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Abstract: Consider distributional fixed point equations of the form

REf(Ci,Ri,1 <i < N),
where f(-) is a possibly random real valued function, N € {0,1,2,3,...} U {oo}, {C;}ien are real

valued random weights and {R;};cn are iid copies of R, independent of (N, C1,Co,...); 2 represents
equality in distribution. In the recent paper [I0], an Implicit Renewal Theorem was developed that
enables the characterization of the power tail asymptotics of the solutions R to many equations that
fall into this category. In this paper we complement the analysis in [I0] to provide the corresponding
rate of convergence.

AMS 2000 subject classifications: Primary 60H25; secondary 60F10, 60K05, 60J80.

Keywords and phrases: Implicit renewal theory; weighted branching processes; multiplicative cas-
cades; rate of convergence; smoothing transforms; stochastic recursions; power laws; large deviations;
stochastic fixed point equations.

1. Introduction

Distributional fixed point equations of the form
RE f(Ci,Ri,1<i < N), (1.1)

where f(-) is a possibly random real-valued function, N € NU {oco}, N = {0,1,2,3,...}, {C;}ien are real-
valued random weights and {R;};en are iid copies of R, independent of (N,Cy,Cs,...), appear in many
applications in applied probability, e.g., analysis of algorithms and statistical physics; see [I, [6, RHIT] for
more details.

As previously stated in the abstract, the work in [I0] provides an Implicit Renewal Theorem (Theorem 3.4)
that enables the characterization of the power tail behavior of the solution R to (1.1f). The results in [10]
fully generalize the Implicit Renewal Theorem of Goldie (1991) [7], which was derived for equations of the

form R 2 f(C, R) (equivalently N =1 in our case), to recursions (fixed point equations) on trees. The work
in [7], for the N =1 case, also includes the rate of convergence in the Implicit Renewal Theorem. Similarly,
in this paper we complement the main theorem in [I0] by deriving the corresponding convergence rate.

We provide here a matrix form derivation of Corollary 3.4 in [7] that seamlessly extends to trees and that
treats both the nonnegative and real-valued weights simultaneously. Our main theorem, Theorem can
be applied to various multiplicative max-plus recursions, as it was done in [9, [10]. The most important
application is the multiplicative branching recursion

N
RZ2 Z CiR; + Q,
i=1
where N € NU {oo}, {C;}ien are real-valued random weights, @ is a real-valued random variable, and
{R;}ien are iid copies of R, independent of (@, N,Cy,Cs,...), which has been studied extensively in the
prior literature, e.g., see [2H4] and the references therein.
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2. Weighted Branching Tree

We use the model from [10] for defing a weighted branching tree. First we construct a random tree 7. We
use the notation @ to denote the root node of 7, and A,,, n > 0, to denote the set of all individuals in the nth
generation of 7, Ay = {0}. Let Z,, be the number of individuals in the nth generation, that is, Z, = |A,|,

where | - | denotes the cardinality of a set; in particular, Zy = 1.

Next, let Ny = {1,2,3,...} be the set of positive integers and let U = (J;—,(N4)* be the set of all finite
sequences i = (i1, 2, ...,i,) € U, where by convention N = {0} contains the null sequence §). To ease the
exposition, for a sequence i = (41,12, ...,i;) € U we write ijn = (i1,42,...,%,), provided k > n, and ij0 =0
to denote the index truncation at level n, n > 0. Also, for i € A; we simply use the notation i = i1, that is,
without the parenthesis. Similarly, for i = (i1,...,4,) we will use (i,5) = (i1,...,in,J) to denote the index

concatenation operation, if i = ), then (i, ;) = j.

We iteratively construct the tree as follows. Let N be the number of individuals born to the root node (),
Ny = N, and let {N;}ieu be iid copies of N. Define now

Ay ={ieN:1<i<N}, A, ={(G,in)€eU:i€ 1,1 <i, < N;}. (2.1)
It follows that the number of individuals Z,, = |A4,]| in the nth generation, n > 1, satisfies the branching

recursion
Ly = E N;.
i€A, -1

Now, we construct the weighted branching tree 7¢ as follows. Let {(Ni, C(i,1), Ci,2), - - - ) yieu be a sequence
of iid copies of (N,Cq,Cs,...). Ny determines the number of nodes in the first generation of of 7 according
to , and each node in the first generation is then assigned its corresponding vector (Ny, C; 1y, C(i2), - - )
from the iid sequence defined above. In general, for n > 2, to each node i € A,,_; we assign its corresponding
(Ni, Ci,1), Ci,2) - - - ) from the sequence and construct A, = {(i,i,) € U :i€ A,_1,1 <4, < Nj}. For each
node in 7o we also define the weight Il(;, . ; ) via the recursion

