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Abstract

For a Markov-modulated random walk with
negative drift and long-tailed right tail we prove
that the ascending ladder height matrix distribu-
tion is asymptotically proportional to a long-tailed
distribution. This result enable us to generalize a
recent result on subexponential asymptotics of a
Markov-modulated M/G/1 queue to subexponen-
tial asymptotics of a Markov-modulated G/G/1
queue.

For a class of processes constructed by embed-
ding a Markov chain into a subexponential re-
newal process we prove that the autocorrelation
function has a subexponential tail. Furthermore,
we prove that when a fluid flow queue is fed by
these processes the queue length distribution is
asymptotically proportional to its autocorrelation
function.

1 Introduction
Under the variety of assumptions of Cramér

type (exponentially bounded marginals and auto-
correlation function) many published results have
shown that the queue length distribution of a
network multiplexer has exponential asymptotics,
i.e., IP[Q > x] ∼ αe−θ∗x as x → ∞. Some authors
have argued that an even simpler approximation
holds IP[Q > x] ∼ e−θ∗x. This has led to the
development of the so called effective bandwidth
based admission control (see [6, 10, 13, 12, 17]).
However, this approach may often lead to poor
approximations [8, 14], which may result in a
significant underutilization of network resources.
The shortcoming of the single exponential ap-
proximation often manifests itself with arrival
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processes that span over multiple time scales.
This has been independently shown in [14, 18]. A
recursive numerical algorithm for computing the
queue length distribution with multiple time scale
arrivals can be found in [16].

The main motivation for this work are the
results presented in [11] which show that the
(marginal) distribution function and the auto-
correlation function of the arrival processes that
appear in communications networks may have a
long (subexponential) tail. For such processes the
Cramér type conditions are not satisfied.

To get some feeling about the behavior of the
queue when the arrival process has a long tailed
distribution let us examine the following example.
(All the examples in this paper are calculated us-
ing the z-transform technique and Mathematica
2.2.)

Example 1 Consider a discrete time queue with
a service rate of one packet per slot (c = 1) and
an arrival process characterized by a sequence
An of i.i.d. random variables distributed as
IP[A0 = 0] = 0.2, IP[A0 = i] = d/i6, 1 ≤ i ≤ 150,
d = 0.77151. Thus, this source (arrival process)
has a truncated heavy tail with peak rate of 150
packets. Since this process is bounded from above
its cumulant function IEeθA0 exists for all θ > 0
and, therefore, the queue tail is asymptotically
exponential. However, the range of the exponen-
tial asymptotic may be far out of the relevant
range of probabilities. On the right-hand side of
figure 1 we can see that the exponential asymp-
totics starts to work for very small probabilities
(roughly smaller than 10−40). However, in the
relevant range of probabilities (10−4 − 10−10) we
see, on the left-hand side of figure 1, that the
exponential approximation fails. In this region,
queue length probabilities have a functional form
approximately proportional to the integrated tail
of An (1/i5).
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Thus, we can see that even in the case of
bounded heavy tailed arrivals, for which the queue
length asymptotics is eventually exponential, the
relevant part of the queue length distribution may
be subexponential.

In this paper we examine the queue length dis-
tribution when the Cramér type conditions are
replaced by subexponential assumptions.

The paper is organized as follows. In sec-
tion 2 we give the basic definitions and results
on subexponential distributions. At the end of
that section (subsection 2.2) the classical result
on the subexponential GI/GI/1 queue asymp-
totics is presented in Theorem 1. This re-
sult has been recently generalized to the Markov-
modulated M/G/1 queue [4]. Our further gener-
alization of this result to the Markov-modulated
G/G/1 queue is presented in section 3. In the rest
of the paper (section 4) we consider a class of pro-
cesses that have subexponentially correlated ar-
rivals. This processes are obtained by embedding
Markov chains in a stationary subexponential re-
newal process. When this processes are fed into a
fluid flow queue the queue length distribution is
asymptotically proportional to the autocovariance
(autocorrelation) function of the arrival process.
The paper is concluded in section 5 with a brief
application of these results to broadband network
admission control.

