, To > hx*]dt
k=170 =1

hx*
+/ P[S(t) > x — 1] dr.
0

In the preceding bound, if we use the fact tRfg > x] — 0 asx — oo and Lemméab in
the first term, and the monotonicity 61¢) and Lemma4 in the second integral term, we
estimatel1(x) = o(1/x*1) asx — oo.
Next, observe that, fot large enough7,13; ~ x¥/3u. Then, by using/ (1) <1 and the
definition of S(¢) from the proof of Theorer®, we conclude
1/3

xou
L(x) S / P[S() > x — 1] dr
0

xl/su[P’[S'(xl/Su) >x —1]

1
o( asx — oo,
xa—l

where in the last equality we exploited Lemn@and4.

Finally, due to ergodicity of the procedsfor t large enoughy; ~ ¢; and, therefore,
from the definitions ofB; (¢; J) and S(¢; J), we deduce thas(¢; J) ~ S(r), whereS(r)
corresponds to the number of distinct requesis-in 0) for the case of i.i.d. requests with
distributiong;, as defined in SectioB.2 Hence, foix large enoughlz(x) is approximately

N

I3(x) ~ [E/C><> FOLSt; J) > x — 1] dr
x1/3y

o0 00 J
ol > e 4" Elg{"q/ " IPIS(t) > x — 1] dt
X3y i=1

o0 oo
S / > e U gPPLSi (1) > x — 2] dr,
0 i=1

since, by 1), [E[qi(J")qi(L’)] A in and S; (1) > S(t) — 1. The last displayed expression is

equal to the case of i.i.d. requests stated in E#) (with x replaced by — 1) and can be
estimated using either Theorem J 6] or our Theoren2. A rigorous proof of the theorem

is much more involved and very technical and, therefore, we present it in the separate
Section7 of this paper.

5. Numerical examples

In this subsection, we provide three simulation experiments that illustrate Theorems
2 and 3. We consider the case where the underlying prockss a two-state({0, 1})
semi-Markov process with parameters implying strong correlation. Since the asymptotic
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Fig. 1. lllustration for Example 1.

results were obtained first by passing the list $ize infinity and then investigating the tail
of the limiting search cost distribution, it can be expected that the asymptotic expression
gives a reasonable approximation BIC" > k] when botrN andk are large (witlN much
larger thark). However, it is surprising how accurately the approximation works even for
relatively small values ol and almost all values @f < N.

In each experiment, before we conduct measurements, we allbwrii® of warm-up
time (approximately. ~ 10’ requests) for the system to reach stationarity; our preliminary
experiments showed that using larger delays did not lead to improved results. In addition,
we increase the accuracy of each simulation by running each experiment from two different
initial positions of the list. We select these initial positions uniformly at random and ac-
cording to the inverse order of the items popularity. In all experiments, the measured results
are almost identical for these different initial conditions. The actual measurement time is
set to be 10 units long. In all the experiments, the measurements are conducted for cache
sizesk = 50j, 1< j <16, and are presented with star “*” symbols in Fits3, while our
approximation K («) P[R > k], is represented with the solid line on the same figures.

The total number of documents in all three experiments is s¥t01000. The Marko-
vian transitions of the two-state modulating processmtie= p1o = 1. We user® andz?!
to denote the variables equal in distribution to the sojourn times corresponding to states 0
and 1, respectively. In the first two experimenfsandt® are discrete random variables,
while in the third experiment they are continuous.

Example 1. In this experiment we choose discrete random variabfeand ! to be
distributed asP[t! = 10i] = P[° = 10i] = a(1/(10))% — 1/(10(G + 1))3), where
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Fig. 2. lllustration for Example 2.

ief{l,...,10% anda = 10°(1—1/(10* +1)3)~L. In state 0, only odd items are requested
accordingtary) ; = HY/(2i+1)M (i = 0,1,...,499),g%’ = 0( = 1,...,500), where

1/HY = Y98 1/(2i +1)14, while in state 1, the probabilities are concentrated exclusively

on even documentg’ = HL/2) 4 (i =1,..., 500),q§,.liL1 =0(G=0,1,...,499),

where YHY = Y299 1/(2i)14. The experimental results are presented in Eighis model
corresponds to the case where two different classes of clients request documents from dis-
joint sets. Even in this extreme scenario, our approximakion)P[R > k] matches very
precisely the simulated results.

