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Abstract: Consider distributional fixed point equations of the form

R
D
= f(Ci, Ri, 1 ≤ i ≤ N),

where f(·) is a possibly random real valued function, N ∈ {0, 1, 2, 3, . . . } ∪ {∞}, {Ci}i∈N are real

valued random weights and {Ri}i∈N are iid copies of R, independent of (N,C1, C2, . . . );
D
= represents

equality in distribution. In the recent paper [10], an Implicit Renewal Theorem was developed that
enables the characterization of the power tail asymptotics of the solutions R to many equations that
fall into this category. In this paper we complement the analysis in [10] to provide the corresponding
rate of convergence.
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1. Introduction

Distributional fixed point equations of the form

R
D
= f(Ci, Ri, 1 ≤ i ≤ N), (1.1)

where f(·) is a possibly random real-valued function, N ∈ N ∪ {∞}, N = {0, 1, 2, 3, . . . }, {Ci}i∈N are real-
valued random weights and {Ri}i∈N are iid copies of R, independent of (N,C1, C2, . . . ), appear in many
applications in applied probability, e.g., analysis of algorithms and statistical physics; see [1, 6, 8–11] for
more details.

As previously stated in the abstract, the work in [10] provides an Implicit Renewal Theorem (Theorem 3.4)
that enables the characterization of the power tail behavior of the solution R to (1.1). The results in [10]
fully generalize the Implicit Renewal Theorem of Goldie (1991) [7], which was derived for equations of the

form R
D
= f(C,R) (equivalently N ≡ 1 in our case), to recursions (fixed point equations) on trees. The work

in [7], for the N ≡ 1 case, also includes the rate of convergence in the Implicit Renewal Theorem. Similarly,
in this paper we complement the main theorem in [10] by deriving the corresponding convergence rate.

We provide here a matrix form derivation of Corollary 3.4 in [7] that seamlessly extends to trees and that
treats both the nonnegative and real-valued weights simultaneously. Our main theorem, Theorem 3.4 can
be applied to various multiplicative max-plus recursions, as it was done in [9, 10]. The most important
application is the multiplicative branching recursion

R
D
=

N∑
i=1

CiRi +Q,

where N ∈ N ∪ {∞}, {Ci}i∈N are real-valued random weights, Q is a real-valued random variable, and
{Ri}i∈N are iid copies of R, independent of (Q,N,C1, C2, . . . ), which has been studied extensively in the
prior literature, e.g., see [2–4] and the references therein.
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Fig 1. Weighted branching tree

2. Weighted Branching Tree

We use the model from [10] for defing a weighted branching tree. First we construct a random tree T . We
use the notation ∅ to denote the root node of T , and An, n ≥ 0, to denote the set of all individuals in the nth
generation of T , A0 = {∅}. Let Zn be the number of individuals in the nth generation, that is, Zn = |An|,
where | · | denotes the cardinality of a set; in particular, Z0 = 1.

Next, let N+ = {1, 2, 3, . . . } be the set of positive integers and let U =
⋃∞
k=0(N+)k be the set of all finite

sequences i = (i1, i2, . . . , in) ∈ U , where by convention N0
+ = {∅} contains the null sequence ∅. To ease the

exposition, for a sequence i = (i1, i2, . . . , ik) ∈ U we write i|n = (i1, i2, . . . , in), provided k ≥ n, and i|0 = ∅
to denote the index truncation at level n, n ≥ 0. Also, for i ∈ A1 we simply use the notation i = i1, that is,
without the parenthesis. Similarly, for i = (i1, . . . , in) we will use (i, j) = (i1, . . . , in, j) to denote the index
concatenation operation, if i = ∅, then (i, j) = j.