2 Subexponential Distribu-

tions
Definition 1 A distribution function F with
F (0−) = 0 is called long-tailed (F ∈ L) if

lim
x→∞

1− F (x− y)

1− F (x)
= 1, y ∈ IR. (1)

Definition 2 A distribution function F with
F (0−) = 0 is called subexponential (F ∈ S) if

lim
x→∞

1− F ∗2(x)

1− F (x)
= 2, (2)

where F ∗2 denotes the 2-nd convolution of F with
itself.

The class of subexponential distributions was
first introduced by Chistakov [7]. The definition is
motivated by the simplification of the asymptotic
analysis of the convolution tails. Some examples
of distribution functions in S are:

(I) the Pareto family

F (x) = 1− (x− β + 1)−α,

x > β > 0, α > 0.

(II) the lognormal distribution

F (x) = Φ

(

log x− µ

σ

)

, µ ∈ IR, σ > 0,

where Φ is the standard normal distribu-
tion.

(III) Weibull distribution

F (x) = 1− e−αxβ

,

for 0 < β < 1, α > 0.

(IV)

F (x) = e−x(log x)−a

,

for a > 0.

(V) Benktander Type I distribution

F (x) = 1− cx−a−1x−b log x(a+ 2b logx),

a > 0, b > 0, and c appropriately chosen.

(V) Benktander Type II distribution

F (x) = 1− cax−(1−b) exp{−(a/b)xb},

a > 0, 0 < b < 1, and c appropriately cho-
sen.

2.1 Basic Results
In what follows we will state an important re-

sult from the literature on subexponential distri-
butions. The general relation between S and L is
the following.

Lemma 1 (Athrey and Ney, [5]) S ⊂ L.

Lemma 2 If F ∈ L then (1− F (x))eαx → ∞ as
x → ∞, for all α > 0.

Note: Lemma 2 clearly shows that for long
tailed distributions Cramér type conditions are
not satisfied.

To simplify the notation let us denote by

F̄ (x)
def
= 1 − F (x). The following lemma, used

in the proof of theorem 4, is from [4].

Lemma 3 Let G = {Gij} be a matrix of non-

negative measures such that ‖G‖
def
= G(0,∞) is

substochastic (the spectral radius is < 1). If there
exists some probability distribution G ∈ S such
that Ḡij(x) ∼ lijḠ(x) as x → ∞ for some matrix
L = {lij}, 0 < lij < ∞, then

∞
∑

n=0

G∗n(x)(I − ‖G‖) ∼ (I − ‖G‖)−1LḠ(x).
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Figure 1: Illustration for Example 1.

2.2 The GI/GI/1 queue with subexpo-
nential arrivals

Let {At, Ct, t ≥ 0} be a sequence of ran-
dom variables (on a probability space (Ω,F , IP)).
Then, for any initial random variable Q0 the fol-
lowing (Lindley’s) equation

Qt+1 = (Qt +At − Ct)
+ (3)

defines the queue length process {Qt}; through-
out we deal with a stationary version of this pro-
cess. The dynamics of a broadband network mul-
tiplexer is defined by the previous recursion. Qt

represents the workload at the end of the time slot
t, At, represent the amount of traffic (packets)
that arrives at the multiplexer, and Ct represents
the amount of traffic that is served during the slot
t (we do not assume that At, Ct are integer val-
ued). Note that the recursion (3) represents the
workload of the G/G/1 queue with Ct being in-
terpreted as the customer interarrival time, At as
the customer service requirements, and Qt as the
queue workload.

Let Xt = At − Ct, t ≥ 0, and let Xt be a se-
quence of i.i.d. random variables with a distribu-
tion F , and At independent of Ct. Further, de-

note its integrated tail as F̂ (x)
def
=

∫∞

x
[1−F (t)]dt.

Let’s define F1(x) = m−1(1 − F̂ (x)), where m =
F̂ (0). Similarly, in the rest of the paper for any
d.f. G, we define its corresponding Ĝ(x) and
G1(x). Then the following result on the GI/GI/1
queue was proven by Veraverbeke [19]. Let B be
a d.f. of At.

Theorem 1 (i) F1 ∈ S ⇐⇒ B1 ∈ S and

limx→∞
F̂ (x)

B̂(x)
= 1

(ii) B1 ∈ S ⇐⇒ IP[Qt ≤ x] ∈ S and each implies

lim
x→∞

IP[Qt > x]

B̂(x)
=

1

α− β
.

Some recent results on long tailed asymptotics
of aGI/GI/1 are given in [1, 20]. (Also, in [1] fur-
ther motivation is given for the application of long
tailed distributions in communication networks.)

