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Algorithmic Modeling of TES Processes 

Predrag R. Jelenkovik and Benjamin Melamed 

Abslracf-TES (hmsform-expand-sample) is a versatile class of sta- 
tionary stochastic proeeesea which can model arbitrary marginnls, a wide 
variety of autocorreLtion funcths, and a brod range of sample path 
behaviors. TES parameters are of two weds: the 6rst kind is used for the 
exact fitting of the empirical distributiom &Wog”), while the second 
kind is used for appmximafhg the empirical antm”lation function. 
Parameters of the first kind are easy to determine PLgOrithmieplly, but 
thoseofthesecomlkindreq~aherdbeuriet icsesrehonatrrge 
parametric function space. This paper deserlbes M dgorithmk procedure 
which can replace the heuristle search, thereby largely automating TES 
modem. The algorithm Is cast in noalIaear prosrsmming setting with 
the objective of “ s z i n g  a weighted sum of squad dinerences 
between the empiricpl autoeomlr(i0ns and thdr candhte TES model 
counterparts. It combimes a brutc-lorce search with steepestdeacent 
nonlinear prograuamlng using zoutendijk’s f d &  direetion method. 
FinaEly, we illustrate the eillepey of OIW: approach via three examples: 
two from the domain of VBR (variable bit rate) compreaoed video and 
one representing results from a l m r  intensity enperiment. 

- 

I. INTRODUCTION 
Stochastic dependence is quite common in real-world random 

phenomena, including bursty traffic in high-speed communications 
networks. Compressed video, also known as VBR (variable bit rate) 
video, is a case in point. Intuitively, burstiness is present in a 
traffic process, if arrival points appear to form visual clusters on the 
time line. Strong positive short-term autocorrelations (second-order 
properties) are good indicators of traffic burstiness [3], [lo], which is 
also affected by the marginal distributions (fmt-order properties). The 
autocorrelation function is a popular statistical proxy of dependence, 
especially in engineering disciplines, while the marginal distribution 
of a stationary time series is estimated in practice by the empirical 
histogram. Analytical models, however, tend to ignore dependence in 
order to gain analytical tractability; in particular, the bulk of queueing 
models is devoted to the study of queues with independent interarrival 
and service times. The impact of autocorrelation in traffic processes 
on queueing measures (e.g., mean queue length, mean waiting times 
and loss probabilities in finite buffers) can be very dramatic, even in 
light traffic regimes; worse still, ignoring correlations leads to over- 
optimistic predictions which are often off by orders of magnitude 
[61, [121, 1161, 1221, Wl. 

A natural idea is to capture first-order and second-order properties 
of empirical time series (assumed to be from a stationary probability 
law) by fitting simultaneously both the empirical distribution (his- 
togram) and empirical autocorrelation function. This approach was 
used in [14] and more recently in the theoretical work reported in 
[7]-[9], [17] and the applied work described in [19]-[21], [23]. An 
extensive survey of modeling methods within this purview may be 
found in [l I]. 

TES (transform-expand-sample) is a versatile class of station- 
ary stochastic processes with general marginals, a wide variety of 
autocorrelation functions (e.g., monotone, oscillatory and others), 

Manuscript received August 30, 1994; revised January 27, 1995. 
P. R. Jelenkovit is with the Department of Electrical Engineering and CTR, 

Columbia University, New York, NY 10027 USA. 
B. Melamed was with CBC Research Laboratories, NEC USA Inc., Prince- 

ton, NJ, and is now with RUTCOR, Rutgers University, New Brunswick, NJ 
08903 USA. 

IEEE Log Number 9412289. 

and a broad range of sample path behaviors (e.g., directional and 
reversible) [7], [8], [17]. From a Monte Carlo simulation prospective, 
TES generation algorithms are fast and require little memory. In 
essence, TES is a first-order nonlinear autoregressive scheme with 
modulo-1 reduction and additional transformations. Its specification 
consists of two kinds of parameters from two distinct sets. The 
first set, which is algorithmically determined, guarantees an exact 
match to the empirical distribution (histogram). The second set 
largely determines the autocorrelation structure. To approximate the 
empirical autocorrelation function, the TES modeling methodology 
to-date employs a heuristic search approach on a large parametric 
space. 