We iteratively construct the tree as follows. Let N be the number of individuals born to the root node ∅,
N∅ = N , and let {Ni}i∈U be iid copies of N . Define now

A1 = {i ∈ N : 1 ≤ i ≤ N}, An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}. (2.1)

It follows that the number of individuals Zn = |An| in the nth generation, n ≥ 1, satisfies the branching
recursion

Zn =
∑

i∈An−1

Ni.

Now, we construct the weighted branching tree TC as follows. Let {(Ni, C(i,1), C(i,2), . . . )}i∈U be a sequence
of iid copies of (N,C1, C2, . . . ). N∅ determines the number of nodes in the first generation of of T according
to (2.1), and each node in the first generation is then assigned its corresponding vector (Ni, C(i,1), C(i,2), . . . )
from the iid sequence defined above. In general, for n ≥ 2, to each node i ∈ An−1 we assign its corresponding
(Ni, C(i,1), C(i,2), . . . ) from the sequence and construct An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}. For each
node in TC we also define the weight Π(i1,...,in) via the recursion

Πi1 = Ci1 , Π(i1,...,in) = C(i1,...,in)Π(i1,...,in−1), n ≥ 2,

where Π = 1 is the weight of the root node. Note that the weight Π(i1,...,in) is equal to the product of all the
weights C(·) along the branch leading to node (i1, . . . , in), as depicted in Figure 1.
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3. Rate of convergence in the Implicit Renewal Theorem on trees

In this section we present an extension of Corollary 3.4 in [7]. Similarly as in [10], the key observation that
facilitates this generalization is the following lemma which shows that a certain measure on a tree is a matrix
product measure; its proof can be found in [10]. For the case of positive weights, a similar observation was
made for a scalar measure in [5]. Throughout the paper we use the standard convention 0α log 0 = 0 for all
α > 0.

Let F = (Fij) be an n × n matrix whose elements are finite nonnegative measures concentrated on R. The

convolution F∗G of two such matrices is the matrix with elements (F∗G)ij ,
∑n
k=1 Fik∗Gkj , i, j = 1, . . . , n,

where Fik ∗Gkj is the convolution of individual measures.

Definition 3.1. A matrix renewal measure is the matrix of measures

U =

∞∑
k=0

F∗k,

where F∗1 = F, F∗(k+1) = F∗k ∗ F = F ∗ F∗k, F∗0 = δ0I, δ0 is the point measure at 0, and I is the identity
n× n matrix.

Lemma 3.2. Let TC be the weighted branching tree defined by the vector (N,C1, C2, . . . ), where N ∈ N∪{∞}
and the {Ci} are real-valued. For any n ∈ N and i ∈ An, let Vi = log |Πi| and Xi = sgn(Πi); V∅ ≡ 0, X∅ ≡ 1.
For α > 0 define the measures

µ(+)
n (dt) = eαtE

[∑
i∈An

1(Xi = 1, Vi ∈ dt)

]
,

µ(−)
n (dt) = eαtE

[∑
i∈An

1(Xi = −1, Vi ∈ dt)

]
,

for n = 0, 1, 2, . . . , and let η±(dt) = µ
(±)
1 (dt). Suppose that E

[∑N
i=1 |Ci|α log |Ci|

]
≥ 0 and E

[∑N
i=1 |Ci|α

]
=

1. Then, (η+ + η−)(·) is a probability measure on R that places no mass at −∞, and has mean

∫ ∞
−∞

u η+(du) +

∫ ∞
−∞

u η−(du) = E

 N∑
j=1

|Cj |α log |Cj |

 .
Furthermore, if we let µn = (µ

(+)
n , µ

(−)
n ), e = (1, 0) and F =

(
η+ η−
η− η+

)
, then

µn = (µ(+)
n , µ(−)

n ) = (1, 0)

(
η+ η−
η− η+

)∗n
= eF∗n, (3.1)

where F∗n denotes the nth matrix convolution of F with itself.

In what follows, ν̂(s) =
∫∞
−∞ esxν(ds) denotes the Laplace transform of measure ν. If F is a matrix of

measures, then F̂(s) is the corresponding matrix of Laplace transforms.