IL;, =C; Oeiy,oin) = Clin i) Winsin_1)s 122,

1

where II = 1 is the weight of the root node. Note that the weight II;, ;) is equal to the product of all the
weights C(.y along the branch leading to node (i1, ...,%,), as depicted in Figure
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3. Rate of convergence in the Implicit Renewal Theorem on trees

In this section we present an extension of Corollary 3.4 in [7]. Similarly as in [I0], the key observation that
facilitates this generalization is the following lemma which shows that a certain measure on a tree is a matrix
product measure; its proof can be found in [T0]. For the case of positive weights, a similar observation was
made for a scalar measure in [5]. Throughout the paper we use the standard convention 0%log0 = 0 for all
a> 0.

Let F = (F};) be an n X n matrix whose elements are finite nonnegative measures concentrated on R. The
convolution F*G of two such matrices is the matrix with elements (FxG);; = Sorey FiexGrjy i, =1,...,n,
where Fjj, * G is the convolution of individual measures.

Definition 3.1. A matriz renewal measure is the matriz of measures

U= i F*k,
k=0

where F*! = F, F*k+1) — 4 F = F « F*F | F*0 = 5,1, & is the point measure at 0, and I is the identity
n X n matriz.

Lemma 3.2. Let To be the weighted branching tree defined by the vector (N, Cy,Ca, ... ), where N € NU{oo}
and the {C;} are real-valued. For anyn € N andi € A, let V; = log |[IL;| and X; = sgn(Il;); Vp =0, Xy = 1.
For a > 0 define the measures

piH (dt) = e E [Z (Xi=LVie dt)] :
icA,

pl ) (dt) = e*'E

Y 1Xi=-LVe dt)] ,

icA,

forn=0,1,2,..., and let n+(dt) = ,ugi)(dt). Suppose that E [Zivzl |C:|* log |C’i|} >0and E [Z@Z\; |C’i|a} =

1. Then, (ny +n-)(:) is a probability measure on R that places no mass at —oo, and has mean

oo [ee] N
[ untdw+ [ un@w=£ | Y16 0glc
j=1

—00 —0Q0

Furthermore, if we let p, = (,ugf),,u(_)), e=(1,0) and F = (7” 77)’ then

n—- "N+
n 17 *n
un=(u5f),u5f))=(1,0)(+ ) — P, (3.1)
n- 1N+

where F*™ denotes the nth matriz convolution of F with itself.

In what follows, v(s) = [ e*v(ds) denotes the Laplace transform of measure v. If F is a matrix of

measures, then f‘(s) is the corresponding matrix of Laplace transforms.

Assumption 3.3. Suppose the matrix of measures

Fo (m 77—)7
- T+
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satisfies that for some € > 0, the equation

(1 =74 (8))* = (A-(s))" = 0

has no roots different from zero on the strip {s € C: 0 < Rs < ¢}, and that there exists an integer m > 1

such that the Laplace transform of the singular part of F*™, denoted f‘:m(ﬂ) has spectral radius strictly
smaller than one for 6 € {0,¢}.

Theorem 3.4. Let (N,C4,Cy, i be a random vector, where N € NU {oco} and the {C;} are real-valued.
3

Suppose F satisfies Assumption (3.5 for some € > 0. Assume further that 0 < E [Eévzl |C;]* log |Cj|} < 00,

E [Z;Vﬂ \Cj|°‘} =1, F [Z;\Izl |C1™ (log|Cj|)2} <oo, E [Zj\;l \C'j|'7] < o0 for some 0 < v < «, and that R
is independent of (N,Cy,Ca,...).