Effective TES modeling requires computer support. An interactive 
visual modeling environment, called TEStool, was designed and 
implemented to support heuristic searches for TES models under 
human control [4]. TEStool allows the user to read in empirical 
time series and calculate their statistics (histogram, autocorrelation 
function and spectral density) in textual and graphical representations. 
It provides services to construct and modify TES models and to 
superimpose the corresponding TES statistics on their empirical 
counterparts. The search proceeds in an interactive style, guided by 
visual feedback each model modification triggers a recalcukation 
and redisplay of the corresponding statistics. This approach has 
several drawbacks. First, effective TES modeling requires qualitative 
understanding of TES processes; second, the search scope and speed 
are fundamentally limited by the speed of the human response and the 
individual extent of human patience; and third, modeling precision is 
constrained by screen resolution as perceived by the human eye. 

This paper presents a TES modeling algorithm, which largely 
automates the modeling process. The modeler is only asked to specify 
a few parameters which determine the extent of the algorithmic 
search, and consequently, the precision of the results, subject to 
the prevailing limits on the computational complexity. Finally, the 
algorithm produces multiple candidate TES models, and the final 
selection of a model is carried out by the modeler by inspecting the 
associated simulated sample paths and judging their “resemblance” 
to the empirical data. This last step is not automated, since in the 
absence of an agreed upon metric, the notion of sample path “resem- 
blance” is necessarily subjective. We mention, though, that modelers 
are routinely called upon to make such subjective judgments. Our 
modeling approach centers on the so-called GSLO (global search 
local optimization) algorithm. As the name suggests it combines 
a global search with local nonlinear programming to minimize an 
objective function consisting of the distance between the empirical 
autocorrelation function and its candidate model counterpart. The 
notion of distance is taken as a weighted sum of squared differences 
between autocorrelations of corresponding lags. Key to this approach 
is the existence of fast and numerically stable analytical formulas for 
calculating the objective function and its partial derivatives, as well as 
the simplicity of the constraints in the ensuing nonlinear optimization 
problem. The algorithm has been incorporated into TEStool, which 
is used to illustrate the efficacy of this approach via three examples: 
two from the domain of compressed video traffic, and one from a 
physics laboratory experiment on laser intensity. 

The rest of the paper is organized as follows. Section II presents 
an overview of TES processes germane to this paper. Section HI 
states the problem in the framework of nonlinear programming. 
Section IV discusses the calculation of the partial derivatives of 
the objective function. Section V presents an algorithmic solution 
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to the problem, and Section VI presents some examples illustrating 
its efficacy. Finally, Section VI1 concludes the paper. 

LI. TES PROCESSES 
This section provides a brief overview of TFS processes, relevant 

to this paper; the reader is referred to Melamed [17] and Jagennan 
and Melamed [7]-[9] for additional details and to Melamed [18] 
for a comprehensive overview. Throughput the paper, the Laplace 
transform of a function f is denoted by f. and the indicator function 
of a set A is denoted by 1 ~ .  

The construction of a TES process involves two random sequences 
in lockstep. The first sequence, called a background TES process 
(sequence), plays an auxiliary role. It is chosen as either {U:}yP,o 
or defined recursively by 

Here, UO is distributed uniformly on [0, 1); 1’ = {lfn}F.l is 
a sequence of i.i.d. random variables, independent of UO,  called 
the innovation sequence; and angular brackets denote the modulo- 
1 (fractional part) operator (.) = T - max{integer R : n < .}. 
The superscript notation in (1) is motivated by the fact that TES 
sequences, {U:} and {U;}, can generate lag-1 autocorrelations in 
the ranges [0,1] and [-l,O], respectively. From now on, we will 
always append plus or minus superscripts to other mathematical 
objects associated with {U:} and { IT; } ,  but the superscript is 
omitted when the distinction is immaterial. Intuitively, the modulo-1 
arithmetic, used in the definition of the background TES processes 
{U: } in (l), gives rise to a simple geometric interpretation as random 
walks on a circle of circumference 1 (unit circle), with mean step 
size E[V,]. 

