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Abstract

The dynamical behavior of a class of synchronous
nonlinear flow control algorithms is investigated. Un-
der general monotonicity conditions on reaction func-
tions we prove that the distributed algorithm cannot
have non trivial period two equilibrias. When addi-
tional assumptions on the derivatives of reaction func-
tions are imposed we prove the existence of a unique
Nash Equilibrium (fixed) point and global convergence
(with exponential rate) of the associated distributed
algorithms. We also show that a relaxation of the
monotonicity conditions may lead to chaotic behav-
ior.

1 Introduction

Flow control algorithms regulate the input flow
to the network, assigning appropriate loads to differ-
ent user types. In practice these algorithms are dis-
tributed by the very nature of the network.

In this paper, network users (controllers) are mod-
eled as noncooperative players that are competing for
network resources according to their individual ob-
jectives. Users implement simple greedy algorithms:
each user is optimizing its own objective function with-
out the knowledge of the other players objective func-
tions. We investigate global convergence of the greedy
algorithms under general monotonicity conditions im-
posed on the users reaction functions. We extend the
results of [8, 1, 16] that were obtained assuming linear
reaction functions.

The rest of the paper i1s organized as follows. In
section 2 we give the statement of the problem and
a short overview of the existing results. In section 3
we extend these results to a general nonlinear setting.
Finally, in section 4 we show that when monotonicity
conditions are not satisfied the algorithms may exhibit
chaotic behavior. The paper is concluded in section 5.

2 Problem Statement

We will restrict ourself to the analysis of an iso-
lated bottleneck node in the network. First, assume n
Poisson streams of packets with rates Aq,..., A,, that
are serviced by a single server with exponential service
rate pu. Each stream represents a single user’s flow to
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the network. Further, each user is considered to be
greedy, i.e., each user acts according to its own opti-
mality objectives. The fundamental question is what
is the resulting network dynamics under selfish user
behavior.

Two commonly used objective criteria are the
maximum throughput under time delay constraints
maxg, <t IEy [13], and the Power function IEy? /IET,
where parameter 3 may be used to achieve different
trade off points between average throughput and ex-
pected time delay [1], [8].

In general, each user ¢ can use an arbitrary objective
function P;(A1,...,An). Our main objective is to un-
derstand the dynamics driven by an algorithm (game)
in which an user optimizes noncooperatively its own
objective function. In Game Theory [5] the equilib-
rium point of such a game is called a Nash Equilibrium,
i.e., a point from which no player has an incentive to
move from. More formally the Nash Equilibrium point
is defined as follows.

Definition 1 Let A = {(A1,..., X)) ¢ D0 i < b
be a set of admissible loads. Then an admissible load
(AT, ., AL) is a Nash equilibrium iff

Pr(AT, AL, ) > Pr(Ag, AS, A%

YA €A
(XS, N AR > PN A AT

YA €A
Pn( T’ E’aA2)>PH( Ta ;a"'aAn

YA, €A,
where Aq1,..., A, are the sets of all admussible loads

for users 1,... n, respectively, i. e., A; = {X; © A\ +
Dorzi Ay <ph1<i<n

There have been two types of algorithms consid-
ered in literature for reaching the Nash equilibrium:
synchronous and asynchronous. In what follows we
will focus on synchronous algorithms [1]. Assuming
that each user can negotiate its service with the server
during specific time slots, one user at a time, the al-
gorithm is described as follows. At step k of the algo-



rithm we have:

ML= Ry(ME AR

= argmaxy,ea, Pr(A, A5 AE)
ML = Ry X0, M )
o argmaxy,ea, PoAF T Ao A L AE)
:Afﬁl = R, (AT NS AR
= argmaxy, ea, Pn(/\]f‘l'l, A§+1, e /\Z"_'ll, An)
with (A9, ..., A2) being any admissible initial load and

Ry, ..., R, the users reaction functions. We assume
that once players choose their order of playing, this
order is kept throughout.