Example 2. Here, we select variable® and t! to be distributed a®[t! = 10i]
P° = 10i] = b(1/(10)°8 — 1/(10G + 1))°8), wherei e {1,...,10% andb
10°8(1—1/(10* +1)%8)~1 In state 0, items are requested according to distribwgf?fn:

HY/it4, where YH) = YN, 1/i'4, and in state 1, the popularity of documents is

given byql.(l) = H}/i* where YHL = Y | 1/i% Our intention in this experiment
is to show that only the heavier tailed probability distribution impacts the LRU perfor-
mance. This follows from our asymptotic results and the fact that for lerge<x N,

P[R > k] ~ 1.25H3/k%4, i.e. the marginal distribution is dominated by the heavier tailed
probability distributionqi(o). The simulation results in this case are presented inZi§ys

in the preceding experiment, we obtain accurate agreement between the approximation and
simulation.
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Fig. 3. lllustration for Example 3.

Example 3. Now, we illustrate the case wheR§t! > 1] = e=¥, r € [0, co) (exponential
distribution) andP[°>] = 1/:°8, ¢ € [1, 10°] andP[:°>¢] = O fort > 10°. In state O,

items are requested according to distribuigfl = H9/i3, where YH9 = " 1/:3.

In state 1, the popularity of documentSqiféL) = H% /it where YHY = YN, 1/it4,

This experiment shows that even in the case whéh= 46 > Fr! = 1/3, the tail of the
search cost distribution is asymptotically dominated by the heavier tail of requests in state
1. Again, the excellent agreement of the approximation with simulated results is apparent
from Fig. 3.

6. Concluding remarks

In this paper we investigated the asymptotic behavior of the LRU cache fault probability,
or equivalently the MTF search cost distribution, for a class of semi-Markov modulated
request processes. This class of processes provides both the analytical tractability and flexi-
bility of modeling a wide range of statistical correlations, including the empirically measured
long-range dependence (4&4). When the marginal probability mass function of requests
follows generalized Zipf's law, our main results show that the LRU fault probability is
asymptotically proportional to the tail of the request distribution. These results assume the
same form as recently developed asymptotics for i.i.d. req{Etamplying that the LRU
cache fault probability is invariant to changes to the underlying, possibly strong, depen-
dency structure in the document request sequence. This surprising insensitivity suggests
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that one may not need to model accurately, if at all, the statistical correlation in the request
sequence. Hence, this may simplify the modeling process of the Web access patterns and
further improve the speed of simulating network caching systems.

Our results are further validated using simulation. The excellent agreement between
the analytical and experimental results implies the potential use of our approximation in
predicting the performance and properly engineering Web caches. The explicit nature, high
degree of accuracy, and low computational complexity of our result contrast the lengthy
procedure of simulation experiments.

7. Proof of Theorem3

In order to prove the theorem we will need the following technical lemma. Recall the
definition of 7,, from Sectiord.3.