The second sequence, called a foreground TES process (sequence), 
is the target TES model. Foreground TES sequences are denoted by 
{ X ~ } ~ = o  or {X;}T=o, respectively, and given by 

A-: = D(U:), x; = Dfu;) (2) 

where D is a real-valued measurable transformation from [0, l), 
called a distortion. Equation (2) defines two classes of TES models, 
denoted by TES+ and TES-, respectively. 

The autocorrelation functions of TES processes, with common 
variance, 0 < C T ~  < E, can be calculated numerically from 
fast and accurate formulas [7, 81. Specifically, for any 7 2 0, 
the corresponding autocorrelations bf lag T for {Xz} and {X;}, 
respectively, are given by 

Re[j6(i27rv)]6,+, T even 

where 

+ - 2 lB(i27rv)12 2 Re [b2( i2w) ]  
fiu - , 6; = 

CT ;. 4 
Analytical formulas for various j~ ( i 2 ~ ~ )  and fi(i27rv) 
in [8]. 

(3) 

(4) 

are given 

Given an empirical time series, {Y,}f=o, one uses in practice a 
composite distortion of the form 

Dl,,E(.) = W ( S ( ( . ) ) ,  . E [ O ,  1). (5)  

Here, the inner transformation, Sc, is a “smoothing” operation, called 
a stitching transformation, parameterized by 0 5 E 5 1, and given by 

The outer transformation, By’ ,  is the inverse of the empirical 
(histogram) distribution function, computed from {Y,} as 

7 

(7) 

where J is the number of histogram cells, [ E , ,  T ~ )  is the support of 
cell j with width w3 = T, - 1, > 0,  p, > 0 is the probability 
estimator of cell j and {C,}ko is the cdf of {i,}$’, i.e., C, = 

The rationale for TES processes stems from the following facts. 
First, all TES background sequences are stationary Markovian, and 
their marginal distribution is uniform on [0, 1) regardless of the 
probability law of the innovations { Vn } selected, as a consequence of 
the general Iterated Uniformity Lemma in [7]. Second, the inversion 
method [2] permits us, in principle, to transform any uniform variate 
to others with arbitrary distributions as follows: if U is uniform on 
[0, 1) and F is a prescribed distribution, then X = F - ’ ( U )  has 
distribution F; the case F = HY is just a special case. And third, 
for 0 < < 1, the effect of Sc is to render the sample paths of 
background TES sequences more “continuous-looking.” As stitching 
transformations preserve uniformity [17], the inversion method can 
still be applied to stitched background processes, {S€(U,)}, so that 
any foreground TES variate of the form X, = &G1(Sc(Un)), 
obtained from any background sequence { Un}. :Is always guaranteed 
to obey the empirical distribution (histogram), HY, regardless of the 
innovation density f v and stitching parameter selected. m e  choice 
of ( f ~  , E )  determines the dependence structure of the sequence { X, } 
and, in particular, its autocorrelation function. Thus, TES modeling 
decouples the fitting of the empirical distribution from the fitting of 
the empirical autocorrelation function. Since the former is guaranteed, 
one can concentrate on the latter. 

An important property of the autocorrelation functions in (3) is their 
uniform absolute summability in T, which is an easy consequence of 
the facts 

&, 1 5 j 5 J (CO = 0 and CJ = 1). 

e 

m 

u=o u=o 

and 

Ij;(iaav)l 5 1, T 1 0,v 2 1. ( 8 )  

For our purposes, this allows us to fix D Y , ~ ,  and to use the same finite 
sum in calculating autocorrelations for all lags T and all innovation 
densities f v ,  thereby achieving a uniformly bounded error. These 
calculations are both fast and accurate. Experimentation has shown 
that just seven terms in the sums of (3) appear sufficient for keeping 
the error under 0.01, uniformly in 7. 

In. PROBLEM FORMULATION 
We now proceed to formulate tbe TES fitting problem for TES 

processes of a specialized form. Specifically, we restrict the discus- 
sion to distortions, D Y , ~ ,  from (5 )  (which represent TES parameters 
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of the first kind) and to pairs, ( fv .  c), of stepfunction innovation 
densities and stitching parameters (which represent TES parameters 
of the second kind.) These choices of D Y , ~  and f v  have the 
merit of simplicity, without loss of generality (every density can be 
approximated arbitrarily closely by step functions). 

