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Abstract. Renewed interest in ALOHA-based Medium Access Con-
trol (MAC) protocols stems from their proposed applications to wireless
ad hoc and sensor networks that require distributed and low complex-
ity channel access algorithms. In this paper, unlike in the traditional
work that focused on mean value (throughput) and stability analysis, we
study the distributional properties of packet transmission delays over an
ALOHA channel. We discover a new phenomenon showing that a basic
finite population ALOHA model with variable size (exponential) packets
is characterized by power law transmission delays, possibly even result-
ing in zero throughput. This power law effect might be diminished, or
perhaps eliminated, by reducing the variability of packets. However, we
show that even a slotted (synchronized) ALOHA with packets of con-
stant size can exhibit power law delays when the number of active users
is random. From an engineering perspective, our results imply that the
variability of packet sizes and number of active users need to be taken
into consideration when designing robust MAC protocols, especially for
ad-hoc/sensor networks where other factors, such as link failures and
mobility, might further compound the problem.

Key words: ALOHA, medium access control, power laws, heavy-tailed
distributions, light-tailed distributions, ad-hoc/sensor networks.

1 Introduction

ALOHA represents one of the first and most basic distributed Medium Ac-
cess Control (MAC) protocols [1]. It is easy to implement since it does not re-
quire any user coordination or complicated controls and, thus, represents a basis
for many modern MAC protocols, e.g., Carrier Sense Multiple Access (CSMA).
Basically, ALOHA enables multiple users to share a common communication
medium (channel) in a completely uncoordinated manner. Namely, a user at-
tempts to send a packet over the common channel and, if there are no other
user (packet) transmissions during the same time, the packet is considered suc-
cessfully transmitted. Otherwise, if the transmissions of more than one packet
(user) overlap, we say that there is a collision and the colliding packets need to
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be retransmitted. Each user retransmits a packet after waiting for an indepen-
dent (usually exponential/geometric) period of time, making ALOHA entirely
decentralized and asynchronous. The desirable properties of ALOHA, including
its low complexity and distributed/asynchronous nature, make it especially ben-
eficial for wireless sensor networks with limited resources as well as for wireless
ad hoc networks that have difficulty in carrier sensing due to hidden terminal
problems and mobility. This explains the recent renewed interests in ALOHA
type protocols.

Traditionally, the performance evaluation of ALOHA has focused on mean
value (throughput) and stability analysis, the examples of which can be found
in every standard textbook on networking, e.g., see [3, 9, 8]; for more recent ref-
erences see [7] and the references therein (due to space limitations, we do not
provide comprehensive literature review on ALOHA in this paper). However, it
appears that there are no explicit and general studies (more than two users) of
the distributional properties of ALOHA, e.g., delay distributions. In this regard,
in Subsection 2.1, we consider a standard finite population ALOHA model with
variable length packets [4, 2] that have an asymptotically exponential tail. Sur-
prisingly, we discover a new phenomenon that the distribution of the number of
retransmissions (collisions) and time between two successful transmissions follow
power law distributions, as stated in Theorem 1. Informally, our theorem shows
that when the exponential decay rate of the packet distribution is smaller than
the parameter of the exponential backoff distribution, even the finite population
ALOHA has zero throughput. This is contrary to the common belief that the
finite population ALOHA system always has a positive, albeit possibly small,
throughput. Furthermore, even when the long term throughput is positive, the
high variability of power laws (infinite variance when the power law exponent
is less than 2) may cause long periods of very high congestion/low throughput.
It also may appear counterintuitive that the system is characterized by power
laws even though the distributions of all the variables (arrivals, backoffs and
packets) of the system are of exponential type. However, this is in line with the
very recent results in [5, 10, 6], which show that job completion times in systems
with failures where jobs restart from the very beginning exhibit similar power
law behavior. Our study in [6] was done in the communication context where
job completion times are represented by document/packet transmission delays.
It may also be worth noting that [6] reveals the existence of power law delays
regardless of how light or heavy the packet/document and link failure distribu-
tions may be (e.g., Gaussian), as long as they have proportional hazard functions.
Furthermore, from a mathematical perspective, our Theorem 1 analyzes a more
complex setting than the one in [6, 10] and, thus, requires a novel proof. Hence,
when compared with [6, 10], this paper both discovers a new related phenomenon
in a communication MAC layer application area and provides a novel analysis
of it.