The subexponential asymptotic behavior of
the queue length distribution of the Markov-
modulated M/G/1 queue was derived in [4]. Our
extension of this result to the Markov-modulated
G/G/1 queue is presented in the next section.

3 Markov-modulated G/G/1
Queue with Subexponen-

tial Arrivals
Consider a Markov-modulated random walk

with a negative drift and long-tailed right tail.
We prove that the ascending ladder height ma-
trix distribution is asymptotically proportional
to a long-tailed distribution. Using this result
we show that the queue length distribution of a
Markov-modulated G/G/1 queue with subexpo-
nential arrivals is proportional to the integrated
tail of the arrival distribution. Preliminaries on
the generalization of the Ladder heights approach
to the Markov-modulated random walk recently
obtained in [2, 3] are presented in the following
subsection (we borrow the notation from the same
papers).

3.1 Markov-modulated Random Walk
and Ladder Heights

Let {Jn} be an irreducible aperiodic Markov
chain with a finite state space E (say with N
elements) and let {Xn} be a sequence of real
valued random variables. A Markov process
{(Jn, Xn)} on E × IR whose transition distribu-
tion depends only on the first coordinate is called
a Markov-modulated random walk (MMRW). Let
{(J̃n, X̃n)} denote the associated reversed pro-
cess. This process is determined by a set of transi-
tion measures Fij(A) = IP[J0 = j,X1 ∈ A|J1 = i],
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and let F = {Fij} be the corresponding transition
matrix measure.

Further, define S̃0 = 0, S̃n =
∑n

i=1 X̃i,

τ+ = inf{n > 0 : S̃n > 0},

G+(i, j;A) = IPi[J̃τ+ = j, S̃τ+ ∈ A, τ+ < ∞],

‖G+(i, j)‖ = G+(i, j; (0,∞)),

G+(A) = {G+(i, j;A)}i,j∈E ,

‖G+‖ = {‖G+‖}i,j∈E .

The convolution of the matrix measure G+ is nat-
urally extended to

G∗2
+ (i, j) =

∑

k∈E

G+(i, j) ∗G+(k, j),

G∗2
+ = {G∗2

+ (i, j)}i,j∈E ;

higher convolution powers are similarly defined.
Then in [3] the following extension of the

Pollaczek-Khinchine identity is provided for M̃ =
supn≥0 S̃n.

Theorem 2 IPi[M̃ ∈ A] is the ith component of
the vector

∞
∑

n=0

G∗n
+ (A)(I − ‖G+‖)e,

where e is the column vector of ones and I is the
identity matrix.

Note: A well known relation between the
supremum of the reversed random walk and the
stationary queue length distribution is IPi[Q ∈
A] = IPi[M̃ ∈ A].

Let τ− = inf{n ≥ 1 : Sn ≤ 0}, and define

G−(i, j;A) = IPi[Sτ− ∈ A, Jτ− = j, τ− < ∞],

#G−(i, j) =
πj

πi

G−(j, i);

(note that in this definition S is not the reversed
process). Then, the following Wiener-Hopf iden-
tity holds

I − F (A) = (I − #G−) ∗ (I −G+)(A), (4)

where F is a matrix measure induced by the ran-
dom walk, and A is any real Borel set. Note that
this equation may be difficult to solve. Discus-
sion and references to the computational aspects
of the Wiener-Hopf factorization are given in [15].

3.2 Long Tailed Asymptotics of
Signed Measures

In this section we prove a few general results
on the long tailed asymptotics of signed measures.
Combination of these results essentially will give
a proof of our main results presented in the fol-
lowing subsection. (These results may also be of
independent interest.) Let (IR,B(IR)) be a Borel
σ-algebra on IR.

Lemma 4 Let µ, µ− be two finite (signed) mea-
sures on (IR,B(IR)),
such that limx→∞ µ([x,∞))/Ȳ (x) = c, Y (x) ∈ L,
|c| < ∞, and µ− has support on (−∞, 0]. Then,

ν
def
= µ− ∗ µ satisfies

lim
x→∞

ν([x,∞))

Ȳ (x)
= cµ−((−∞, 0]).

Proof: Given in [15].