Assumption 3.3. Suppose the matrix of measures

F =

(
η+ η−
η− η+

)
,
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satisfies that for some ε > 0, the equation

(1− η̂+(s))
2 − (η̂−(s))

2
= 0

has no roots different from zero on the strip {s ∈ C : 0 ≤ Rs ≤ ε}, and that there exists an integer m ≥ 1

such that the Laplace transform of the singular part of F∗m, denoted F̂∗ms (θ) has spectral radius strictly
smaller than one for θ ∈ {0, ε}.

Theorem 3.4. Let (N,C1, C2, . . . ) be a random vector, where N ∈ N ∪ {∞} and the {Ci} are real-valued.

Suppose F satisfies Assumption 3.3 for some ε > 0. Assume further that 0 < E
[∑N

j=1 |Cj |α log |Cj |
]
< ∞,

E
[∑N

j=1 |Cj |α
]

= 1, E
[∑N

j=1 |Cj |α (log |Cj |)2
]
<∞, E

[∑N
j=1 |Cj |γ

]
<∞ for some 0 ≤ γ < α, and that R

is independent of (N,C1, C2, . . . ).

a) If {Ci} ≥ 0 a.s., E[((R)+)β ] <∞ for any 0 < β < α, and for σ ∈ {0, ε},

∫ ∞
0

∣∣∣∣∣∣P (R > t)− E

 N∑
j=1

1(CjR > t)

∣∣∣∣∣∣ tα+σ−1dt <∞, (3.2)

or, respectively, E[((R−)β ] <∞ for any 0 < β < α, and for σ ∈ {0, ε},

∫ ∞
0

∣∣∣∣∣∣P (R < −t)− E

 N∑
j=1

1(CjR < −t)

∣∣∣∣∣∣ tα+σ−1dt <∞, (3.3)

then
|tαP (R > t)−H+| = o

(
t−ε
)
, t→∞,

or, respectively,
|tαP (R < −t)−H−| = o

(
t−ε
)
, t→∞,

where 0 ≤ H± <∞ are given by

H± =
1

E
[∑N

j=1 |Cj |α log |Cj |
] ∫ ∞

0

vα−1

P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

 dv.

b) If P (Cj < 0) > 0 for some j ≥ 1, E[|R|β ] < ∞ for any 0 < β < α, and both (3.2) and (3.3) are
satisfied, then

|tαP (R > t)−H| = o
(
t−ε
)

and |tαP (R < −t)−H| = o
(
t−ε
)
, t→∞,

where 0 ≤ H = (H+ +H−)/2 <∞ is given by

H =
1

2E
[∑N

j=1 |Cj |α log |Cj |
] ∫ ∞

0

vα−1

P (|R| > v)− E

 N∑
j=1

1(|CjR| > v)

 dv.

Remark 3.5. (i) Note that when N ≡ 1, then (3.2) and (3.3) only need to hold for σ = ε, since in this case∫ ∞
0

|P (±R > t)− P (±CR > t)| tα−1dt ≤
∫ 1

0

tα−1dt+

∫ ∞
1

|P (±R > t)− P (±CR > t)| tα+ε−1dt <∞,

which is equivalent to conditions (3.7) and (3.9) in Theorems 3.2 and 3.3 of [7]. Furthermore, for N ≡ 1,
our condition E

[
Cα(logC)2

]
<∞ is slightly weaker than E[Cα+ε] <∞ in [7].
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Lemma 3.6. Let α, b > 0 and 0 ≤ H <∞. Suppose that for some ε > 0∣∣∣∣t−b ∫ t

0

bvα+b−1P (R > v)dv −H
∣∣∣∣ = o

(
t−ε
)

as t→∞. Then,
|tαP (R > t)−H| = o

(
t−ε
)

as t→∞.