As already stated in the abstract, the preceding power law phenomenon is a
result of combined effects of packet variability and collisions. Hence, one can see
easily that the power law delays can be eliminated by reducing the variability
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of packets. Indeed, for slotted ALOHA with constant size packets the delays
are geometrically distributed. However, we show in Section 3 that, when the
number of users sharing the channel is geometrically distributed, the slotted
ALOHA exhibits power law delays as well.

In Section 4, we illustrate our results with simulation experiments, which
show that the asymptotic power law regime is valid for relatively small delays
and reasonably large probability values. Furthermore, the distribution of packets
in practice might have a bounded support. To this end, we show by a simulation
experiment that this situation results in distributions that have power law main
body with an exponentiated (stretched) support in relation to the support of
the packet size/number of active users. Hence, although exponentially bounded,
the delays may be prohibitively long.

In practical applications, we may have combined effects of both variable
packets and a random number of users, implying that the delay and congestion
is likely to be even worse than predicted by our results. Thus, from an engi-
neering perspective, one has to pay special attention to the packet variability
and the number of users when designing robust MAC protocols, especially for
ad-hoc/sensor networks where link failures [6], mobility and many other factors
might further worsen the performance.

2 Power Laws in the Finite Population ALOHA with

Variable Size Packets

In this section we show that the variability of packet sizes, when coupled with
the contention nature of ALOHA, is a cause of power law delays. This study is
motivated by the well-known fact that packets in todays Internet have variable
sizes. To further emphasize that packet variability is a sole cause of power laws,
we assume a finite population ALOHA model where each user can hold (queue)
up to one packet at the time since the increased queueing only further exacer-
bates the problem. In addition, in Section 3 we show that the user variability
in an infinite population model may be a cause of power law delays as well. In
the remainder of this section, we describe the model and introduce the neces-
sary notation in Subsection 2.1 and then in Subsection 2.2 we formulate and
prove our main result on the logarithmic asymptotics of the transmission delay
in Theorem 1.

2.1 Model Description

Consider M ≥ 2 users sharing a common communication link (channel) of unit
capacity. Each user can hold at most one packet in its queue and, when the
queue is empty, a new packet is generated after an independent (from all other
variables) exponential time with mean 1/λ. Each packet has an independent
length that is equal in distribution to a generic random variable L. A user with
a newly generated packet attempts its transmission immediately and, if there
are no other users transmitting during the same time, the packet is considered
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successfully transmitted. Otherwise, if the transmissions of more than one packet
overlap, we say that there is a collision and the colliding packets need to be
retransmitted; for a visual representation of the system see Figure 1. After a
collision, each participating user waits (backoffs) for an independent exponential
period of time with mean 1/ν and then attempts to retransmit its packet. Each
such user continues this procedure until its packet is successfully transmitted
and then it generates a new packet after an independent exponential time of
mean 1/λ. Let {U(t)}t≥0 denote the number of users that are in backoff state
at time t.

Without loss of generality, assume that there is a successful transmission at
time t = 0 and let {Ti}i≥1 be an increasing sequence of positive time points
when either a collision or successful transmission occurs. Let N be the smallest
index i such that at time T ≡ TN there was a successful transmission. We will
study the asymptotic properties of the distributions of N and T , representing
the total number of transmission attempts per one successful transmission and
the time between the two consecutive successful transmissions, respectively.
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Fig. 1. Finite population ALOHA model with variable packet sizes.

2.2 Power Law Asymptotics

The following theorem on the logarithmic asymptotics of the number of transmis-
sion attempts N per successful transmission and delay T between two successful
transmissions is our main result of this section.