a) If {C;} > 0 a.s., E[((R)T)?] < oo for any 0 < B < a, and for o € {0, ¢},
9] N
/ P(R > t) Z L(CjR > t)| [t*7Ldt < oo, (3.2)
0 j=1

or, respectively, E[((R7)?] < oo for any 0 < B < «, and for o € {0, ¢},

N

o0
/ PR<-t)—E Z L(C;R < —t)| [t 1dt < oo, (3.3)
0 e
then
[t*P(R>t)—Hy|=0(t"°), t — o0,
or, respectively,
t*P(R< —t)—H_|=0(t"°), t — o0,
where 0 < Hy < oo are given by
1 o0 al
Hy = ~ / v P(EDR > 0) = E | Y 1((+1)C;R > v)| | dv.
B[, (G5l 10g |Gy =

b) If P(C; < 0) > 0 for some j > 1, E[|R|’] < oo for any 0 < B < «a, and both (3.2)) and (3.3)) are
satisfied, then

[t*P(R>t)—H|=0(t"°) and [t*P(R<—t)—H|=0(t"°), t — oo,

where 0 < H = (Hy + H_)/2 < oo is given by

N
1 /°° .
H= v* P(|R| > v) — E 1(|C;R| > v)| | dv.
N
28 [, |5l o || =

Remark 3.5. (i) Note that when N = 1, then (3.2)) and (3.3)) only need to hold for o = €, since in this case
[e'S) 1 [eS)
/ |P(£R > t) — P(+CR > t)|t*'dt < / t*~dt +/ |P(£R > t) — P(+CR > t)| t*T*1dt < oo,
0 0 1

which is equivalent to conditions (3.7) and (3.9) in Theorems 3.2 and 3.3 of [l]. Furthermore, for N = 1,
our condition E [C*(log C)?] < oo is slightly weaker than E[C**¢] < oo in [7].
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Lemma 3.6. Let a,b >0 and 0 < H < co. Suppose that for some ¢ > 0

ast — oco. Then,

as t — o0.

t
‘t_b/ b IP(R > v)dv — H| = o (t7°)
0

t*P(R>t)— H|=0(t"°)

Proof. Fix § € (0,1/2) and note that, as t — oo,

1 a+b _ 1 (1+5)t
P(R > t)bt>Tt. a+0) -1 > / w1 P(R > v) dv
a+b ¢
(1+48)t
= ((1+0)t) <((1 + 5)t)_b/ et IP(R > v) dv — H)
0
t
— b (t‘b/ T P(R > v) dv — H) + H((1+6)t)> — Htb
0
=Ht" (1+0)"—1)+o(t").
Similarly,
_ _ S\a+b t
P(R > t)bt>T?. 1-(-9 < / w1 P(R > v) dv
a+b (1-8)t

It follows that

—((1 =&)t)° (((1 —o)t)~° /ué)t w1 P(R > v) dv — H>

0

t
+tb (t_b/ bt P(R > v) dv — H) —H((1 -0t 4+ Ht
0

=Ht"(1-(1-0)") +o(t").

(a+b)((146)" —
H( b

(T+ o)+ —

1)1) _1) +o0(t™°) < P(R>t)t" H<H< b1 — (1= )70 —1) +o(t™).

Now choose § = t2¢ and use the fact that (1 £6)¢ =1+ cd + O(6%) as § — 0 to obtain

(a+b)((146)" -

1) - (a4 b)(b6 + O(6%)) {— 1+ 0(0)

Ao -1 ' h@ibero@) | “itom 0@ =e()

as t — oo.

Proof of Theorem [3.4 Define the measures 7, and 7_ according to Lemma [3.2] and let

g4 (t) = e (P(R >e)—F

N
ZlCR>e
Jj=1

)
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N
g-(t) =e | P(R < —€) Z (C;R< —€e"| |,

and r(t) = eatP(R > eh).

Fix b > € > 0 and define the operator

t

f(t) = / be =) £ (u) du.

—o0
Now, the same arguments used in the proof of Theorem 3.4 in [10], lead to

(t) =e(Uxg) (1), (3.4)
where e = (1L0), § = (3.5-)", U = S, B and B = (10 1),
- M+
Next, we proceed to verify the assumptions of Theorem 2 in [12].

Define ¢(t) = e’ and note that

1 £ lim Lg <p(t) =0 and T9 £ lim Lgtp(t) =

t——o0 t t—oo t

We will now show that provided the assumptions (3.2)) and (3.3)) hold, g satisfies the following properties:

a) g € L1(R)

b) g(t)p(t) € Loo(R)

c) g(t)e(t) = 0 as |t| — oo outside of a set of Lebesgue measure zero

d) o(t) [ |g(z)|dz — 0 as t — co and (¢ )fioo |g(z)|dx — 0 as t — —o0.