From a dynamical systems point of view, notice
that the reaction functions drive the dynamics of the
game. The one step map F' = (Fy,..., Fp) : A — A of
this dynamical system 1s determined by the reaction
functions as follows:

Let y]:F](AlaaAn); jzl,...,n,
then, F is determined using the following recursive
formula:

1= Ri(A1, ..., A)

Y; = ](ylaay]—laA]aaAn)a j:2aan

Thus, the evolution of this algorithm is equivalent to
the dynamics described with:

A ) (1)

where \* = (A% ... AF). (It is easy to show that F
maps A — A and therefore iterations of all order are
well defined.)

Convergence to the Nash Equilibrium has being
investigated in the literature both for the maximum
throughput and the Power function objective crite-
rion in [1]. These results have been further extended
in [16]. In all these results reaction functions were lin-
ear. For example the reaction function for the Power
function optimization objective is given by

Bi

Rihs ) = 15

(1= Ai), (2)

where A_; = Zk# Ar.
3 Results

In this section we extend the results from [1, 16] to
the nonlinear case. Instead of first trying to come up
with specific objective functions, we postulate a set
of reaction functions, that completely determine the
dynamics of the game. We will choose users reaction
functions based on the basic underlying properties of
these functions that came to be as in the tractable
Poisson case and maximum throughput/Power objec-
tive criterion. From the analysis conducted in [1] (see
equation (2)), we observe that reaction functions R;
for the maximum throughput/Power objectives are:

a) functions of the total load of all other users (A_;)
except user 7.

b) linear in A_;.
¢) monotonically decreasing in A_;.

Our objective is to relax condition b), and therefore
we define:

Definition 2 Let M; be the set of all reaction func-
tions for user i € [1,n], such that, any R; € M; satis-
fies conditions a), ¢). We call M; a set of admissible
reaction functions for user i; the game in which each
user is using an admissible reaction function is called
a fair game.

The monotonicity assumption is also natural in
other network control algorithms that use a noncoop-
erative game theoretic setting. For example, in rout-
ing algorithms the reaction functions are also mono-
tonically decreasing in the total load of all the other
users (see [12]).

If the total demand of all users except user’s i is
increasing, the demand of user i should be decreas-
ing. This means that user’s i reaction is to accommo-
date the load of the other users, i.e., fairness property.
We will see that monotonicity and fairness are further
closely connected to the convergence (stability) of the
algorithm. Let us first state the following simple result
for the case of the two user game.

Proposition 1 In a single server communication sys-
tem consisting of two users with reaction functions
R, e M; 1= 1,2, competing for a server with capacity
1, the successive iterates of the flow converge mono-
tonically to a fized point in A for any initial condition

A= (A2, 39) € A.

Remark: Note that there may be more than one
NEP; multiple equilibria have been found for the max-
imum throughput criterion in [11]. To ensure the
uniqueness of the NEP more restrictive conditions will
be needed.

Proof: The dynamics of this game is completely de-
fined by the function f = Rj o Rs. Then, by the chain
rule f/ = R{(Rz)R, > 0, since both Ry, R2 are mono-
tonically decreasing, and by Lemma 3.14. pp. 82 [10],
f displays monotone dynamics. Since f is bounded
(f 10, u] — [0, u]), each orbit of f is convergent. This
proves the proposition. &

We see that convergence follows from monotonicity
(and boundedness of the load space). Unfortunately,
for the distributed algorithm with more than two users
the underlying monotonicity property is lost; this can
be seen in Figure 3, where we present the loads of three
players during the first 10 iterations. The reaction
functions of all users are the same and given by R(z) =
m—2arctan(z—10), z > 0 (assume that the capacity of
the server is large enough to accomodate all possible
reactions). Then, it is clear (from Figure 3) that the
loads of two of the users are not monotonic. However,
the system is still relatively constrained, and we can
prove the following result. In what follows the vectors
Al and A? are said to be ordered At <> A% if A} <>
A?,1 < i< N with inequality being strict for at least
one i.
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Figure 1: Example of non monotonic sample paths in
the game of three users.

Theorem 1 In a fair (monotone) flow control algo-
rithm, the following properties hold:

a) it is not possible to have
AL S AR or AFFL < AR
for any k> 0.

b) the system cannot have nontrivial period 2 equi-

librium, that is, \* = F2(X*), and X* # F(\*).