Lemma 5 Let µ, µ−, µ+, be finite (possibly
signed) measures on (IR,B(IR)); with µ− having
a support on (−∞, 0], |µ−((−∞, 0])| > 0; µ+

has a support on [0,∞) and is strictly positive on
[K,∞), K > 0, and limx→∞ µ([x,∞))/Ȳ (x) = c,
Y (x) ∈ L, |c| < ∞. If µ = µ− ∗ µ+, then

lim
x→∞

µ+([x,∞))

Ȳ (x)
=

c

µ−((−∞, 0])
. (5)

Proof: Given in [15]. 3

Proposition 1 Let µ = µ−∗µ+, where measures
µ, µ−, µ+ satisfy the conditions from the previous
lemma, and, in addition, µ−((−∞, 0]) = 0, and

0 <
∣

∣

∣

∫

(−∞,0]
udµ−(u)

∣

∣

∣
< ∞. Then,

lim
x→∞

µ+([x,∞))

Ŷ (x)
=

c
∫

(−∞,0]
udµ−(u)

,

(recall Ŷ (x) =
∫

[x,∞) Ȳ (u)du).

Proof: Let µ1([x,∞))
def
=

∫∞

x
µ([u,∞))du, and

µ1
−([z, 0])

def
=

∫

[z,0]
µ−([u, 0])du. Observe that

µ1([x,∞)) ∼ cŶ (x) as x → ∞. Also, from
the assumptions it follow that µ1

− defines a fi-
nite measure on (−∞, 0], since µ1

−((−∞, 0]) =
∫ 0

−∞
−µ−((−∞, u))du =

∫

(−∞,0]
uµ−(du). Then,

by applying Fubini’s theorem (see [21], pp. 180),
we get

µ1([y,∞))

=

∫ ∞

y

du

∫

[0,∞)

µ−([u− x, 0])µ+(dx)

=

∫

[0,∞)

µ+(dx)

∫ x

y

µ−([u− x, 0])du

=

∫

[0,∞)

µ1
−([y − x, 0])µ+(dx).

So, µ1([y,∞)) is obtained by convolution of finite
measures µ+, µ

1
−. Therefore, by applying lemma

5, the conclusion of the proposition follows (recall
that µ1

−((−∞, 0]) =
∫

(−∞,0]
uµ−(du)).

3
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3.3 Subexponential Queue Asymp-
totics

We will now proceed to prove our main result
of this section. In order to state the result we
need to introduce some additional notation. Let
H(x) = {Hij} be a matrix composed of distribu-
tion functions, and its Fourier transform defined
as H̃(ω) = {H̃ij(ω)}, H̃ij(ω) =

∫∞

−∞
eiωxdHij(x).

We will use the symbol F−1(·) to denote the op-
eration of taking the inverse Fourier transform.
Note that there is a one-to-one correspondence
between the distribution functions on IR and its
Fourier transforms (see [21], section 8.3). The
Wiener-Hopf factorization can be written as

(I − F̃ (ω)) = (I − #G̃−(ω))(I − G̃+(ω)). (6)

Observe also that H̃ij(0) = H((−∞,∞)), and

that −iH̃ ′
ij(0) =

∫∞

−∞
xdHij(x); assume that the

first moments of Hij are finite. For any ma-
trix A let us define the adjoint matrix adj(A),
adj(A)ij = (−1)i+j det(Aij), where Aij denotes
the matrix obtained by deleting the ith row and
jth column from A. If A is invertible then A−1 =
(det(A))−1adj(A). Assume IEXn < 0 (negative
drift) and

∫∞

−∞
|x|Fij(dx) < ∞.

Theorem 3 Let F̄ (x)/Ȳ (x) → W , W = {Wij},
Wij < ∞, Y (x) ∈ L. Then,

Ḡ+(x)

Ŷ (x)
→

adj(I − #G̃−)(0)W

−i det(I − #G̃−)′(0)
, (7)

as x → ∞.

Proof: Fist let us observe that det(I − F̃ )(ω)
has a zero of order one for ω = 0. ω = 0 is a zero
since det(I − F̃ )(0) = det(I − P ) = 0, as P is a
stochastic transition matrix; that this zero is of
order one follows from IEXn < 0. Furthermore,
since ‖G+‖ is substochastic (see [2], proposition
4.2), we have that | det(I−G̃+)(0)| > 0, which im-
plies (by equation (6)) that ω = 0 is also a zero of
order one for the det(I −#G̃−)(ω), implying 0 <
| det(I − #G̃−)

′(0)| < ∞; finiteness follows from
det(I−F̃ )′(0) = det(I−G̃+)(0) det(I−

#G̃−)
′(0).