Lemma 7. If max, E[(T1 — 7?3)1+5|LT1 = k] < oo, then there exists > 0 such that
uniformly for alln <sx,

1
nIPIT, — To > x]<o (m> as x — o0.
Proof of Lemma 7. We construct a sequen€&;, i <n} of i.i.d. random variables with

F)=PLX; > x] = KrT]\(agXM(l— Fi(x)),

where Fi.(x), 1<k <M, is defined at the beginning of SectidB. Therefore,P[X; >
x]ZP[T; — Ti-1 > x|J_7;] and

PIT; —To > x] = P| (T = Ti-1) >x]
Li=1

—£[p[ S -7 = x| p1<i<a]]
i=1

[ n n
<P|IYX; >xi| =[P’|:2Xi—n[EXl>x—n[EX1:|.
Li=1 i=1

Now, since makE[(T1 — 7o) °|J_7; = k] < oo, we conclud& X1 < H < oo, for any

0< &< 0 and some large constadtand therefore, uniformly for alt <sx, we obtain
n
P[7, — To >x]<ﬂ3>|:z X; —nEX, >x—sti|.
i=1

Now, by takings > 0 such that H = 1/2 and applying Corollary.6 of [21] we conclude
the proof. O

Proof of Theorem 3. In view of the heuristic outline of the proof from Sectidii3, we
proceed by deriving the upper bounds for the expressipny defined in 88). In order to



316 P.R. Jelenkod, A. Radovanovi/ Theoretical Computer Science 326 (2004) 293-327

estimatel1(x), we first condition or/g being respectively greater or smaller thast:
To oo

Jo)
L) =E [ Y@Y)%e % s J) > x — 1 di
0 i=1
T2 (2 g O
< E Y (g;")%e™ 4 IS5 J) > x — 11[To > hx*]dt
0 i=1

.
+[E/ ’ 1US(t; J) > x — 1)A[To<hx*]dr
0

£ Ni(x) + I2(x).
Next, we definesfk)(t)é > iz Bj(.k) 1), SO = Sl-(k)(t) + Bl.(k) (1), where{Bi(k)(t),
i >1} is a sequence of independent Bernoulli random variables Wﬁ’}(k)(l‘) =1] =

1-— e*‘ff(k)t. Then, from the definition of (z; J) it follows thatP[S(¢; J) > x|Jo =k, t <
Tol = P[S® (1) > x]. Thus, using this facy "’ <g; < H/i*, Lemma5, and Eq. 87), we
obtain

u & 10y20-P oy o)
I11(x) < Y PlJo=k,To > hx“]/ > (g; ) e ’IP’[Si (t) >x—2]de
k=1 0 i=1

H 1
< M[FD[% > hx“]ﬂ = 0< ) asx — 00. (39)
X

yo—1

In estimating/12(x) we useTo < hx* and exactly the same arguments as28){(30),
rendering

I1o(x) <hxX*P[S(hx*) > x — 1] =0 (%) asx — oo.
X
Thus, the preceding bound argBf imply
1
IL(x)=o0 (ﬂ> asx — oo. (40)
X
At this point, we provide an estimate fog(x). If we define
Tu
B2 [ Fous > x - ud.
To-1

then

Lx*73)

LRI HE) (41)
and

Tn
I¥(x) = [E/ F®O1UTo > hx*1US(Ty; J) > x — 1] dt
Tu-1
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T
+E FOUTo<hx*11[S(Tn; J) > x — 1] dt

Tn-1

£ 10+ I o).

Next, when we replace the bound

00 (o) V1)
Z Vo) (M) =4, Toga; " =Ta) for ¢ € (T,_1, Ty (42)

inrx 1(x) and evaluate the integral, we derive

o0 Vo), o Uon)
m@<EY 170 > hx’lg Pt T @ — e T T,
i=1

Then, using 1- e *<x for x>0, ma>(ql.“°),ql(17” )<qi<H/i* and sup.qye™”’

= e 1 similarly as in (3), we arrive at

X 11 T5 hxt
A <EY M@(T )

i=1

+E 2 UTo > hx*1(G)*(Ty — Ta-1)

i=x
H
< E[(Tn — To—0)UTo > hxa]];- (43)
Since the random variabl€$, — 7,-1),n > 1, and 179 > hx*] are conditionally indepen-
dent givenJp, we derive
E((Tn — Ta-1)1[To > hx*]]
= E[E[T, — Ta-1lJ0lP[To > hx*|Jol]