Proof: Statement a) is almost immediate. If vectors
def kE+1 def ok k
A= O AR and ABREIZ (0 LR
are not ordered the statement immediately follows. If
they are ordered then, either /\lin = /\]i'l;ll, /\lin <
k+1 k k+1, : : : B
/\_‘; ,or A > /\_‘; ; the equality implies that A\* =
A+ and the inequalities A* | >< /\]i‘zl imply the
reverse inequalities for the last coordinate, i.e., AX <>

ME+L This proves a).

For b) we will assume that there is a period 2
equilibrium, i.e., that there exist A\! # A%, such that
A = F(A'Y) and A = F%(A!). Let us denote the dis-
tance vector as § = A — A% # 0. Then, we have the
following set of equations
for some w; > 0, and we take the convention that
w; = 01f 8 =0, 1 < ¢ < n. Then, from the system of
equations above, é satisfies the following homogenous
system of equations

Wé =20, (3)
where
wy —1 -1 ... -1
1 wy -1 ... -1

For this system to have a nonzero solution it is neces-
sary that det W = 0. Hovewer, it is not very difficult
to prove (say by induction) that

(n—1)/2
> ico Zk1¢~~¢k2,+1 Wy - Whygy

if n 1s odd,
det W =

n/2
L+301 Zk1¢~~¢k2,+1 Wy - Wy,

if n 1s even.

Therefore, 6 # 0 implies det W > 0 which contradicts
the fact that § is a solution to (3). This provides the
proof of b). O

Result a) (in the preceding theorem) says that in
one round of control it is not possible for every user
to increase its load, i.e., if some of the users increase
their load, others have to decrease it. For that reason
we call this type of algorithm competitive.

Theorem 1 is a promissing result in the direction of
more closely characterizing the global dynamics of the
fair competitive algorithms. It is an open problem if
there exists period three (or higher) equilibrias. For
example for period three equilibrias the proof of the
preceding theorem doesn’t go through. On the other
hand, the dificulty of finding a counterexample is in
having to work in more than three dimensions.

Some intuition from well studied competitive fluid
models [15, 7] suggests that we should expect com-
plex dynamics in higher dimensions for our discrete
time competitive schemas. However, how complex,
for example, whether our system can display chaotic
behavior remains an open question.

It is known that cooperative fluid systems are very
stable [6], [7]. The main result is quasi-convergence
almost everywhere, i.e., for almost any initial con-
dition the system converges to the set of equilibrias
[6]. Similarly, for our discrete time algorithms it is
not very difficult to see how cooperation can stabilize
the system. Let’s assume that, controllers are devided
into two groups, such that one group is competing
with the other, i.e., the joint reaction of one group
is monotonicaly decreasing in the load of the other
group. Then, the algorithm that devides the bandwith
between the two groups is stable (Proposition 1) and
therefore, each subset of users can further compete for
the bandwith, i.e.; each subgroup can be subdivided
into cooperative groups, and so on. However, coop-
eration is very difficult to implement in a distributive
system. For that reason we don’t pursue this matter
further.

When additional assumptions on the decreasing
rates of the reaction functions are imposed, the al-
gorithm becomes globaly stable.

Definition 3 For each i € [1,n], M? C M; is a set
of (e,q) admissible r.f.s of user i, such that 0 < e <

R < g < 1(R; = ),

The following theorem is our main result.

Theorem 2 Consider n users competing for the
server of capacity p. FEach user ¢ has a r.f. R; €



M1, Then F has a unique fized point (Nash Equi-
librium point), and for every initial condition \° € A,
{F"(A%)}ew converges exponentionally fast to that
point, as k — oo.

Proof: Given in Appendinx. &

By droping the monotonicity conditions, i.e., allow-
ing users to be unfair, we present several examples in
the following section for which the dynamics of the al-
gorithms can exhibit arbitrary, including chaotic, be-

havior [3].