Proof. Fix δ ∈ (0, 1/2) and note that, as t→∞,

P (R > t)btα+b · (1 + δ)α+b − 1

α+ b
≥
∫ (1+δ)t

t

bvα+b−1P (R > v) dv

= ((1 + δ)t)b

(
((1 + δ)t)−b

∫ (1+δ)t

0

bvα+b−1P (R > v) dv −H

)

− tb
(
t−b
∫ t

0

bvα+b−1P (R > v) dv −H
)

+H((1 + δ)t)b −Htb

= Htb
(
(1 + δ)b − 1

)
+ o

(
tb−ε

)
.

Similarly,

P (R > t)btα+b · 1− (1− δ)α+b

α+ b
≤
∫ t

(1−δ)t
bvα+b−1P (R > v) dv

= −((1− δ)t)b
(

((1− δ)t)−b
∫ (1−δ)t

0

bvα+b−1P (R > v) dv −H

)

+ tb
(
t−b
∫ t

0

bvα+b−1P (R > v) dv −H
)
−H((1− δ)t)b +Htb

= Htb
(
1− (1− δ)b

)
+ o

(
tb−ε

)
.

It follows that

H

(
(α+ b)((1 + δ)b − 1)

b((1 + δ)α+b − 1)
− 1

)
+ o

(
t−ε
)
≤ P (R > t)tα −H ≤ H

(
(α+ b)

(
1− (1− δ)b

)
b(1− (1− δ)α+b)

− 1

)
+ o

(
t−ε
)
.

Now choose δ = t−2ε and use the fact that (1± δ)c = 1± cδ +O(δ2) as δ → 0 to obtain

(α+ b)((1± δ)b − 1)

b((1± δ)α+b − 1)
− 1 =

(α+ b)(bδ +O(δ2))

b((α+ b)δ +O(δ2))
− 1 =

1 +O(δ)

1 +O(δ)
− 1 = O(δ) = o

(
t−ε
)

as t→∞.

Proof of Theorem 3.4. Define the measures η+ and η− according to Lemma 3.2 and let

g+(t) = eαt

P (R > et)− E

 N∑
j=1

1(CjR > et)

 ,
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g−(t) = eαt

P (R < −et)− E

 N∑
j=1

1(CjR < −et)

 ,

and r(t) = eαtP (R > et).

Fix b > ε > 0 and define the operator

f̆(t) =

∫ t

−∞
be−b(t−u)f(u) du.

Now, the same arguments used in the proof of Theorem 3.4 in [10], lead to

r̆(t) = e (U ∗ ğ) (t), (3.4)

where e = (1, 0), ğ = (ğ+, ğ−)T , U =
∑∞
k=0 F∗k, and F =

(
η+ η−
η− η+

)
.

Next, we proceed to verify the assumptions of Theorem 2 in [12].

Define ϕ(t) = eεt
+

and note that

r1 , lim
t→−∞

logϕ(t)

t
= 0 and r2 , lim

t→∞

logϕ(t)

t
= ε.

We will now show that provided the assumptions (3.2) and (3.3) hold, ğ satisfies the following properties:

a) ğ ∈ L1(R)
b) ğ(t)ϕ(t) ∈ L∞(R)
c) ğ(t)ϕ(t)→ 0 as |t| → ∞ outside of a set of Lebesgue measure zero

d) ϕ(t)
∫∞
t
|ğ(x)|dx→ 0 as t→∞ and ϕ(t)

∫ t
−∞ |ğ(x)|dx→ 0 as t→ −∞.

For part a), note that by (3.2) and (3.3) we know that g± ∈ L1(R), so by Lemma 9.2 from [7], ğ± is directly
Riemann integrable, and in particular, ğ ∈ L1(R).