< < max E(7: — Tu-1lJo = k]> P[To > hx”]

< 1.
< <l<rrl1(a<x ,uk) P[To > hx*] (44)

Thus, the proceeding bound,3), and @7) yield, uniformly inn,
1
i) =0 <7) asx — oo. (45)
. X2

Next, we compute an estimate ff ,(x). Using @2) and computing the integral in
1y 5(x) resultin

00 o)
I 5(6) S EY. UTo<hx®, S(T: J) > x — 1g et
i=1
x(1—e" q, n (771 T 1))
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SPIS(Ta: J) > x — 1, To<hx®, S(To: J) <ex — 1]
+P[To<hx®, S(To) > ex — 1], (46)
since §(r) stochastically dominateS(s; J). Let S(u,; J), 0 < u < t, be the number
of distinct items requested ir-7, —u); then, it is easy to see that7,; J) <S(To; J) +
S(To, Tn; J). Thus, if we choosé small enough such th&tS(hx*) < (ex — 1)/(1 + ¢) for
largex, then, by Lemmal, we obtain ¢ > x;)
Ly 2(x) < P[S(To, Tus J) > (1 —&)x] + P[S(hx*) > ex — 1]

< PIS(Ty — To) > (1 — &)x] + He "0, (47)
Now, if we pick h small enough such th&tS(hx*) < x(1 — ¢)/(1 + ¢) for all largex, we
obtain that, uniformly for alh <x1/3,

PIS(T, — To) > (1 —&)x]
<P[S(hx*) > (1 — &)x] + P[T,, — To > hx*]

<PS(Y) > L—axl+ 3 P [77 ~Tio1 > hi}
i=1 n

1
—h0.x
<He +o0 (x—a—2/3> asx — o0, (48)

where in the second inequality we used the union bound, and in the last expression
Lemmad, (36) and Markov's inequality. This implie&’ ,(x) = o(1/x*72/3) asx — o,
uniformly for all » <x/3. Therefore, in conjuction with4E) and @1), we derive

I(x)=o0 (%) asx — oo. (49)
X

In order to derive asymptotics fdg(x), we use the fact that the semi-Markov procéss
observed at its jump poin{g_7, , n >0} is a Markov chain. Define the amount of time that
Jspends in statkin 7o, = (—7,, —70) as

n—1
w(Ton)= ZO UI_7,, = kI(Tiga — T,

=

Then, by ergodicity of the Markov chaly_7}, asn — oo,

n—1
Et(Ton) = Y. P71, = kIE[Tiva — TilJ_77,, = k]
i=0

~ Vgl = nUT. (50)
Forany 1<k < M, awell-known large deviation result on finite state ergodic Markov chains
(e.g., see Section 3.1.2 {d]) shows that for any > O, there is0; . > 0, such that the
number of timesV, (k) thatJ_7; visits stat&kfor 1<i <n,i.e.N, (k) = >_7_1 1[J_7. = k],
satisfies

P[|N,, (k) — ven| > en] <e ken, (51)

Next, let{7; (k)} bei.i.d. random variables that are independenf,ak) and have acommon
distribution equal td (x) = P[T1—To<x|J_7; = k]. Then, itis easyto see thai(7o ,) is
equal in distribution t([jf’:”{k) Ti(k), and, by 60), for all nlargekt« (7o.n) < (14 &) uyvn,
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implying
P[Tk(%,n) <@1- S)Efk(%,n)]

Ny (k)
<Pl Y Tik) < A= wvn
i=1

&2 (1—(&2/2)ven &2
<P [N,,(k) < <1— E) vkni| + P > (1 — Ti (k) > E"kﬂk” .
i=1

(52)
Since the random variables — 7; (k) are bounded from the righttf — 7; (k) < 1), using

a large deviation (Chernoff) bound, e.g. see Theorem 1.5, p. |[2Z6hfwe conclude that
the second term irbQ) is exponentially bounded, and, in conjuction wifi), we arrive at