4 Game of Two Users with Dishonest

Reaction Functions

We have seen in the last section that in the case
of monotone (stable) decreasing reaction functions, in
the system with two users monotone dynamics (Propo-
sition 1) arise. What can happen if one of the users
behaves improperly, so that his reaction function is
not monotonically decreasing? Then, literally any-
thing can happen.

To see this let us suppose that one user has reaction
function R1(A2) = Az if A2 < 1, and zero otherwise,
and the other has Ra(A1) = cA1(1—A1),0< e <4 in
the interval [0, 1] and zero otherwise. Then, chaotic
behavior of the system results, since f = Rj o Ry is
the logistic map between zero and one, which is well
known in the literature of dynamical systems (first
158 pages in [3] are devoted to this map). Instead
of repeating the whole story about this map, we will
only mention a few characteristics: it exhibits chaotic,
periodic and almost all other phenomena that occur
in one dimensional dynamics.

Is this maping the only one which can exibit chaotic
behavior? Of course not, even piecewise linear maps
can be chaotic. Assume that the first user has the
same reaction function as above and the second user
having the Tent map as reaction function:

A
Rz(”:{ 3(1_» 0

Then, a composition of this two reaction functions
is again the Tent map. It is sumewhat surprising
that this nice looking map, 1s chaotic, and more-
over, topologically conjugate with the quadratic map
f=4X(1 — X). In Figure 4 the first five hundred iter-
ations of this map are given, and the resulting chaotic
behavior is evident.

One can argue about these examples as being artifi-
cial, because they exhibit the anomalous property that
a user 1is sending no traffic into the idle network, and
sending some positive flow when the network gets con-
gested. Now, we will see how in a more realistic situa-
tion the system can exibit a periodic global behavior.
Consider two users with maximum throughput min-
imum time delay objectives (maxmr<T, Ai,? = 1,2).
Then, the reaction functions are linearly decreasing,
and if 71 < T% there is one globaly attracting point
in this system which corespond to the maximum flow
of the user with the more relaxed time delay bound
and zero flow for the other user. This 1s obviously
unfavorable to the user with more restrictive bounds,
and one way for him/her to improve throughput is to

<05
<A< 1.
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Figure 2: First five hundred iterations of the Tent map
with initial condition zg = 1/7.

Figure 3: An example of reaction functions where one
user is honest (linearly decreasingreaction function)
and the other is perturbing the system.

start sending some non-valuable flow to the network
in order to perturb the system and make the other
user reduce his/her load. Examples of such reaction
functions are presented in Figure 4.

The dynamics of this algorithm can be easily eval-
uated by analyzing the plot of Ry 0 Rs. As can be seen
from Figure 4, the system has three fixed points. The
only stable fixed point i1s « = 0.7. Further, for initial
values inside [0.1,0.3] and [0.6, 1] the system converges
globaly to the fixed point # = 0.7 and otherwise it is
periodical with period two. Thus, inside the intervals
[0,0.1] and [0.3,0.6] the second user gains from the
system by perturbing it. That is, if a user with high
objectives (second user) sends a big nonvaluable load
into the network that makes the user with lower ob-
jectives to reduce his/her load, then the second user
reacts by sending a small valuable load making the
first user to increase his/her load, and so on.

Therefore, even with two users very complex dy-
namics can arise and general results on global conver-
gence appear difficult to obtain on this level of gener-
ality.

5 Conclusion

The dynamic behavior of a class of synchronous
nonlinear flow control algorithms was investigated.
Under general monotonicity conditions on reaction
functions the associated distributed algorithm cannot
have non trivial period two equilibrias. When addi-



Figure 4: Plot of the composition of the reaction fune-
tions given in the figure above.

tional assumptions on the derivatives of reaction func-
tions are imposed the existence of a unique Nash Equi-
librium (fixed) point and global convergence (with
exponential rate) of the associated distributed algo-
rithms was shown.

We addressed several open problems for general
monotone competitive algorithms, and discussed their
connection to well studied competitive and coopera-
tive fluid systems. We showed how, by adding co-
operation, a competitive algorithm may be stabilized.
Connections between fairness, monotonicity, competi-
tion and stability are demonstrated. We also showed
that a relaxation of the monotonicity condition in The-
orems 1, 2 may lead to chaotic dynamics.