Theorem 1. If

lim
x→∞

log P[L > x]

x
= −µ, µ > 0, (1)

then, we have

lim
n→∞

log P[N > n]

log n
= −

Mµ

(M − 1)ν
(2)
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and

lim
t→∞

log P[T > t]

log t
= −

Mµ

(M − 1)ν
. (3)

Remark 1. The proof of this result reveals that if the transmission delay is long,
then the shortest packet from all M users will be the most likely one that is
successfully transmitted, i.e., ALOHA is unfair to longer packets.

Remark 2. This theorem indicates that the distribution tails of N and T are
essentially power laws when the packet distribution is approximately exponential
(≈ e−µx). Thus, the finite population ALOHA may exhibit high variations and
possible zero throughput. More precisely, by the strong law of large numbers for
stationary and ergodic point processes, the system has zero throughput when
0 < Mµ/(M − 1)ν < 1; and when 1 < Mµ/(M − 1)ν < 2, the transmission time
has finite mean but infinite variance. Furthermore, for large M , Mµ/(M − 1) ≈
µ/ν and thus, the system has zero throughput if the backoff parameter ν ' µ.
It might be worth noting that this may even occur when the expected packet
length is much smaller than the expected backoff time EL ≪ 1/ν.

Proof. Let us first prove equation (2) assuming that at time t = 0 a collision
happens and all users have a packet waiting to be send, i.e., U(0) = M . Since
each user i has an equal probability 1/M of being the first one to attempt a
transmission, and e−Li(M−1)ν is the conditional probability, given Li, that such
an attempt is successful, we obtain, for xǫ > 0,

P[N > n] = E

[(

1 −
1

M

(

M
∑

i=1

e−Li(M−1)ν

))n]

= E

[(

1 −
1

M

(

M
∑

i=1

e−Li(M−1)ν

))n

1

(

M
⋂

i=1

{Li > xǫ}

)]

+ E

[(

1 −
1

M

(

M
∑

i=1

e−Li(M−1)ν

))n

1

(

M
⋃

i=1

{Li ≤ xǫ}

)]

.

Next, by using 1 − x ≤ e−x and the independence of Li, we derive

P[N > n] ≤
(

E

[

e−
n
M e−L(M−1)ν

1(L > xǫ)
])M

+

(

1 −
1

M
e−xǫ(M−1)ν

)n

≤
(

E

[

e−
n
M e−L1(L>xǫ)(M−1)ν

])M

+ ηn, (4)

where η , 1 − e−xǫ(M−1)ν/M < 1. Then, by assumption (1), for any 0 < ǫ < µ,
we can choose xǫ such that P[L > x] ≤ e−(µ−ǫ)x for all x ≥ xǫ, which, by defining
an exponential random variable Lǫ with P[Lǫ > x] = e−(µ−ǫ)x, x ≥ 0, implies

L1(L > xǫ)
d
≤ Lǫ, where “

d
≤ ” denotes inequality in distribution. Therefore, (4)

implies

P[N > n] ≤
(

E

[

e−
n
M e−Lǫ(M−1)ν

])M

+ ηn. (5)
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Now, for any 0 < x < 1,

P

[

e−(µ−ǫ)Lǫ < x
]

= P[(µ − ǫ)Lǫ > − log x] = x,

implying that e−(µ−ǫ)Lǫ
d
= U , where “

d
= ” denotes equality in distribution and

U is a uniform random variable between 0 and 1. Thus,

P[N > n] ≤
(

E

[

e−
n
M U(M−1)ν/(µ−ǫ)

])M

+ ηn.