Ple(Ton) < (1— &)Ere(To)l<e ", (53)
for somef), > 0. Therefore, the probability of the complement of the set

A= N Aw(Ton) = L — enpyve)

1<ksM

is exponentially bounded?[ A (n)] < Me 0,
At this point, using the bounds from the preceding paragraph, we estifp@te by
decomposing it as

00 Tot1
Lx) <E ) F@OLA(n)] dt
n=|x1/3] Ta
o0 Tat1
+E 3 FOLUSE: J) > x — 11LAM)] dr. (54)
n=|x1/3] Tn

Now, replacing42) in the first expression of the preceding inequality, computing the integral
and bounding it by 1, and, then, using the exponential bouriél[off (n)] lead to

o0 To1 o0
E > 1[Ac(n)]/ " fode< Y PlAW]=o0 <i1> asx — oo.
n=|x1/3] Ta n=|x1/3] x®

Hence, applying the preceding estimate5d)(@nd conditioning on the length g imply,
asx — o9,

e To+1
Lx)<E Y " FOLUSE; J) > x — 1,75 > hx*, A(n)] dt
n=|x13]JTy
o0 Tut1
+E > FOLUSE; J) > x — 1, To<hx*, A(n)] dt
n=[x13] JTu

1
+o m

1
I31(x) 4+ I32(x) + 0 <xacl) . (55)
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Next, in estimatingz1(x), note that for allw € A(n)

M

Y w(TogY =@ - s)nZ aO v = (1—s)nu2 qPm = L — onpg;,
k=1

and therefore, for € (7, Tp41],

_ )
f(t)l[A(n)]< Z q(Jo) =Ty 40 e i 076e pngi (1-2) g=q; +1 (t—n)l[A(n)]'
(56)

Therefore, by usings6) in I31(x), then completing the integration and applyingd™ < x,
x >0, we derive

00

Tot1
Iax) <E > / F®1To > hx*, A(n)] dt
Ta

n:\_xl/3j

e _ V0, « (JoT )
<E Z Z e ung; (1 S)qi(lo)e q;"" hx q; Tn+1 17 > hxm](r];l+1 —T)

n=[x1/3]i=1

J0), o
< HE |:1[76 > hx*] Z q(JO) —q; " hx i| ,

where the last inequality uses double conditionibl,+1 — 7.|J/_7,,, 1< Maxi <k <m

Wer ql.(LT")gcji, and 377 15 €479 = 0 (1/g;). Hence, upper-bounding the
preceding sum, as in@), and usingP[7y > hx*] = o(1) asx — oo, we easily
arrive at

I31(x) = o< xll) asx — oo. (57)
e

In evaluating/z2(x), we condition on the length of, 1 — 7y:
Tas1

o0 ~
Ip(x)=EF } FOLUSE: ) > x =1, To<hx®, Typr — Tp > hx™, A(n)] dt
n=|x1/3| Tn
0 To+1
+E X FOUS; J) > x =1, To<hx®, Tyyr — T <hx™, A(n)] dt
n=|x1/3) Ty

(58)

Thus, using %6) andqt§]°) < g, after upper-bounding and integrating the first term of the
preceding equality we obtain

00 Tot1
E > " FOLUSE; J) > x — 1, To<hx®, Tpor — Tn > hx*, A(n)] dr

n=|x1/3] JT
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0 0 Uit
<EY, Y gemra-e s T IOT g~ T, > e,
i=1p=|x1/3]

(59)
Furthermore, we can upper-bound9) by splitting the sum, using + e* <1 and
1— e * <x (both forx >0) andqi(J_ 1) < g; as follows:

00 00 Uyt
EY, Y getomaa-es " TaTOT g~ T, > ha?]
i=1 n:Lxl/3J

X o)
<Y Y Gie COEPIT — T > )

i=1p=|x1/3|

+ X @ Y qe TOME(TL - ToUTL— To > ha’l.