Let us define the measure µ−
def
= F−1(det(I −

#G̃−(ω))). Note that this measure has support
on (−∞, 0] and

∫

(−∞,0] udµ−(u) = −i det(I −
#G̃−)

′(0) 6= 0 (finite). Also, equation (6) can
be written as

adj(I − #G̃−(ω))(F̃ (ω)− I)

= (G̃+(ω)− I) det(I − #G̃−(ω)),

or componentwise

(G̃+(ω)− I)ij det(I −
#G̃−(ω))

=

n
∑

k=1

adj(I − #G̃−(ω))ik(F̃ (ω)− I)kj .

If µij
def
= F(adj(I − #G̃−(ω))ik(F̃ (ω) − I)kj),

then, by Lemma 4, µ([x,∞)) ∼
∑n

k=1 adj(I −
#G̃−(0))ikWkj Ȳ (x) as x → ∞. If µ+ij

def
=

F−1(G̃+(ω) − I)ij , then µij = µ+ij ∗ µ−, where
µij , µ+ij , µ−, satisfy the conditions of proposition
1. Thus, by the same proposition,

Ḡ+ij(x)

Ŷ (x)
→

∑n

k=1 adj(I −
#G̃−(0))ikWkj

−i det(I − #G̃−)′(0)
,

as x → ∞, which is tantamount to equation (7).
This finishes the proof of the theorem. 3

Now by combining the previous theorem and
the extension of lemma 3 from [4] we will prove
the following theorem on subexponential asymp-
totics for the Markov-modulated G/G/1 queue.
Let (Jn, An) and (Jn, Cn) be two MMRW such
that (Jn, An) and (Jn, Cn) are conditionally in-
dependent given Jn−1, Jn. {An} and {Cn} are
arrival and service processes, respectively. Let
B be a reverse transition matrix measure of the
MMRW (Jn, An), such that for each i, j ∈ E
B̄ij(x) ∼ Wij Ȳ (x) as x → ∞ and Wij > 0.

Theorem 4 If Y ∈ L, Y1 ∈ S then there exists a
constant c > 0 such that.

IP[Qt > x]
∫∞

x
IP[At > u]du

→ c as x → ∞.

Furthermore, when the Wiener-Hopf factoriza-
tion is explicitly solvable the constant c is explic-
itly computable.

Proof: Componentwise the asymptotic propor-
tionality of the matrix distributions F̂ (x) and
B̂(x) follows from Theorem 1 (i) as x → ∞.
Then, combining Theorems 2, 3, and Lemma 3
the conclusion of the theorem follows. 3

Remark: The assumption Wij > 0 for all
i, j can be removed. The queue distribution is
subexponential as long as at least one measure
Bij is subexponential. For a precise statement of
this result see [15].

Illustration of this remark and the preceding
theorem is given in the following numerical ex-
ample.

Example 2 Consider a constant server queue
with Ct = 1 and two state (say {0, 1}) Markov-
modulated arrivals (source). The transition prob-
abilities for the modulating Markov chain are
p01 = 1/3, p10 = 3/4. When in state 0 the source
is producing zero arrivals, and when in state 1
the source is producing (independent of the pre-
vious state) arrivals according to the distribution
IP[At = 0|Jt = 1] = 0.327144, IP[At = 1|Jt =
1] = 0, and IP[At = i|Jt = 1] = w/i5,w =
18.220859, 2 ≤ i ≤ 350. (Note that these are

5



bounded arrivals.) Thus, according to the previ-
ous theorem (and the remark after it) the queue
length distribution is proportional to 1/i4. The
comparison between the true probabilities and the
approximation c/i4, c = 2.617872 is given in fig-
ure 2.
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Figure 2: Graph of log10 IP[Q = i] versus buffer
size i from Example 2; solid line represents the
true probabilities, and dashed line represents the
approximation 2.617872/i−4.

4 Asymptotics of a Fluid

Flow Queue with Sub-

exponentially Correlated

Arrivals
In this section we construct a class of processes

for which we show that its autocorrelation func-
tion (ac.f.) is subexponential. Furthermore, when
these processes are fed to a fluid flow queue, we
prove the asymptotic proportionality of the queue
length distribution with the arrival process ac.f..
Throughout this section we assume a continuous
time model (of course all the results are valid for
discrete time also).