By using the identity E[e−θU1/α

] = Γ (α + 1)/θα, one can easily obtain

lim
n→∞

log P[N > n]

log n
≤ −

M(µ− ǫ)

(M − 1)ν
, (6)

which, by passing ǫ → 0, completes the proof of the upper bound.
For the lower bound, define Lo , min{L1, L2, · · · , LM}, and observe that

P[N > n] = E

[(

1 −
1

M

(

M
∑

i=1

e−Li(M−1)ν

))n]

≥ E

[(

1 − e−Lo(M−1)ν
)n]

. (7)

The complementary cumulative distribution function F̄o(x) , P[Lo ≥ x] satisfies

lim
x→∞

log F̄o(x)

x
= −Mµ,

implying that, for any ǫ > 0, there exists xǫ such that P[Lo > x] ≥ e−(Mµ+ǫ)x

for all x ≥ xǫ. Next, if we define random variable Lǫ
o such that P[Lǫ

o > x] =
e−(Mµ+ǫ)x, x ≥ 0, then,

Lo

d
≥ Lǫ

o1(Lǫ
o > xǫ),

which, by (7), implies

P[N > n] ≥ E

[(

1 − e−Lǫ
o1(Lǫ

o>xǫ)(M−1)ν
)n]

≥ E

[(

1 − e−Lǫ
o(M−1)ν

)n

1(Lǫ
o > xǫ)

]

.

Noticing that for any 0 < δ < 1, there exists xδ > 0 such that 1 − x ≥ e(1−δ)x

for all 0 < x < xδ, we can choose xǫ large enough, such that

P[N > n] ≥ E

[

e−(1−ǫ)ne−Lǫ
o(M−1)ν

1(Lǫ
o > xǫ)

]

≥ E

[

e−(1−ǫ)ne−Lǫ
o(M−1)ν

]

− E

[

e−(1−ǫ)ne−Lǫ
o(M−1)ν

1(Lǫ
o ≤ xǫ)

]

≥ E

[

e−(1−ǫ)ne−Lǫ
o(M−1)ν

]

− ζn, (8)
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where ζ = e−(1−ǫ)e−xǫ(M−1)ν

< 1. Similarly as in the proof of the upper bound,

it is easy to check that e−(Mµ+ǫ)Lǫ
o

d
= U , and therefore,

P[N > n] ≥ E

[

e−(1−ǫ)nU(M−1)ν/(Mµ+ǫ)
]

− ζn,

which, by recalling the identity E[e−θU1/α

] = Γ (α + 1)/θα, yields

lim
n→∞

log P[N > n]

log n
≥ −

Mµ + ǫ

(M − 1)ν
. (9)

Finally, passing ǫ → 0 in (9) completes the proof of the lower bound. Combining
the lower and upper bound, we finish the proof of (2) for the case U(0) = M .

Next, define Ns , min{n ≥ 0 : U(Tn) = M}, Nl , min{N, Ns} and Ne ,
N − Nl. It can be shown that

P[Nl > n] ≤ P[Ns > n] = o(e−θn) (10)

for some θ > 0; due to space limits, the details of this proof will be presented in
the full version of this paper. Assuming that the preceding bound holds, by the
memoryless property of exponential distributions, we obtain

P[Ne > n] = P[N − Ns > n, N > Ns]

= P[N > Ns]P[N − Ns > n | N > Ns]

= P[N > Ns]P[N > n | Ns = 0].

Noting that P[N > n | Ns = 0] is the case of U(0) = M that has already been
proved, we conclude

lim
n→∞

log P[Ne > n]

log n
= −

Mµ

(M − 1)ν
,

which, combined with (10) and the union bound, yields

lim
n→∞

log P[N > n]

log n
= lim

n→∞

log P[Nl + Ne > n]

log n
= −

Mµ

(M − 1)ν
. (11)

The proof of (3) is presented in Section 4. 2

3 Power Laws in Slotted ALOHA with Random Number

of Users

It is clear from the preceding section that the power law delays arise due to
the combination of collisions and packet variability. Hence, it is reasonable to
expect an improved performance when this variability is reduced. Indeed, it is
easy to see that the delays are geometrically bounded in a slotted ALOHA with
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constant size packets and a finite number of users. However, in this section we will
show that, when the number of users sharing the channel has asymptotically an
exponential distribution, the slotted ALOHA exhibits power law delays as well.
Situations with random number of users are essentially predominant in practice,
e.g., in sensor networks, the number of active sensors in a neighborhood is a
random variable since sensors may switch between sleep/active modes, as shown
in Figure 2; similarly in ad hoc wireless networks the variability of users may
arise due to mobility, new users joining the network, etc.
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Fig. 2. Random number of active neighbors in a sensor network.