i=x+1 n=|x1/3]
Now, if in the preceeding expression we use the following estim&gg: — 7o > hx*] =
O (1/x*+0), E[(T1 — To)A[T1 — To > hx*]] = o(1) asx — oo,
o o0
Y g g f gie™ MY dy <1/((1 — g)umin )
n=|x1/3| [x1/3]-1 k

andg; ~ ¢/i* asi — oo, then in conjunction withg9) the first term of $8) satisfies

00 Tot1
E > FOUSE; J) > x =1, To<hx®, Top1 — Tp > hx”,
n=[x1/3] 4Ty
1
.A(l’l)] dr=o =1 asx — oQ. (60)
X
Therefore, replacing expressia®lj for the first sum of $8) yields, asx — oo,
0 Ta+1
Ipx) =B ) FOUS(Tut1; J) > x = 1L, To<hx™, Ty
n=x1/3] JTu
o 1
—T.<hx*, A(n)]dr + o -
X
Lex*] Ta+1 Lgex”] Tas1 00 Tns1 1
<E X +E Y +E X +0< (H)
n=x1/3] /Ty n=|ex*] J Ty n=|gex*] J T X
1
21500 + I3 (@) + 1 () + o (x“) : (61)

for someg, > 0 and O< ¢ < g, (from the later choice of. it will be clear that suclz
exists).

In what follows we will evaluate the expressiotéé) (x) from (61). Recalling the defini-
tion of S(u, ¢; J) and using similar arguments as #6f and @7), it is easy to show

US(Tug1; ) > x — L, To<hx®, Tygpr — T <hx”]
<1S(To, Tn; J) > (1 — 26)x] + 1[S(hx*; J) > ex — (1/2)]
+1[S(Tn, Tn + hx*; J) > ex — (1/2)], (62)
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and, therefore, replacing®) in 13%) (x) and completing the integration results in

lex®] oo
1 Jo) —(1— .
13(2)()5) <E Z Z qi( o)e (1-&)ng; u
n:Lxl/BJ i=1

Tyt
x(1— e Tor1=TNI[S(To, Tns J) > x(1 — 2¢)]

+2ex*P[S(hx*) > ex — (1/2)],
whereh is small enough to ensufie (hx*) < (ex — 1/2)/(1+ ¢) for largex. Next, applying
Lemma 4, ma>(ql.”°), ql.(J_T”“)) <Hg;, 1 — e*<x (x=0), the fact that
(Tpt1 — Tn) and IS(To, Tn; J) > (L — 2¢)x] are conditionally independent givel 7
and @6) renders, as — oo,

(1) I .
Iy (X)) <H } > gf€ i
n:Lxl/e'J i=1

XE[E[Tpt1 = Tul =7, IPLS(T0, T J) > x(1 = 28)[J_7,]]

1
+o xa—l

lex*] oo _
<H Y Y qPe&9map3(T, — To) > x(1 - 26)]
n:Lxl/e'J i=1

1
+o xm—l :

Now, by using the argument as in inequaldand Lemmag and7, we derive, as — oo,

H lex®) 1 1 1
1)
Ly (x) < —— —— 4+ o|\——=)=0|—= ), 63
32 (x) xo(140) n=§:1/3j n]_,% (xocl> (x,cl) ( )
whene is smaller tharshwith sas in Lemmay.

Now, we estimatdég) (x) by replacing $6) in Ié?(x), completing the integration and
applying similar arguments as i64) and, therefore, as — oo,

lg:x*] oo
2 Jo) —(1—eVnag:
Ié;(x) <E Z Z qi( o)e (1-&)ng;u
n=lex*]i=1
J_

_g 771-%—1)( T2 _1
x(1—e 4 Tet=TN1[S(To, Tu: J) > (1= 28)x] + 0 1)
X

Then, by using ma}qi“"), qi(J_T"”)) <Hgj,1—e* <x (x >0), (36), the fact that 7,41 —
T.) and 1S(To, Tn; J) > (1 — 2¢)x] are conditionally independent given 1., we obtain,
asx — 090,

lgex”] o0
2 _(1— .
I <H Y Y gletoman

n=|ex*] i=1

XE[ET1 — Tl P[5 (To, Tos ) > 21— 20)| /7, ]|

1
to xo—1
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lg:x*] oo 2 1—¢ )
<H Z Z q: e (A=ongin

n=lex*]i=1

1
xP [S(To. Tigxry: J) > x(1 = 2)] + 0 (x“l) .

