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10.1 INTRODUCTION

One of the major challenges in designing modern communication networks is
providing quality of service to the individual users. An important part of this design
process is understanding statistical characteristics of network traffic streams and
their impact on network performance. Unlike the conventional voice traffic, modern
data traffic exhibits an increased level of “burstiness” that spans over multiple time
scales. It was observed that sample paths of these data sequences show evidence of
self-similarity. Their autocorrelation structure is characterized by long-range depen-
dency and the empirical distributions are easily matched with subexponential and
long-tailed distributions. Early discovery of the self-similar nature of Ethernet traffic
was reported in Leland et al. [42] (see also Leland et al. [43]). More recently,
Crovella [22] attributed the long-range dependency of Ethernet traffic to the long-
tailed file sizes that are transferred over the network. Long-range dependency of the
variable bit rate video traffic was demonstrated by Beran et al. [9]. Long-tailed
characteristics of the scene length distribution of MPEG video streams were
explored in Heyman and Lakshman [30] and Jelenkovic et al. [37].

Practical importance, novelty, and the intriguing nature of these phenomena have
attracted a great number of scientists to develop new traffic models and to under-
stand the impact of these models on network performance. In this development there
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have been two basic approaches: self-similar (fractal) processes and fluid renewal
models with long-tailed renewal distributions. In this presentation we focus on the
latter. The investigation of queueing systems with self-similar arrival processes can
be found in the literature [23, 24, 44, 47, 49, 51, 54, 55].

In this chapter some recent results are presented on the subexponential asymptotic
behavior of queueing systems with subexponential arrival streams. The related
references will be listed throughout the chapter. First, in Section 10.2 the classes of
long-tailed and subexponential distributions are defined and some of their basic
properties are presented. Section 10.3 begins with a presentation of a classical result
on the subexponential asymptotics of a GI/GI/1 queue. That is followed by a brief
discussion of various extensions of this result that can be found in the literature. The
remainder of Section 10.3 contains two new results on this subject. In Section 10.3.1
a derivation is given for a straightforward asymptotic approximation for the loss rate
in a finite buffer GI/GI/1 queue. It appears surprising that the derived asymptotic
formula does not depend on the queue service process. However, a simple intuitive
explanation of this insensitivity effect is provided. In Section 10.3.2 a GI/GI/1
queue with truncated heavy-tailed arrival sequences is analyzed. Explicit asymptotic
characterization of a unique behavior of the queue length distribution is given.
Informally, this distribution on the log scale resembles a stair-wave function that has
steep drops at specific buffer sizes. This has important design implications,
suggesting that negligible increases of the buffer size in certain buffer regions can
decrease the overflow probabilities by orders of magnitude.

Section 10.4 describes a class of fluid queues and addresses the problem of
multiplexing on/off sources with heavy-tailed on periods. A complete rigorous
treatment of the subexponential asymptotic behavior of a fluid queue with a single
on/off arrival process is presented in Section 10.4.1. Section 10.4.2 investigates
multiplexing a heavy-tailed on/off process with a process that has a lighter
(exponential) tail. It is shown that this queueing system is asymptotically equivalent
to the queueing system in which the process with the lighter tail is replaced by its
mean value. This has implications on multiplexing bursty data and video traffic with
relatively smooth voice sources. Section 10.4.3 addresses the problem of multi-
plexing on/off sources with heavy-tailed on periods. Understanding of this problem
is fundamental for achieving high network resource utilization and providing quality
of service in the bursty traffic environment. Under a specific stability condition this
problem admits an elegant asymptotic solution. A brief conclusion of the presenta-
tion is given in Section 10.5.

10.2 LONG-TAILED AND SUBEXPONENTIAL DISTRIBUTIONS

This section contains necessary definitions of long-tailed and subexponential
distributions. An extensive treatment of subexponential distributions (and further
references) can be found in Cline [17, 18] or in the recent survey by Goldie and
Kliippelberg [27].
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Definition 10.2.1. A distribution function F on [0, 00) is called long-tailed
(Fe2)if

1 —F(x—y)

lim —1, yeR. (10.1)

x—oo 1 — F(x)

Definition 10.2.2. A distribution function F' on [0, co) is called subexponential
(Fe2)if

1 F?
lim ©_

where F*? denotes the second convolution of F with itself, that is, F*?(x) =
Jo.00) F& = W)F(dy).