More formally, consider a slotted ALOHA model (e.g., see Section 4.2.2 of
[3]) with packets/slots of unit size and a random number of users M ≥ 1 that are
fixed over time. Similarly as in Section 2, each user holds at most one packet at a
time and after a successful transmission a new packet is generated according to
an independent Bernoulli process with success probability 0 < λ ≤ 1. In case of
a collision, each colliding user backs off according to an independent geometric
random variable with parameter e−ν , ν > 0. Denote the number of slots where
transmissions are attempted but failed and the total time between two successful
packet transmissions as N and T , respectively.

Theorem 2. If there exists α > 0, such that

lim
x→∞

log P[M > x]

x
= −α,

then, we have

lim
n→∞

log P[N > n]

log n
= lim

t→∞

log P[T > t]

log t
= −

α

ν
. (12)

Remark 3. Similarly as in Theorem 1, this result shows that the distributions of
N and T are essentially power laws, i.e., P[T > t] ≈ t−α/ν and, clearly, if α < ν,
then EN = ET = ∞.

Proof. First consider a situation where all the users are backlogged, i.e., have a
packet to send. In this case the total number of collisions between two successful
transmissions is geometrically distributed given M ,

P[N > n | M ] =

(

1 −
Me−(M−1)ν(1 − e−ν)

1 − e−Mν

)n

, n ∈ N,
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since, given M , 1− e−Mν is the conditional probability that there is an attempt
to transmit a packet, and 1 − e−Mν − Me−(M−1)ν(1 − e−ν) is the conditional
probability that there is a collision. Therefore,

P[N > n] = E

[

(

1 −
Me−(M−1)ν(1 − e−ν)

1 − e−Mν

)n
]

. (13)

On the other hand, we have

P[T > t] = E

[

(

1 − Me−(M−1)ν(1 − e−ν)
)t
]

, t ∈ N. (14)

Now, following the same arguments as in the proof of Theorem 1, we can prove
(12). Similarly, one can show that the same asymptotic results hold if the initial
number of backlogged users is less than M . Due to space limitations, a complete
proof of this theorem will be presented in the extended version of this paper. 2

Actually, using the technique developed in [6] with some modifications, we
can compute the exact asymptotics under a bit more restrictive conditions.
Again, due to space limitations, the proof of the following theorem is deferred
to the full version of the paper.

Theorem 3. If λ = ν and F̄ (x) , P[M > x] satisfies H
(

− log F̄ (x)
)

F̄ (x)1/β
∼

xe−νx with H(x) being continuous and regularly varying, then, as t → ∞,

P[T > t] ∼
Γ (β + 1)(eν − 1)β

tβH(β log t)β
.

4 Simulation Examples

In this section, we illustrate our theoretical results with simulation experiments.
In particular, we emphasize the characteristics of the studied ALOHA proto-
col that may not be immediately apparent from our theorems. For example, in
practice, the distributions of packets and number of random users might have a
bounded supports. We show that this situation may result in truncated power
law distributions for T . To this end, it is also important to note that the distri-
butions of N and T will have a power law main body with a stretched support in
relation to the support of L and M and, thus, may result in very long, although,
exponentially bounded delays. We will study the case where M has a bounded
support in our second experiment.

Example 1 (Finite population model). For the finite population model described
in Subsection 2.1, we study the distribution of time T between two consecutive
successful transmissions. In this regard, we conduct four experiments for M =
2, 4, 10, 20 users, respectively. The packets are assumed i.i.d. exponential with
mean 1 and the arrival intervals and backoffs follow exponential distribution
with mean 2/3. Simulation result with 105 samples are shown in Figure 3, which
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Fig. 3. Interval distribution between successfully transmitted packets for finite popu-
lation ALOHA with variable size packets.

indicates a power law transmission delay. We can see from the figure that, as M
gets large (M = 10, 20), the slopes of the distributions that represent the power
law exponents on the log / log plot are essentially the same, as predicted by our
Theorem 1.