Recall that an exact match to the empirical histogram is guar- 
anteed by (5). Thus, the problem reduces to one of approximating 
the empirical autocorrelation function, b y ,  by some TES model 

Problem 2 is a reduction of Problem 1 to a finite-dimensional 
nonlinear optimization problem with two nice properties. First, it is 
subject to simple linear constraints; and second, there exist analytical 
formulas for the objective function and its partial derivatives with 
respect to every optimization variable. Consequently, Problem 2 is 
amenable to a variety of standard nonlinear programming techniques 
[l]. . 

autocorrelation function, p f v , c ,  to be determined through the choice 
of (fv,  E ) .  To this end, we shall need a metric on the space of 
autocorrelation functions. This metric should reflect the fact that in 
most applications (e.g., queueing systems), it is more important to 
approximate the lower-lag autocorrelations than the higher-lag ones. 
This consideration leads us to employ an objective function whose 
general form is a weighted sum of squared differences between the 
empirical and modeled autocorrelations, namely 

T 

g(fv ,  E )  = C a r [ P r v , c  (7) - b y  (711’ (9) 

where T is the maximal autocorrelation lag to be approximated, and 
the 0 < a, 5 1 are weight coefficients. We can now formally cast 
the search for a TES model into the following nonlinear optimization 
problem: 

Problem I: For a fixed inverse histogram distribution (7), find an 
optimal innovation density and stitching parameter (f;. E * ) ,  such that 

(10) 
(fv1E) 

r=l 

U;, €*I = argmin{g(fv, €11 
where g( f v  () is given in (9). 

We next restrict the scope of innovation densities considered, again 
with no loss of generality. From a computational viewpoint, general 
step-function densities have the drawback that constituent functions 
have unbounded supports. Alluding to (l), observe that 

U-: = + V,) = (U:-, + (Vn)) 
which implies that only innovation variates of the form (Vn) need 
be considered. Consequently, we may restrict consideration to step- 
function densities f v ,  whose support is contained in [0, 1); in fact, 
owing to the modulo-1 arithmetic in (l), any support interval of 
length one will do. The interval [-0.5,0.5) is chosen as a convenient 
particular case. 

Next, to render the minimization procedure tractable, we further 
restrict admissible f v  to lie in the set Q = UTzl&, where Qk is 
the set of step-function innovation densities over [-0.5,0.5) of the 
form 

parameterized by the set Pk of discrete densities P = (PI, . . . , Pk), 
E:=, P, = 1. In practice, we approximate the set Q by a subset 
QK for a large K (say, K = loo), and define the parameter space 

(12) EK = {(P,t)  ; p E % , E  E [O,l]}. 
The optimaization problem (10) then reduces to the following prob- 
lem. 

Problem 2: For a fixed inverse histogram distribution (7). and a 
fixed K > 0, find optimal parameters (P*,t*) E Q K ,  such that 

(P*.c*) = argmin {gK(P.<)} (13) 
( p * C ) E O K  

where 
T 

g,(P,€) = C a r [ f p , E ( 7 )  - i Y ( 4 ] z ,  (P7E) E GK (14) 
r=l 

while T and a, are as in (9). 

Iv.  PARTIAL DERIVATIVES OF THE OBlECTIVE FUNCTION 

This section derives the partial derivatives of the objective function 
gK in (14). To simplify the notation, we write (PI, . . . , PK , 5) , rather 
than ((PI~...,PK),<), interchangeably with (P,E). 

Clearly, g K  ( P I ,  . a , PK , E )  has partial derivatives, if 
PPI ,  ,,,,,(T) does. Recall that (8) ensures that the series in 
(3) are uniformly convergent, so that we may interchange there the 
order of differentiation and summation [a], leading to 

The calculation of the partial derivatives above will be outlined next. 
An inspection of (15)-(16) reveals that the req_uisite partial deriva- 

tives call for the calculation of the transforms fv(i2au),  the quan- 
tities b t ,  and theirpartial derivatives. 

To calculate the fv(i2au),  we can either_ appeal to Proposition 2 
in [8], or carry out a direct calculation of f v ,  for f v  E Q K ,  using 
Eq. (11) with k = K, yielding 

The differentiation of (17) with respect to the P,, is straightforward. 