The class of subexponential distributions was first introduced by Chistakov [15].
The definition is motivated by the simplification of the asymptotic analysis of
convolution tails. The best-known examples of distribution functions in & (and .¥)
are functions of regular variation #_, (in particular, Pareto family); F € #Z_, if it is
given by

F(x):l—@, o> 0,
x“
where /(x): R, — R, is a function of slow variation, that is, lim,_, . /(6x)/l(x) =
1,0 > 1. These functions were invented by Karamata [38] (the main reference book
is by Bingham et al. [10]). The other examples include lognormal and some Weibull
distributions (see Jelenkovi¢ and Lazar [36] and Kliippelberg [40]).
A few classical results from the literature on subexponential distributions follow.

The general relation between . and ¢ is presented in Lemma 10.2.3.
Lemma 10.23 [7]. ¥ C &Z.
Lemma 10.24. [fF € & then (1 — F(x))e™ — 00 as x — oo, for all o > 0.

NoTE 10.2.5. Lemma 10.2.4 clearly shows that for long-tailed distributions
Cramér-type conditions are not satisfied.

One of the most basic properties of subexponential distributions is given in the

following lemma. It roughly states that the sum of # i.i.d. random variables exceeds a
large value x due to one of them exceeding x.

Lemma 10.2.6. Let {X,,n > 1} be a sequence of i.i.d. random variables with a
common distribution F and let S, = > "\_ X;. If F € &, then

P[S, > x] ~ nP[X, > x] asx — oo. (10.3)
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Often in renewal theory it is of interest to investigate the infegrated tail of a
distribution function. Tofsimp_lify the notation, fofr any distribution F* we denote by
F)=1-F), F0)E [* F(r) dt, and Fy () m™ (m — F(x)), where m = F(0).

Throughout the text F(x) will be referred as the integrated tail distribution of F(x).

Definition 10.2.7. F € &* if

XF _ B
J MF(y)dy—)ZmF<oo, as x — 0o,
0 F(x)

where mp = [[° yF(dy).

This class of distributions has the property that F € .¥* = F|, € &, and that
S* C <. Sufficient conditions for F' € ¥* can be found in Kliippelberg [41],
where it was explicitly shown that lognormal, Pareto, and certain Weibull distribu-
tions are in %,

10.3 LINDLEY’S RECURSION AND GI/GI/1 QUEUE

Let {4,4,,n € Ny} and {C, C,,n € Ny} be two independent sequences of i.i.d.
random variables (on a probability space (@2, 7, P)). We term 4, and C, as the
arrival and service process, respectively. Then, for any initial random variable Q,,
the following Lindley’s equation,

Qn-H = (Qn +An+l - Cn+l)+9 (104)

defines the discrete-time queue length process {Q,,n > 0}. According to the
classical result by Loynes [45] (see also Baccelli and Bremaud [8, Chap. 2]),
there exists a unique stationary solution to recursion (10.4), and for all initial
conditions the queue length process converges (in finite time) to this stationary
process. In this chapter it is assumed that the queue is in its stationary regime, that is,
{0Q,, n > 0} is the stationary solution to recursion (10.4).

Recursion (10.4) also represents the waiting time process of the GI/GI/1 queue
with C, being interpreted as the interarrival time between the customer » — 1 and n,
A, as the customer’s n service requirement, and O, as the customer’s n waiting time.
For that reason the terms waiting time distribution for the GI/GI/1 queue and the
queue length distribution for the discrete time queue will be used interchangeably.

Some of the first applications of long-tailed distributions in queueing theory were
done by Cohen [20] and Borovkov [11] for the functions of regular variations.
Cohen derived the asymptotic behavior of the waiting time distribution for the
M /GI/1 queue. This result was extended by Pakes [48] to GI/GI/1 queue and the
whole class of subexponential distributions. In Veraverbeke [56] the same result
was rederived using a random walk technique. Let G and G, represent the
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distribution and its integrated tail distribution for 4,, respectively, (G;(x) =
Jo P[4 > u] du/EA).

Theorem 10.3.1 (Pakes). If G, € & (or G € ¥*), and EA,, < EC,, then

1 o0
P[Qn>x]NmJ P[An>u]duasx—> Q.

X

There are several natural avenues for extending this result. In Willekens and
Teugels [58] and Abate et al. [1] asymptotic expansion refinements to Theorem
10.3.1 were investigated. For extensions of Theorem 10.3.1 to Markov-modulated
M/G/1 queues see Asmussen et al. [4], and to Markov-modulated G/G/1 queues
(equivalently random walks) see Jelenkovi¢ and Lazar [36]. Further extension of
these results to more general arrival processes was obtained in Asmussen et al. [6].
Recently, Asmussen et al. [5] established an asymptotic relationship between the
number of customers in a GI/GI/1 queue and their waiting time distribution.

In the rest of this section recent results are presented on a G/ /GI/1 queue with a
finite buffer and truncated heavy-tailed arrival sequences.