4.1 Stationary Subexponentially Cor-
related Arrivals

Consider a point process T = {T0 ≤ 0, Tn, n ≥
1} such that Tn − Tn−1, n ≥ 1 are i.i.d. with
subexponential distribution function F . Further,
let Jn, n ≥ 0 be an irreducible aperiodic Markov
Chain with finite state space {1, . . . ,K}, tran-
sition matrix {Pij}, and stationary probability
distribution πi, 1 ≤ i ≤ K. In order to make
this process stationary (see [9], section 9.3), we
choose the residual time at zero until the first
jump to be distributed as an integrated tail of F ,
i.e., F1(t) = IP[T1 ≤ t] = m−1

∫

0,t
F̄(u)du.

A(t)

T0 T1 T2 T3 T4 T5 T6 t

Figure 3: A possible realization of a Markov chain
embedded into a renewal process.

Now we construct the following process:

At = Jn for Tn−1 ≤ t < Tn. (8)

called a Markov Chain Embedded in a Station-
ary Subexponential Renewal Process (MCESSR).
A typical sample path of this process is given
in figure 3. It is well known that under fairly
general conditions a Markov chain converges ex-
ponentially fast to the steady state distribution.
However, the process that we have constructed,
because of the subexponentially distributed so-
journ times, converges with subexponential speed
to its steady state. This is stated in the following
lemma.

Proposition 2 If F, F1 ∈ S, then

(IPi[At = j]− πj)F̄1(t)
−1 → (δij − πj),

as t → ∞, and δij = 1 if i = j and zero otherwise.

Proof: Given in [15] 3

We will illustrate this lemma by the following
example.

Example 3 Let F be a discrete distribution
function with support [1, 1000], IP[T2 − T1 =
1] = 0.186532, and IP[T2 − T1 = i] = w/i5,w =
22.028625, 2 ≤ i ≤ 1000; chose a two state
Markov chain with transition probabilities p01 =
1/3 and p10 = 3/4. Then, the functions

(di,1(t)
def
= (IPi[At = 1] − π1)(F̄1(t)(δi1 − π1))

−1,
i = 0, 1, converge to one as t → ∞, with subex-
ponential rate. This can be clearly seen in figure
4.

Now it is easy to prove that the covariance

function ρ(t)
def
= (IEA0At − (IEA0))

2 of the
MCESSR process satisfies the following asymp-
totic relation. Let Var(J0) > 0 be the variance of
J0.

6
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Figure 4: Functions di,1(t)
def
= (IPi[At = 1] −

π1)(F̄1(t)(δi1 − π1))
−1, i = 0, 1. The graph shows

that di,1(t) → 1 as t → 1.

Theorem 5 If F, F1 ∈ S, then

ρ(t) → Var(J0)F̄1(t),

as t → ∞.

Remark: A nontrivial extension of this theo-
rem and the previous lemma for the case of subex-
ponential semi-Markov processes is given in [15].
Proof: By applying the previous lemma and af-
ter some simple algebraic manipulations we get

(

IEA0At − (IEA0)
2
)

F̄1(t)
−1

=
∑

i,j

aiaj(πiIPi[At = j]− πiπj)F̄1(t)
−1

∼
∑

i,j

aiajπi(δij − πj)

=
∑

i

πia
2
i −

∑

i,j

πiπjaiaj = Var(J0),

as t → ∞. This completes the proof of the theo-
rem. 3

4.2 Subexponential Asymptotics of a
Fluid Flow Queue

Now, we investigate the queue length distribu-
tion of a fluid queue fed with a MCESSR pro-
cess. We assume that both the arrival process At

and the server process Ct are MCESSR processes
embedded into the same renewal process {Tn},
such that when the Markov chain Jn is equal to i,
At = ai ≥ 0 and Ct = ci ≥ 0, Tn ≤ t < Tn+1. In-
tuitively the pair At, Ct represents a fluid queue-
ing model in which At = ai means that the flow
is arriving to the queue with a rate ai and Ct = ci
means that the flow is coming from the queue with
a rate ci. We will calculate the queue length dis-
tribution at the jump times (Palm probability);

Qn ≡ Q(Tn) satisfies the recursion

Qn+1 = (Qn + xJn
∆Tn)

+,

where xi = ai − ci, and ∆Tn = Tn+1 − Tn.
We are now ready to state the following result

on the asymptotic proportionality of the queue
length distribution and its autocorrelation func-
tion. To avoid trivialities we assume that at least
for one i, xi > 0; also V ar(J0) > 0.