&,e(i2?ru) = at., + i U 2 1. (18) 

To calculate the S , f . ,  we first represent 
# 

Hence, (4) becomes 

since by (18), I&,c(i27rw)12 = a$,,  + b:,v and Re[d$,t(i2au)] = 
ai,” - $+,. The corresponding derivatives are readily found to be 

It remains to calculate the quantities at,,, and bc,u in (19), and their 
partial derivatives in (20). 

The formulas for a€, ,  and be,v are given by Proposition 4 in [8] 
as follows (see (7) for notation). For 0 < E < 1 

= 2 T l  [ s i n ( 2 ~ i u t C ~ )  + s in(2rv( l -  <)Cl)] 
2au 

3=1 

1 ~ [ s i n ( 2 7 ~ < 6 ~ - 1 )  + sin(2?ru(l- c ) C j - l ) ~  
2au 

j=1  

c0s(2av€ej) - c o s ( 2 a u ~ c ~ - 1 )  
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r,[c0s(27rv@?:I) - cos(27rv(l- ( ) C l ) ]  
2av bE.v = c 

j=1 

l,[cos(27rv~C,-1) - COS(27rV(l- f , C , - I  11 -2  J = 1  2rrV 

while for = 0 or 6 = 1 

T ,  sin(2avCl ) - E, sin(2xvC,- 1) 

cos( 2 7 r 4  ) - cos( 2WC3 - 1) 
(27rv)Z 

1', COS(27rVC, )  - 1, COS(27TV~,-l) 

= = $ [ 2av 

x 4 ,  
P3 

(23) 
w 1  

w 1  

+ 

bo = b1," = $ [ 27rv 

x 4 .  
P, 

(24) 

- sin(2rvC,) - sin(2ruCJ-1) 
(27rv)Z 

The differentiation of (21)-(24) with respect to < is straightforward, 
though moderately tedious. 

Some observations on the practical computation of the partial 
derivatives (15H16) are warranted at this juncture. First, from (17) 

From (25) we conclude, with the aid of (8). that (15) is uniformly 
summable in 7 for all 1 5 n 5 K and all (P.6) E G K .  Hence, 
we can use the same number of terms to approximate (15). for all 
1 5 TZ 5 li, all T 2 1, and all (P,t) E GK, while retaining 
a uniformly bounded error. Second, the situation in (16) is more 
complex, due to the fact that (8) is no longer guaranteed to hold. 
A careful analysis of the formulas (21)-(24) reveals that = 
O!(l/v), for 0 5 6 5 1. This fact, together with the observation 
Ifv(i27rv)l = O( 1/v), allows us tqconclude that the error incurred 
in approximating (16) by L summands is on the order of O(l/L). 

The foregoing discussion provides the basis for a numerical proce- 
dure for fast and accurate calculation of the autocomlation function 
and its partial derivatives (with respect to all optimization variables) 
associated with the TES procesds under consideration. 

V. 'Im GSLOALGoRlTHM 
We are now in a position to present an algorithmic solution for 

Problem (2), which we term the GSLO Algorithm. It is sketched 
below for given integers, K and B. 

GSLO Algorithm Outline: 
. GS Discretize the parameter space, G K ,  into a finite number 

of points. Then, for each such point, evaluate the objective 
function g, in (14), and keep the best B points (those points, 
x E G K ,  which give rise to the B smallest values of g ,  (x)). 

LO Using each of these B points as a starting point, find a 
local minimum of g, via a nonlinear programming algorithm. 
Then, select among them that point, XI, which gives rise to 
the smallest local minimum, gK (x*). 

Note that the global search first selects the B most promising initial 
points for the local search, so as to increase the chance that the 
best local minimum found is relativeIy close to the global minimum. 
However, the analyst is free to select a less optimal model, if its 
simulated realizations are judged to bear a "better resemblance" to 
the empirical record. 

In addition to K and B, the global search algorithm requires the 
specification of two additional parameters, N p  and N E ;  these are 
the number of equidistant values that each P, and [ casl assume, 
respectively. The total number, Ntot, of points, x, at which the GSLO 
Algorithm needs to evaluate gK (x) in the GS step above, is 

where the factor 2 is due to the fact that we search both the TES' 
and TES-classes of processes. Clearly, the parameters N p ,  NE and 
h- must be moderate, since Ntot grows very fast in them. 