Define

Bx)= {1k (T0, Lgor)) < (L4 &)y viegex™}.
1<k<M

N

Then, ast — oo,

ng:XaJ [e%e]
@ <H Y Y qPe & Omap [§(To, Tigr: J) > x(1— 2¢), B(x)]

n=lex*]i=1
Lgex*] o0 5 1 ) 1
+H Y Y gPe TOmapIBi(x)] 4 o (—_1) (64)
n=lex*] i=1 X

Now, we will evaluate the two sums from the preceding inequality. Due to the weak law
of large numbersP[t; (7o, |g,x*]) > (1 + &)pyvigex*] — O, implying P[B°(x)] — 0 as
x — o0, which, in conjunction with Lemma, yields asx — oo

Llgex*] oo 2 —(1—e)ung; . Lgex*] YS! 1
H Y > g€ HUPB (x)]=01) Y n “i=o0 (ﬁ) : (65)
n=|ex*|i=1 n=|ex*] X

Next, we estimate the probabilify[S (7o, Tg,x+j; J) > (L — 2e)x, B(x)]. Let B; (u, t; J),
0 < u < t, be a random variable indicating whether itérs requested irf—z, —u).
Define $*(x) = Z?ilBl.*(x), where {B/(x),i>1} is a sequence of independent

. . . . (k) o ..
Bernoulli random variables witR[B (x) = 1] = 1— e+ il q) Hregex ; similarly as
before,S*(x) is constructed non-decreasingknThen, for everyn € B(x),

M (k) .
PO‘TL)Z::X%J [Bl (76’ ﬁgﬁx“J; J) = 1] =1-¢€ Zk:lq’ Tk(%vl.gu\ J)
< PIBf (x) = 1].
Therefore, by stochastic dominance, for everg B(x)

Por, o [S (70 Tiganss J) > (1= 20)x ] P [$7(x) > (1 28)x]. (66)
If we select
(1 - 4e)”
8e

A+ eyeul [1- 117
it is easy to check, using Lemn3athat for allx large enough
ES*(x) = io:(l _ g+ Z/ﬁilﬂkﬂgaxaql@) < (1 - 3¢)x.
i=1

This inequality, 66), and Lemma 4 imply, after setting = ¢/(1 — 3¢), for all x large
enough,

P[S (To, Tigwr); J) > (1= 28)x, B(x)] <P[$*(x) > (1 — 2¢)x] <He O,
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for some positive constaift. Therefore, by using Lemm, the upper bound on the first
expression ing4) is

Lesx?) 20 2.—(1- b)unq, * 1
> qu P[S*(x) > (1—2¢)x] =0 1) asy— oo

n=|ex*|i=

which in conjunction with §5) implies
1
I(Z)( )—0( = 1) asx — oo. (67)

Finally, after replacing%6) in ](3)(x) computing the integral, applying4 e™* <x,
x>0 and using double conditlonlng we obtain for any integerl

1(3)()6) <[ Z Z (Jo)( n+1)'uj g diin(1—e)

n— Lgfx“J i— ~/n+1

J o
j=0i=

Lgex*1+(j+D)x £ J-T1)

i 'uj*lrn-%—l |J77’L§’A:X°‘J+,i1]; (68)

n=|gex*|+jy
in the last inequality we split the first sum, apply the conditional independendg arid
(Uo7, Lgex®] + jusn<gex®] + (j + Dy} given VT and use the monotonicity
of e~*. Now, by ergodicity of the Markov chaify_7 } (see Theorem.26 on p. 160 of7])
and finiteness of its state space, fdarge enough, alj >0 and alli >1
leex*|+(+Dx (.
lE[ql( Tn+1)