Theorem 6 Let the stability condition IExJn
<

0 be satisfied, and for all xi > 0, IP[∆Tn >
t/xi]/Ȳ(t) → wi, as t → ∞, with at least one
wi > 0, and Y, Y1 ∈ S. Then, there exist a posi-
tive constant r such that

IP[Q > t] → r ρ(t),

as t → ∞.

Proof: Follows by straightforward combination
of theorems 4, 5; (more precisely an extension
of theorem 4 mentioned in the remark after it).
3

Remarks: (i) If the distribution function of
∆Tn belongs to the Pareto family the assumption
IP[∆Tn > t/xi] ∼ wiȲ(t),wi > 0 will be satisfied
for all xi > 0. (ii) Taking into account the remark
after the theorem 5 we see that this relationship
holds for the general class of subexponential semi-
Markov arrivals. To the best of our knowledge
this is the first rigorous result of this kind and
generality.

5 Conclusion
For a Markov-modulated random walk with

a negative drift and long-tailed right tail we
have shown that the ascending ladder height ma-
trix distribution is asymptotically proportional
to a long-tailed distribution. This result en-
abled us to generalize a recent result on subex-
ponential asymptotics of a Markov-modulated
M/G/1 queue to subexponential asymptotics of
a Markov-modulated G/G/1 queue. If the ma-
trix Wiener-Hopf factorization is explicitly solv-
able then the asymptotic constant of proportion-
ality is explicitly computable.

We also constructed a general class of pro-
cesses, termed MCESSR, for which the covariance
(autocorrelation) function has a subexponential
tail. Furthermore, when this processes are fed
into a fluid flow queue, the queue length distribu-
tion was proven to be asymptotically proportional
to its autocorrelation function. In short

• (subexp. marginal d.f. + exp. ac.f.)
⇒ (queue distribution is determined by
marginal d.f.),
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• (bounded (exp) marginal d.f. + subexp.
ac.f.) ⇒ (queue distribution is determined
by ac. f.).

When these type of conditions are met in prac-
tice, the above results may lead to an efficient
admission control policy at network multiplexers.
Admission controllers may decide its admission
control policy based on either the marginal dis-
tributions or the autocorrelation functions of the
arrival streams, depending which conditions are
satisfied.
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C. Klüppelberg. Large claims approx-
imations for risk processes in a marko-
vian environment. Stochastic Processes
and their Applications, 54:29–43, 1994.

[5] K. B. Athreya and P. E. Ney. Branching
Processes. Springer-Verlag, 1972.

[6] C. S. Chang. Stability, queue lenght
and delay of deterministic and stochastic
queueing networks. IEEE Transactions
on Automatic Control, 39:913–931, 1994.

[7] V. P. Chistakov. A theorem on sums on
independent positive random variables
and its application to branching random
processes. Theor. Probab. Appl., 9:640–
648, 1964.

[8] Gagan L. Choudury, David M. Lucan-
toni, and Ward Whitt. Squeezing the
most of atm. to appear in IEEE Trans.
on Communications, 1995.

[9] E. Cinlar. Introduction to Stochastic
Processes. Prentice-Hall, 1975.

[10] A. I. Elwalid and D. Mitra. Effective
bandwidth of general markovian traffic
sources and admission control of high
speed networks. IEEE/ACM Trans. on
Networking, 1(3):329–343, June 1993.

[11] M. W. Garett and W. Willinger. Anal-
ysis, modeling and generation of self-
similar vbr video traffic. In SIG-
COMM’94, pages 269–280, 1994.

[12] P. V. Glynn and W. Whitt. Logarithmic
asymptotics for steady-state tail proba-
bilities in a single-server queue. Studies
in Appl. Prob., 1994.

[13] R. Guerin, H. Ahmadi, and
M. Nagshineh. Equivalent capacity and
its application to bandwidth allocation
in high-speed networks. IEEE J. Select.
Areas Commun., 9:968–981, 1991.
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