A computer implementation of the GS step is straightforward. The 
objective function is calculated inside K + 1 nested loops (K loops 
for the discretization of each P, , and one for that of E ) ;  the computed 
value is then compared with the current best set, namely, the running 
set of the (at most) B best values in some sortipg order. If the newly 
computed value improves on the worst value in the current best set, 
then the worst value is discarded and the new value is added in 
the sorting order. We continue this way until we search the whole 
discretized parameter space. We mention that since the number of 
loops, K + 1, is a parameter of the algorithm, loop traversal is 
implemented by recursive calls. 

The local optimization in the LO step above was implemented, 
using the nonlinear programming method, called the Zoutendijk 
Feasible Direction Metbod; see [ 1, p. 4091. This yethod is an iterative 
procedure where at each iteration one determines i) the optimal 
feasible direction for the choice of the next point and ii) the optimal 
step size in that direction. Let Vg, (x) denote the vector of the partial 
derivatives (gradient) of gK evaluated at x E Q K  . A direction in QK 
is any real vector, d = (dl, 9 . . , dK, dK+1). Given a feasible point, 
x = (P, E )  in the feasible space b j ~ .  a direction, d, is feasible, 
if x + Ad E Q K ,  for some A > 0. A feasible direction, d, is an 
improving feasible direction, if in addition, Vg, (x) dt < 0. t being 
the transpose operator; see Lemma 10.1.2 in [l]. Thus, the optimal 
feasible direction, d' , is a solution of the fotlowing linear subproblem 
(for given x E Q K )  

Subproblem 1 (Optimal Feasible Direction): 

Minimize VgK(x)dt overd = (d l r . . - , dK,dK+l ) r  
subject to d is a feasible direction 

(normalization). 

(27) and - 15 d, 5 1,1< j 5 K + l  

Once the optimal feasible direction, d', is found, then Amax(x) = 
maxA>o{x + Ad' E G K }  is the maximal feasible step size, and one 
may proceed to solve for the optimal step size, A', in the following 
subproblem (for given x E GK and d*). 

Subproblem 2 (Optimal Step Size): 

(28) 
Minimize gK (x + Ad*) over X 
subject to 0 5 A 5 Amax(x). 

Once the optimal value, A* ,  is found, replace x by x + X'd* 
and solve again for new optimal feasible direction and step size. 
The algorithm terminates when the optimal value of VgK (x) dt in 
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Fig. 1. A TES+ model for an empirical sequence of H.261-compressed VBR video. 

(27) falls below a prescribed threshold. Clearly, it is essential to find 
efficient solutions for (27) and (28), since these are solved repeatedly. 

Suppose for now that (27) in Subproblem 1 has been solved, and 
consider (28) in Subproblem 2. Since the line search is conducted 
on the finite interval (O,Xmax(x)), it is possible, in principle, to find 
the global minimum on the line segment, with arbitrary precision. 
Prescribing a high precision, however, can render the solution overly 
time consuming. Note that the optimal feasible direction in (27) is 
not exact since it is based on a linear approximation of the objective 
function, using its first partial derivatives only. In the theory of 
nonlinear programming, this is known as the zigzagging effect [l]. 
Thus, there is no reason to invest heavily in a precise solution of 
(28). One widely-accepted practical solution to this problem is the 
so-called Annijo's Rule (see [,l, p. 281]), which may be described 
briefly as follows. Suppose the line search is at point x, and let d 
be an improving feasible direction. Let @(A) = gK (x + Xd),O 5 
X 5 Xmax(x), and let 0 < e < 1 and a! > 1 be two parameters 
(our implementation used a = 2 , e  = 0.2). Define further, @(A) = 
O(0) + Xe@'(O), where prime indicates differentiation. Armijo's Rule 
initially sets X = Xmax(x). Then, while @(A) > @(A), set A = A / a  
and repeat; and otherwise, set A' = X and exit. 