For part b), note that

ğ±(t)ϕ(t) = be−bt+εt
+

∫ t

−∞
ebug±(u)du

= be−bt+εt
+

∫ t

−∞
e(b+α)u

P ((±1)R > eu)− E

 N∑
j=1

1((±1)CjR > eu)

 du

= be−bt+εt
+

∫ et

0

vb+α−1

P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

 dv.

Since for 0 ≤ v ≤ et we have vb ≤ e(b−ε)tvε, it follows that

sup
t≥0
|ğ±(t)ϕ(t)| ≤ sup

t≥0
b

∫ et

0

vα+ε−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv <∞,
by (3.2) and (3.3). For the supremum over the negative reals note that since 0 ≤ v ≤ et, then vb ≤ ebt, hence

sup
t<0
|ğ±(t)ϕ(t)| ≤ sup

t<0
b

∫ et

0

vα−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv <∞.
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To verify c) for t→∞, note that if

∫ ∞
0

vα+ε−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv <∞,
then we trivially have limt→∞ ğ±(t)ϕ(t) = 0; if it is infinite we can apply L’Hôpital rule to obtain

lim
t→∞

ğ±(t)ϕ(t) ≤ lim
t→∞

be(b+α−1)t
∣∣∣P ((±1)R > et)− E

[∑N
j=1 1((±1)CjR > et)

]∣∣∣ et
(b− ε)e(b−ε)t

=
b

b− ε
lim
t→∞

e(α+ε)t

∣∣∣∣∣∣P ((±1)R > et)− E

 N∑
j=1

1((±1)CjR > et)

∣∣∣∣∣∣ ,
which is zero by (3.2) and (3.3). That limt→−∞ ğ±(t)ϕ(t) = 0 follows from the estimates given above.

And for part d) note that for t ≥ 0,

ϕ(t)

∫ ∞
t

|ğ±(x)|dx = eεt
∫ ∞
t

∣∣∣∣∣∣be−bx
∫ x

−∞
e(b+α)u

P ((±1)R > eu)− E

 N∑
j=1

1((±1)CjR > eu)

 du

∣∣∣∣∣∣ dx
≤ beεt

∫ ∞
t

e−bx
∫ x

−∞
e(b+α)u

∣∣∣∣∣∣P ((±1)R > eu)− E

 N∑
j=1

1((±1)CjR > eu)

∣∣∣∣∣∣ du dx
= beεt

∫ ∞
−∞

∫ ∞
t∨u

e−bxe(b+α)u

∣∣∣∣∣∣P ((±1)R > eu)− E

 N∑
j=1

1((±1)CjR > eu)

∣∣∣∣∣∣ dx du
= eεt

∫ ∞
−∞

e−b(t∨u)e(b+α)u

∣∣∣∣∣∣P ((±1)R > eu)− E

 N∑
j=1

1((±1)CjR > eu)

∣∣∣∣∣∣ du
= e−(b−ε)t

∫ et

0

vb+α−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv
+ eεt

∫ ∞
et

vα−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv
≤ e−(b−ε)t

∫ et/2

0

vb+α−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv (3.5)

+

∫ ∞
et/2

vα+ε−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv, (3.6)

where in the last inequality we split the range of integration of the first integral into [0, et/2] and [et/2, et]
and used the inequalities vb ≤ e(b−ε)tvε for et/2 ≤ v ≤ et and eεt ≤ vε for v ≥ et. The integral in (3.6)
converges to zero as t→∞ since it is the tail of a finite integral; the integral in (3.5) is bounded by

e−
(b−ε)

2 t

∫ ∞
0

vα+ε−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv,
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which also converges to zero as t→∞. Similarly, for t < 0,

ϕ(t)

∫ t

−∞
|ğ±(x)|dx ≤ b

∫ t

−∞
e−bx

∫ x

−∞
e(b+α)u

∣∣∣∣∣∣P ((±1)R > eu)− E

 N∑
j=1

1((±1)CjR > eu)

∣∣∣∣∣∣ du dx
=

∫ t

−∞
e(b+α)u

∣∣∣∣∣∣P ((±1)R > eu)− E

 N∑
j=1

1((±1)CjR > eu)

∣∣∣∣∣∣ (e−bu − e−bt) du
=

∫ et

0

vb+α−1(v−b − e−bt)

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv
≤
∫ et

0

vα−1

∣∣∣∣∣∣P ((±1)R > v)− E

 N∑
j=1

1((±1)CjR > v)

∣∣∣∣∣∣ dv → 0

as t→ −∞.