For part a), note that by (3.2) and (3.3]) we know that g+ € Li(R), so by Lemma 9.2 from [7], g+ is directly
Riemann integrable, and in particular, g € Li(R).

For part b), note that
t
p - € + u
g Op(t) =be [ g, )

t N
= be—b”st*/ et | P(£1)R > €") — E | Y 1((£1)C;R > e)| | du
oo i

t

e N
= be—btﬂt*/ WP P(EDR > 0) — E | ) 1(£1)CR > v) | | do.
0
j=1

Since for 0 < v < et we have v? < e(®=9yc it follows that

t

e N
sup | g+ (t)p(t)| < supb/ v T P(£D)R > v) - F Zl +1)C;R > v) | |dv < oo,
>0 t>0 Jo j=1

by (3.2)) and (3.3)). For the supremum over the negative reals note that since 0 < v < e?, then v® < e, hence

t

e N
sup |g+ (t)p(t)] < supb/ v* M P(£1)R>v) — F Zl (£1)CjR > v)| | dv < 0.
<0 t<o Jo =
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To verify c) for t — oo, note that if
N
/ VT HP((EDR > 0) = E | Y 1((#1)C5R > v) | | dv < oo,
0 =

then we trivially have lim;—, o g+ (t)(t) = 0; if it is infinite we can apply L’Hoépital rule to obtain

1((£1)C;R > ¢ )H ¢

be(bra—1)t ‘P((il)R >et)— B [zj )
lim g4 (t)e(t) < lim
t—o00 t—o0 (b — e)e(b e)t
b N
= lim ¢t | P(£1)R > e') = E | Y 1((£1)C;R > €' ||,

b— €t

Jj=1

which is zero by (3.2) and (3.3). That lim;—, . g+ (¢)p(¢) = 0 follows from the estimates given above.
And for part d) note that for ¢t > 0,

[ee} o) x N
@(t)/t |§i(x)|dx:e€t/t be—bf/_ et [ p(1)R > ¢¥) — B {Z WEDCR > )| | du| da

j=1

Jj=1

o0 xr N
< beet/ e_b'r/ et P((£1)R > e*) — E [Z 1((£1)C;R > e*) | | dudx
t —o0

o0 oo N
= beet/ / e tTetTIUIP((L1)R > e) — E [Z 1((£1)CjR > €") | | dz du
tVu

Jj=1
oo N
= e‘t/ e btV bt I p((L1)R > %) — E 1(£1)CjR > e") | | du
oo =

t

e N
_ e—(b—e)t/ W P(EDR > 0) — B [ Y 1((F1)CR > ) | | d
0 j=1

o] N
+e6t/ v P((£)R > v) = E | Y 1((£1)CR > v) || dv
e

t

j=1
et/2 N
e—(b—e)t/ v P(#1)R > v) — E Zl (£FD)C;R > v) | | dv (3.5)
0 Jj=1
oo N
+/ vt P((EDR > 0) — B | Y 1(#)CR > 0) | | dv, (3.6)
et/2
7j=1

where in the last inequality we split the range of integration of the first integral into [0, e*/?] and [e!/2, ¢t]
and used the inequalities v® < e(®=9ty¢ for /2 < v < et and et < v¢ for v > €. The integral in (3.6))
converges to zero as t — oo since it is the tail of a finite integral; the integral in (3.5 is bounded by

N
s [ genn e[S || a
0 Jj=1
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which also converges to zero as t — co. Similarly, for ¢t < 0,

t N
go(t)/ |G () |dx<b/ / et \P((£1)R > ") — E | Y 1((£1)CR > e") | | dudx

— 00

j=1
¢ N
= / b+ P((£1)R > et Z (£1)C;R > €*) (e_bu . e_bt) du

t

e N
= / Pty =b — e |P((£1)R > v) — E Z 1((£1)CjR > v) || dv
0 =

e N
g/ *HP((EDR >v) = E | > 1(#1)CjR > ) | | dv— 0
0 J=1

as t — —oo.
We split the rest of the proof into the two different cases.
Case a): C; > 0 for all 1.

For this case we have n_ = 0, from where it follows that
(e 0\ Sy
eU = (1,0 * = (1,0 =17+ > *0],
o (5 ) 00 (R g ) = (S

which in turn implies that
oo
Z (g4 * 77+
k=0

We can then think of this case as a standard one dimensional problem by renaming F = n; and U =
Y omi¥. The “matrix” F(R) is clearly irreducible and its spectral radius p[F(R)] = 1 (since n; is a
probability measure in this case). Also,

/Oo 2P (dz) = /oo o (dz) = Z 10517 10g |G| 2 e (0, 00).