Example 2 (Random number of users). As stated in Section 3, the situation
when the number of users M is random may cause heavy-tailed transmission
delays even for slotted ALOHA. However, in many practical applications the
number of active users M may be bounded, i.e., the distribution P[M > x]
has a bounded support. Thus, from equation (14) it is easy to see that the
distribution of T is exponentially bounded. However, this exponential behavior
may happen for very small probabilities, while the delays of interest can fall
inside the region of the distribution (main body) that behaves as the power
law. This example is aimed to illustrate this important phenomenon. Assume
that initially M ≥ 1 users have unit size packets ready to send and M follows
geometric distribution with mean 3. The backoff times of colliding users are
independent and geometrically distributed with mean 2. We take the number of
users to have finite support [1, K] and show how this results in a truncated power
law distribution for T in the main body, even though the tails are exponentially
bounded. This example is parameterized by K where K ranges from 6 to 14 and
for each K we set the number of users to be equal to MK = min(M, K). We
plot the distribution of P[T > t], parameterized by K, in Figure 4. From the
figure we can see that, when we increase the support of the distributions from
K = 6 to K = 14, the main (power law) body of the distribution of T increases
from less than 5 to almost 700. This effect is what we call the stretched support
of the main body of P[T > t] in relation to the support K of M . In fact, it
can be rigorously shown that the support of the main body of P[T > t] grows
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Fig. 4. Illustration of the stretched support of the power law main body when the
number of users is min(M, K), where M is geometrically distributed.

exponentially fast. Furthermore, it is important to note that, if K = 14 and the
probabilities of interest for P[T > t] are bigger than 1/500, then the result of
this experiment is basically the same as for K = ∞; see Figure 4.

Appendix

Proof (of equation (3)). Similarly as in proving (2), we first assume that at
time t = 0 there is a collision and that U(0) = M . Next, let {Yi}i≥1 be an
i.i.d. sequence of exponential random variables with parameter Mµ and define
L∗ = max1≤i≤M{Li} where Li is the packet size. Then,

N
∑

i=1

Yi

d
≤ T

d
≤ NL∗ +

N
∑

i=1

Yi. (15)

Now, we establish the upper bound. For H > 0,

P[T > t] ≤ P

[

N >
t

H log t

]

+ P





∑

1≤i≤t/H log t

Yi >
t

2



+ P

[

tL∗

H log t
>

t

2

]

, I1 + I2 + I3. (16)

Since L∗ is exponentially bounded, we can choose H large enough, such that for
any fixed α > 0,

I3 = o

(

1

tα

)

. (17)
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For the second term, by applying union bound, we obtain

I2 ≤

(

t

H log t
+ 1

)

P

[

Yi >
H log t

2

]

= o

(

1

tα

)

, (18)

for any fixed α > 0 and H large enough. Next, by (2), the asymptotics of I1 is
equal to

lim
t→∞

log P

[

N > t
H log t

]

log t
= −

Mµ

(M − 1)ν
,

which, combined with (16), (17) and (18), completes the proof of the upper
bound. Next, we prove the the lower bound. By the left inequality of (15), for
1 > δ > 0,

P[T > t] ≥ P

[

N ≥
t(1 + δ)

E[Y1]
+ 1

]

− P

[

N
∑

i=1

Yi ≤ t, N ≥
t(1 + δ)

E[Y1]
+ 1

]

. (19)

Now, by using the standard large deviation result (Chernoff bound), it imme-
diately follows that, for some η > 0, the second term on the right-hand side of
(19) is bounded by

P





∑

i≤t(1+δ)/E[Y1]+1

Yi ≤ t



 = P





∑

i≤t(1+δ)/E[Y1]+1

(E[Y1] − Yi) ≥ δt



 = o
(

e−ηt
)

.

Again, by (2), the first term on the right-hand side of (19) gives the right asymp-
totics, which proves the lower bound. The proof of the case U(0) < M is more
involved and, therefore, due to space limitation, we defer it to the full version of
this paper. 2
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