Retuming to the solution of (27). observe that a closed form 
solution can be obtained, owing to the relatively simple linear 
constraints involved. Since PK = 1 - P,, a reduction in 
the problem dimension may be attained as follows. First, replace the 

I 

. 

original parameter space, G K ,  by the reduced parameter space 

% & - I =  (P~ . . . ' ,PK-~,E) :P~ > O , l < n 5 K - 1 ,  

1 X-1 

PTa 5 L E  E [0,11 

{ 
Y l = l  

and second, replace t!le original objective function g,, by a new 
objective function hK-l  over '&-I, given by 

h,-l P l , .  . ., PK-1, E )  

( P l , * " . p K - l . [ )  E 3 i K - l .  (29) 

Consider a variant of the optimization problem (27), but with GK 
replaced by 'MK-I, gK replaced by h K -  and direction vectors of the 
form d = (&I,. . . , d K ) .  Assuming that the normalization constraints 
(but not the feasibility constraints) in (27) are satisfied for the new 
problem, it is clear that the minimum of Vh,- ,  (y)dt is attained for 

d, = -sign(ah,-,(y)/ay,). 1 I j I H' (30) 

where sign(z) is +1 or -1 according as z is nonnegative or negative, 
respectively. Our goal is to change d ,  in such a way that the feasibility 
constraints in (27) are satisfied, while Oh,-, (y) dt is increased as 
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Fig. 2. A TES- model for an empirical P-frame subsequence from an MPEG-compressed VBR video. 

little as possible. To this end, we first fix the boundary constraints 
for each coordinate, 1 1 .  For example, if P,, = 0 and d ,  = -1, 
then set d,, = 0; similar actions are taken for other boundary 
values, e.g., for Pr, = 1 and = 0 or 5 = 1. Finally, the only 
constraint left is cfcl' P, 5 1, and an infeasible direction will 
ensue if c,"=;' P, = 1 and E:!:' d, > 0. The best feasible d, are 
obtained when their sum vanishes, coupled with a minimal increase 
of 'i'hK-l(y)df. Let 

I K - I  (d) 

= 11 5 j 5 I< - 1: d, = 1 or (d, = 0 and P, = 1)) 

be the set of indexes j ,  for which d, can be decreased without 
violating the normalization constraint in (27). It is readily seen that 
Vh,- ,  (y) dt would increase the least by decreasing that d,, such 
that -ah,-,(y)/aP,, is minihized over I K - l ( d ) .  For such an 
index n, decrease d ,  just enough to obtain E:=;' d, = 0; if this 
is not possible, set d ,  = -1, remove n from I ~ - l ( d )  and repeat. 
The optimal direction is obtained when the corresponding sum of d ,  
vanishes. 

VI. EXAMPLES 
This section illustrates the efficacy of the algorithmic TES mod- 

eling methodology via three examples: two from the domain of 
compressed video traffic and one from a laboratory experiment on an 
N H 3  laser intensity. All examples utilize A' = 100, N p  = 4, NE = 

11, and B = 150, resulting in a total of 3.77 x lo6 searches in the GS 
algorithm. Figs. 1-3 display, for each respective example, a TEStool 
screen depicting the results of the corresponding algorithmic TES 
modeling. 

A. H.261-Compressed VBR video 
Data compression is extensively used to reduce the transmission 

bandwidth requirements of telecommunications traffic. The idea is to 
code the data at the source, thereby compressing it to a fraction of its 
original size, and then transport the compressed data over the network 
and decode it at its destination. Video service in emerging ISDN 
(integrated service digital networks) is a typical application, for which 
the exact reproduction of the original signal is not necessary. In fact., 
redundant visual information, to which the human eye is relatively 
insensitive, may be removed without degrading the percepmal quality 
of the decoded image. H.261 is a popular coding sta&rd, which 
makes use of DCT (discrete cosine transform) and other te&niques to 
compress video spatial units (framea or subframes) [15]. Since such 
coded units have random (but highly autocorrelated) transmission 
requirements (say, in bits), the corresponding coding schemes are 
referred to as VBR. 