Wiy Ty, =11
n—LgSX“Hjx e

X
= Z 0w Y EI 7,y = klJ_p = 1< A+ ) 1gi e
n=0
Therefore, after summing over @land taking expectation, we derive

3y < gin-elgx*l X
I35 (x) < E:l af L+ eyue 1— e1iai(1—e)

gipy(1—e)
1 — e xugi(1—e)

e ¢]

= Z qf (L + e)pe”@ira=or
Lgex®] i=

Now, sincex/(1 — e*) — 1 asx — 0, we can choosé such thatg; uy(1 — ¢)/
(1 — e 114 (1=0)) <1 4 ¢ for all i > ig; thus, we can further upper bouﬂ@) (x) as

dr.

o0 00
I3 (x) < Hige i + 3 g1+ e)%ue =01 gy, (69)
Lgex*] i=1
At last, since the first term in the preceding expression equajs*~1) asx — oo, using
Lemma2 and the expression f@r, we compute

i SRR
lim sup 2 (%) <K(0€)(1+8()1_i)a,81)

x—00 U:D[R x]
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By passing: — 0 in the last inequality and then replacing it together with estima#@s (
and 63) in (61), we derive

lim supp[zz—()] K (). (70)

Finally, (70), (57), (55), (40), (49), and Propositior2 conclude the proof. [J
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Appendix A.

Proof of Proposition 1. By Theoreml, for any finite N, the stationary search cost is
given by

© N Ji J
PCN > x] = [E/ Y g g N e TN P [ n (1 J) > x — 1] dbr. (71)
O ‘=

Clearly, the term under the integral in the preceding equation converges to the corresponding
term in (L0) asN — oo. Hence, in order to apply the Dominated Convergence Theorem,

it remains to show that, uniformly iN, the integrand in{2) is bounded by an integrable
function. To this end, le§; v, i >1, correspond to the empirical distribution defined8h (

with ¢*' replaced by; ). Then, smceﬁ \. 1asN — oo, there existsVo>1, such
i=19;

that for allN > Ng, 1<i <N, and 1<k < M,
(*k k k
g™ <q® <24®.

Thus, the function under the integral inlj is almost surely bounded by
4 Z q(fo) (J t)e c};t. (72)

Since —d(e 9"y = e~ qt’d(z lqlk) fg 1[J, = kldu) = e*‘?ffql.“") dz, and, due to

ergodicity,g;t = Zk:lqi(k) f_t 1[J, = k]du — oo ast — oo a.s., we conclude that the
function in (72) is integrable, i.e.,

X o0 ~
[E/ 42 q”q" e i dr = —4[E/ Y ¢ Pdeity =4 O
0 0 i=1

Proof of Lemma 4. Letm;£EB;, i >1. For an arbitrary 0< ¢ < 1

PlIS —m| > me]l = P[S > m(1+¢&)]+ P[-S > —m(1—¢)]. (73)
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Now, using Markov’s inequality, for an§ > O we obtain

[Ee()S

N 0s OmQteyy —=
PLS > m(1+e)] = Ple® > " T91< F.

(74)
Since{B;, i > 1} are independent Bernoulli random variables,

0S _ T7 ralBi _ T7 (ol 07 i (€—1 &1
Ee”™ = [1 Ee"® = T1(€m; + A —m) < [] &€ D = gn®-1),
i=1 i=1 i=1

and, therefore, using’4), we derive
PLS > m(1+ &)] <@ —1-00+e),

We can choosé > 0 such that&@— 1 — 01 +¢) = —0Y < 0. Similarly, the second
expression of{3) is bounded by %" for somefd® > 0. By takingf, = min(0?, 02,
we complete the proof. O]
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