—0o0 —o0 j=1
We now note that

/ (1+ ) (@) (de) = / <1+|x“fE[Z log|ci|edx>]

— 0 —o0 =

N roo

=F Z/ (1+ |z])?e**1(log|C;| € dw)] (by Fubini’s theorem)
N

=B |>_1CGi[* (1+ |log|Cill)”
i=1

which is finite by assumption. This observation, by the remarks preceding Theorem 2 in [I2], implies that
T?F € S(y), Where for any finite complex-valued measure v, Tv is defined as the o—finite measure with
density v(z;v) = v((z,0)) for z > 0 and v(x v) & —v((—o0,x]) for x < 0, and S(y) is the collection of all
complex-valued measures  such that [~ o(z)|r|(dz) < oo, w1th || the total variation of .
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Then, by Theorem 2 in [12],

o 1 [, -
)= [ s -

= o)

y L[>
Uxgy(t) - */ g+ (z)dx
K Jo

as t — oo.

To derive the result for P(R < —t), follow the same steps leading to (3.4) in the proof of Theorem 3.4 in
[T0] but starting with a telescoping sum for P(—R > e') instead, and defining r(t) = e** P(R < —e'). Using
the same arguments given above then gives

1/°°

7(t) — — J—(x)dx
(t) s (z)
as t — oo.

We have thus shown that

¢
‘/ be ") P(+R > ¢%)ds — f/ / be @ g. (s) ds du

/ b LP(£R > v)dv — ;/ g+(s)ds

— 0 (efet)

_ ‘U*g_(t)—i/ooog_(x)dx

— 00

—0 (e—et) ’

_bt/ bt 1P(£R > v)dv — Hy
0

as t — 0o, where

00 N
:7/ ot [ PR > ) = B[S 1((#1)CR > )| | dt
j=1

1 [ ol
=7/ v [ P(ER > 0) = E | > 1(£1)C;R > v) | | do.
K Jo

j=1

Therefore, by Lemma we obtain

[t*P(xR >t)— Hy| =0 (t7°)
as t — oo.
Case b): P(C; < 0) > 0 for some j > 1.
For this case we have that n_ is nonzero. Also, note that the matrix
B[Sl =1)] B[S 160 0x =—1>} ( g 1_q>
EL (G101 =-1] BT, 10110 = 1)] l-a q

(1>

F(R) =

is irreducible and has eigenvalues {1,2¢ — 1}, and therefore spectral radius p[F(R)] = 1. Moreover, (1,1)
and (1,1)7 are left and right eigenvalues, respectively, of F(R) corresponding to eigenvalue one, and by

assumption,

(1,1)/0o +F(dx) G) —9 (/oo o (dx) +/°O xn(dw)) — 928 ZNj 1051 og |y | = 2 € (0, 00).

—00 —00 —o0 =1
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Also, similarly as in the nonnegative case, we have

ZICIC‘ (1+ |log|Cil)* 1(X; = +1)

=1

)

0
/ (1 + |) 20 () (der) =

— 00

which is finite by assumption. And from the remarks preceding Theorem 2 in [12], we have that T%F € S(yp).
Then, by Theorem 2 in [12],

T o0
]U*g@) e O

= ’U * g(t) — i <foo§(§+(u)

as t — oo. Hence, it follows from 7(¢) = €U * g(¢) that

2/ Z (5 (u) + - (w)du

F(t) —

*bt/ w1 P(R > v)dv — %(H} + H)‘ =o(e”)
0

as t — oo. Let H = (Hy + H_)/2, then by Lemma [3.6]
t*P(R>t)— H|=0(t"°)

as t — oo.

To derive the result for P(R < —t) simply start by defining r(¢t) = e P(—R > e'), which in this case leads
to the same result as above, that is,

[t*P(R< —t)— H|=0(t°)

as t — oo.

Finally, we note, by using the representations for H; and H_ from Case a), that

N
1 oo
= — v*" ' | P(R > ) ZlOR>’U dv
2u =
1 o[> al
+E v* ' P(R< —v)—E ZICR<—’U) dv
j=1
1 o[> N
= % vt [ P(|R| > v) Zl |C;R| > v)| | dv.
Jj=1
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