Fig. 1 displays a TEStool screen showing the results of an algo- 
rithmic TES modeling for an empirical sample path of VBR video 
(frame sizes), in which the coding scheme used was a variant of the 
H.261 standard [21]. The video scene content was a football sequence 

L i 
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Fig. 3. A TESf model for an empirical sequence of N H 3  laser intensity data. 

and the depicted results are for a TES’ model. Note the excellent 
agreement of the TES model histogram and autocorrelation function 
with their empirical counterparts in the upper-right and lower-left 
canvases, respectively. Furthermore, the corresponding sample paths 
in the upper-left canvas are markedly “similar.” The GSLO-obtained 
innovation density is depicted in the lower-right canvas. 

B. MPEG-Compressed VBR video 

MPEG (moving picture expert group) is an emerging family of 
compression standards designed t6 encode audio-visual signals over 
broadband transmission channels [13]. The importance of MPEG 
derives from its planned central role in facilitating future delivery 
of multi-media services to customer premises. This section focuses 
on MPEG-based video, designed to compress a full-motion video 
stream to about 1.5 Mbitdsecond. 

Coded picture sequences in MPEG are composed of cycles. A 
coded picture can be either an Intrapicture (I-frame), Predicted 
picture (P-frame) or bidirectionally predicted picture (B-frame). The 
sequence of picture (frame) types within each cycle is deterministic, 
though the corresponding bit rates are random. MPEG type sequences 
can be chosen as an MPEG parameter, depending on the application. 
The probability laws of frame types are markedly different. In 
particular, the marginal distributions of I-frames, P-frames, and B- 
frames are well separated, with descending means in this order. 
Consequently, MPEG-compressed sequences are nonstationary, due 

to the determinism of the frame type sequence. The particular type 
sequence chosen in the case study described here had a length-nine 
cycle of the form IBBPBBPBB... [23]. The modeling approach 
called for a composite TES model. First, each subsequence of MPEG 
frame types was modeled as a separate TES sequence, I-frames and 
B-frames each by a TES+ model and P-frames by a TES- model. 

Fig. 2 depicts a TEStool screen showing the algorithmic modeling 
results for the P-frame subsequence. The video scene content was a 
“busy” sequence of a toy train in motion, combined with a moving 
calendar [23]. The figure is similar in structure to the previous one, 
and the model statistics are again in excellent agreement with their 
empirical counterparts. 

C. NH3 Laser Data 
The Santa Fe Institute conducts competitions in time series predic- 

tion, using neural net methods. An empirical set of partial random 
data is made available and competitors are asked to predict the rest 
of the time series. The data set in this example consisted of loo0 
data points, representing a clean physics laboratory experiment of 
the fluctuating intensity of an N H 3  laser, reposited in ftp.santafe.edu 
(see [5]).  The GSLO algorithm assumed a maximal autocorrelation 
lag of T = 15. 

Fig. 3 depicts the TEStool screen showing the algorithmic model- 
ing results for the laser data. Again the figure is similar in structure to 
the previous ones, and the model statistics are in excellent agreement 

http://ftp.santafe.edu
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with their empirical counterparts. Furthermore, the model exhibits 
considerable predictive power in the sense that in the time interval 
(0, 30), the sample path of the model is very close to its empirical 
counterpart. 

VII. CONCLUSION 
This paper has developed an algorithmic methodology for TES 

modeling, thereby shifting the modeling burden from a human 
conducting a heuristic sear& over a large parametric space. The 
algorithmic search is largely automated; the user is only required to 
specify a few discretization parameters which determine the accuracy 
and the computational complexity of the search. The end-product of 
the algorithm is a set of models whose number is a user-supplied 
parameter. The final choice is made by a user perusing the results, 
based on the “resemblance” of the model (simulated) sample paths 
to their empirical counterparts. 

The algorithm has been incarporated into the TES tool modeling 
environment to supplement its heuristic search support. Experimen- 
tation with the modeling algorithm, as implemented in TEStool, has 
yielded remarkably accurate TES models of empirical recads in a 
relatively short period of time, typically on the order of minutes. 
The efficacy of the modeling algorithm was illustrated by three case 
study examples. Experience with a variety of additional empirical 
data sets supports our claim that the algorithmic TES modeling 
methodology presented here can serve as a powerful input analysis 
technique for simulation analysis in general, and broadband video 
traffic modeling, in particular. Finally, we remark that since user 
involvement is minimal, requiring little expertise in TES processes, 
this technique may be comfortably used by experts and nonexperts 
alike. 
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