6 Appendix

Let us now state a useful algebraic result

a, T x
r as T x
r r a x

det 3 (5)
r xr oz ... a

=z(ay —x)(az —x) - (an — )
x(t+ o+ 54+ ).

a1—x as—x an—c

(Computational hint: Subtract the first row
from all the others, then take out common factors
(z — a;) and add all columns to the first one. To fin-
ish the derivation, develop the determinat using first
column.)

Proof of Theorem 2: The idea is to prove that
F is a contraction mapping, and then from Banach’s
Contraction Theorem (see [4], pp. 156) the conclusion
of the theorem will follow.

For fixed A = (A1,...,As) € A, denote with a} =

dpzlf\)‘_’) 1 <i< N (recall A_; = Zk 1A — A
Then, the first derivative of F at A (Jacobian) is given

by

00
1 40
=1 1 &
11 1 X
N
0 -1 -1 - -1
0 0 -1 - -1
10 0 0 -
0O 0 0 - —1

(Derivation of this equation is not very difficult, and
for that reason we don’t go into details.) Then, it

is not hard to see that F;\ is exactly the Gauss-Seidel
matrix for solving the system of linear equations Az =
b, where

L1 1 1
I 1
AN = 1 1 é 1 (6)
I
N

Let D, B,C be diagonal, left lower, and right upper

triangular matricies, respectively, such that A* = B+

D + C; further, let K o (F;\)_lBD_lC. Then, by

applying Theorem 16 pp. 143 [4], we have

/ p
1F3la = T4p <1, (7)

for all A € A; u is the maximum eigenvalue of K*,
and || -||4 is the norm on A induced by matrix A* (for
more details see [4], pp. 143).

To finish the proof we will use Lipschitz’s crite-
rion ([4], pp. 157) for contraction mappings, i.e.,
F'is a contraction if there exists a norm such that
supA6A||F [| < 1. Now, we will proceed to find an
appropriate norm for which this will hold. Let

%11 1

1%1 1
Q= 1t 1 3 L. (8)

1 1 1 1

q

Note also that matrices A* and @ induce (since they
are symmeric and positive definite) norms on A

lzllar = (A2, 2)2, [J2llg = (Qu,z)2 €A (9)

where (-, )2 is usual quadratic norm on A.



Also, observe that for fixed A € A and any y € A

e = G-DYw+Cw? (o)
< Y-+ (w? ()
= Il (12)

This further implies

B
T+ pa

Now, in order to preserve strict inequality after taking
supremum over all A € L we have to prove that uy is
bounded by a constant for all A € L. Then, it will

follow that [|Fy]lq < CL_H < 1, for all A € L (and, as

we already mentioned, by Lipschitz’s criterion it will
follow that F'is a contraction mapping). Therefore, to
finish the proof we have to show that uy 1s uniformly
bouded. To show that, note

pn < 1K oo < IR HloolIBlloo 1D oo IC o
< NED ™ leen™,

173 lle < I1Fallar = <1 (13)

where the first inequality follows from the fact that the
maximal eigenvalue of any matrix is smaller than any
norm of that matrix; second inequality follows from
the well known result that the norm of the product of
matrices is smaller than the product of the norms; and
the last inequality follows from the rough upper bound
on || Bleo,[|D™ oo, and ||| Therefore, it is left to
upperbound ||(F})~!|| to show uniform boundedness.

Let [b;;]7 = (F{)~!, then, according to Cramers rule,

di . .
b;;] = ||d3||; , where d and d;; are determinant and ij-

th cofactor of the matrix F{. Utilizing the algebraic
identity from the previous page we calculate

1 1
dy| = (—=-1)---(— -1 14
il = (== ) (1)
ay n
1
X(+1—a1+ +1—an)
1
> (-=1D"
> (1)

Similarlly, from a; > € we obtain an upper bound

1
|di;] < n!€7~

(15)
From (14, 15) it follows
l—yq
bii| < nl(——)" =
5] < ni- -ty =
which implies
1(F) ™ oo < nC.

This proves the theorem.
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