We split the rest of the proof into the two different cases.

Case a): Ci ≥ 0 for all i.

For this case we have η− ≡ 0, from where it follows that

eU = (1, 0)

∞∑
k=0

(
η+ 0
0 η+

)∗k
= (1, 0)

(∑∞
i=1 η

∗k
+ 0

0
∑∞
k=0 η

∗k
+

)
=

( ∞∑
k=0

η∗k+ , 0

)
,

which in turn implies that

r̆(t) =

∞∑
k=0

(ğ+ ∗ η∗k+ )(t).

We can then think of this case as a standard one dimensional problem by renaming F = η+ and U =∑∞
k=0 η

∗k
+ . The “matrix” F(R) is clearly irreducible and its spectral radius ρ[F(R)] = 1 (since η+ is a

probability measure in this case). Also,

∫ ∞
−∞

xF(dx) =

∫ ∞
−∞

xη+(dx) = E

 N∑
j=1

|Cj |α log |Cj |

 , µ ∈ (0,∞).

We now note that∫ 0

−∞
(1 + |x|)2ϕ(x)η+(dx) =

∫ 0

−∞
(1 + |x|)2eαxE

[
N∑
i=1

1(log |Ci| ∈ dx)

]

= E

[
N∑
i=1

∫ ∞
0

(1 + |x|)2eαx1(log |Ci| ∈ dx)

]
(by Fubini’s theorem)

= E

[
N∑
i=1

|Ci|α (1 + | log |Ci||)2
]
,

which is finite by assumption. This observation, by the remarks preceding Theorem 2 in [12], implies that
T 2F ∈ S(ϕ), where for any finite complex-valued measure ν, Tν is defined as the σ−finite measure with
density v(x; ν) , ν((x,∞)) for x ≥ 0 and v(x; ν) , −ν((−∞, x]) for x < 0, and S(ϕ) is the collection of all
complex-valued measures κ such that

∫∞
−∞ ϕ(x)|κ|(dx) <∞, with |κ| the total variation of κ.
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Then, by Theorem 2 in [12],∣∣∣∣r̆(t)− 1

µ

∫ ∞
0

ğ+(x)dx

∣∣∣∣ =

∣∣∣∣U ∗ ğ+(t)− 1

µ

∫ ∞
0

ğ+(x)dx

∣∣∣∣ = o
(
e−εt

)
as t→∞.

To derive the result for P (R < −t), follow the same steps leading to (3.4) in the proof of Theorem 3.4 in
[10] but starting with a telescoping sum for P (−R > et) instead, and defining r(t) = eαtP (R < −et). Using
the same arguments given above then gives∣∣∣∣r̆(t)− 1

µ

∫ ∞
0

ğ−(x)dx

∣∣∣∣ =

∣∣∣∣U ∗ ğ−(t)− 1

µ

∫ ∞
0

ğ−(x)dx

∣∣∣∣ = o
(
e−εt

)
as t→∞.

We have thus shown that∣∣∣∣∫ t

−∞
be−b(t−s)eαsP (±R > es)ds− 1

µ

∫ ∞
0

∫ x

−∞
be−b(x−s)g±(s) ds dx

∣∣∣∣
=

∣∣∣∣∣e−bt
∫ et

0

bvα+b−1P (±R > v)dv − 1

µ

∫ ∞
−∞

g±(s) ds

∣∣∣∣∣
=

∣∣∣∣∣e−bt
∫ et

0

bvα+b−1P (±R > v)dv −H±

∣∣∣∣∣ = o
(
e−εt

)
,

as t→∞, where

H± ,
1

µ

∫ ∞
−∞

g±(s) ds

=
1

µ

∫ ∞
−∞

eαt

P (±R > et)− E

 N∑
j=1

1((±1)CjR > et)

 dt

=
1

µ

∫ ∞
0

vα−1

P (±R > v)− E

 N∑
j=1

1((±1)CjR > v)

 dv.

Therefore, by Lemma 3.6, we obtain

|tαP (±R > t)−H±| = o
(
t−ε
)

as t→∞.

Case b): P (Cj < 0) > 0 for some j ≥ 1.

For this case we have that η− is nonzero. Also, note that the matrix

F(R) =

 E
[∑N

j=1 |Cj |α 1(Xj = 1)
]

E
[∑N

j=1 |Cj |α 1(Xj = −1)
]

E
[∑N

j=1 |Cj |α 1(Xj = −1)
]

E
[∑N

j=1 |Cj |α 1(Xj = 1)
]  ,

(
q 1− q

1− q q

)
is irreducible and has eigenvalues {1, 2q − 1}, and therefore spectral radius ρ[F(R)] = 1. Moreover, (1, 1)
and (1, 1)T are left and right eigenvalues, respectively, of F(R) corresponding to eigenvalue one, and by
assumption,

(1, 1)

∫ ∞
−∞

xF(dx)

(
1
1

)
= 2

(∫ ∞
−∞

xη+(dx) +

∫ ∞
−∞

xη−(dx)

)
= 2E

 N∑
j=1

|Cj |α log |Cj |

 = 2µ ∈ (0,∞).
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Also, similarly as in the nonnegative case, we have∫ 0

−∞
(1 + |x|)2ϕ(x)η±(dx) = E

[
N∑
i=1

|Ci|α (1 + | log |Ci|)2 1(Xi = ±1)

]
,

which is finite by assumption. And from the remarks preceding Theorem 2 in [12], we have that T 2F ∈ S(ϕ).

Then, by Theorem 2 in [12],∣∣∣∣U ∗ ğ(t)− (1, 1)T (1, 1)

2µ

∫ ∞
−∞

ğ(x)dx

∣∣∣∣ =

∣∣∣∣U ∗ ğ(t)− 1

2µ

(∫∞
−∞(ğ+(u) + ğ−(u))du∫∞
−∞(ğ+(u) + ğ−(u))du

)∣∣∣∣ = o
(
e−εt

)
as t→∞. Hence, it follows from r̆(t) = eU ∗ ğ(t) that∣∣∣∣r̆(t)− 1

2µ

∫ ∞
−∞

(ğ+(u) + ğ−(u))du

∣∣∣∣ =

∣∣∣∣∣e−bt
∫ et

0

bvα+b−1P (R > v)dv − 1

2
(H+ +H−)

∣∣∣∣∣ = o
(
e−εt

)
as t→∞. Let H = (H+ +H−)/2, then by Lemma 3.6

|tαP (R > t)−H| = o
(
t−ε
)

as t→∞.

To derive the result for P (R < −t) simply start by defining r(t) = eαtP (−R > et), which in this case leads
to the same result as above, that is,

|tαP (R < −t)−H| = o
(
t−ε
)

as t→∞.

Finally, we note, by using the representations for H+ and H− from Case a), that

H =
1

2µ

∫ ∞
0

vα−1

P (R > v)− E

 N∑
j=1

1(CjR > v)

 dv

+
1

2µ

∫ ∞
0

vα−1

P (R < −v)− E

 N∑
j=1

1(CjR < −v)

 dv

=
1

2µ

∫ ∞
0

vα−1

P (|R| > v)− E

 N∑
j=1

1(|CjR| > v)

 dv.
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