10.3.1 Finite Buffer GI/GI/1 Queue

In engineering network switches it is very common to design them as loss systems.
The main performance measures for these systems are loss probabilities and loss
rates. Unfortunately, there are no asymptotic results in literature that address this
problem under the assumption of long-tailed arrivals. Recently, I investigated this
problem [31, 33].

Here, in Theorem 10.3.2, I present the main result from my earlier work [31]. The
theorem gives an explicit asymptotic characterization of the loss rate in a finite buffer
queue with long-tailed arrivals. This result, in combination with results from
Jelenkovi¢ and Lazar [35], yields a straightforward asymptotic formula for the
loss rate in a fluid queue with long-tailed M /G /oo arrivals (for more details see
Jelenkovi¢ [31, 33]). In addition, I [31, 33] derived an explicit asymptotic
approximation of buffer occupancy probabilities. This approximation is uniformly
accurate for buffer sizes that are away from the buffer boundaries (zero and the
maximum buffer size). Furthermore, as the maximum buffer size increases, the
length of the buffer around the boundaries where the approximation does not apply
stays constant. This precise knowledge of the buffer probabilities allows computa-
tion of various other functionals of the finite buffer queue.

The evolution of a finite buffer queue is defined with the following recursion:

Q§+1 = min((Qg +A4,41 — Cn+l)+9B)v n>0,
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where B is the buffer size. We assume that the queueing process is in its stationary
regime. The loss rate is defined as

4 def
Aﬁ)ss = [E(Qg +An+1 - Cn+1 - B)+'

Theorem 10.3.2. Let G, be the integrated tail distribution of A. If G, € & and
EA < EC, then

B Y EUA-B)T (1 +0(1)) asB— oco.

“loss

HEURISTIC 10.3.4. Following the general heuristics for subexponential distribu-
tions the large buffer overflow is due to one (isolated) large arrival 4,. At the
moment when this happens (say, time #) the queue length process is, because of the
stability condition E4A < EC, typically very small in comparison to B. Similarly, C,
is much smaller than B. Hence, the amount that is lost at the time of overflow is
approximately (0% + 4,,, — C,.; — B)" ~ (4,,, — B)".

Accuracy of Theorem 10.3.2 was demonstrated [31, 33] with many numerical and
simulation experiments. Here, an example is presented.

Example 10.3.5. Take C,=2 and an arrival distribution P[4 =0]= %,
P[4 = i] = 0.461969/i*, i > 0, E4 = 0.5553. Then, we numerically compute the
loss rates iff,ss for the maximum buffer sizes B = 100i, i = 1, ..., 7. The results are
presented with circles in Fig. 10.1. Note that for B = 700 we needed to solve a

0 numerical sol.
+  approximation

-6.0

LOGy( (loss rate)
@

T T T T T
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Buffer size B
Fig. 10.1 [Illustration for Example 10.3.5.
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system of 700 linear equations! In contrast, Theorem 10.3.2 readily suggests an
asymptotic approximation A2 = 0.0767/B2. The approximation is presented on the
same figure with “+” symbols. A precise match is apparent from the figure. In fact,
relative error |20 — 22 /28  for all computed buffers was less than 4%.

10.3.2 Truncated Long-Tailed Arrival Distributions

In this section we investigate the queueing behavior when the distribution of the
arrival sequence has a bounded (truncated) support [32, 34]. This arises quite
frequently in practice when the arrival process distribution has a bounded support
and inside that support is nicely matched with a heavy-tailed distribution (e.g.,
Pareto).

Our primary interest in this scenario is in its possible application to network
control. More precisely, one can imagine network control procedure in which short
network flows are separated from long ones. If the distribution of flows is long-
tailed, this procedure will yield a truncated long-tailed distribution for the short
network flows. Assume that long flows are transmitted separately using virtual
circuits and short flows are multiplexed together. Intuitively, it can be expected that
with short (truncated) flows one can obtain better multiplexing gains than with the
original ones (before the separation). These gains are quantified in Theorem 10.3.6,
which explicitly asymptotically characterizes a unique asymptotic behavior of the
queue length distribution. Informally, this distribution on the log scale resembles a
stair-wave function that has steep drops at specific buffer sizes (see Fig. 10.2). This
has important design implications suggesting that negligible increases of the buffer
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Fig. 10.2 Illustration for Example 10.3.9.
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size in certain buffer regions can decrease the overflow probabilities by orders of
magnitude.
Formally, for each B > 0 construct a sequence of truncated random variables

B __ .
4, = min(4,, B).

Next, consider a single server queue with the arrival process {45, A2, n > 0}, that is,

08 =(0F +40, - C)™. (10.5)

Assume that for all B, Q% is in its stationary regime.

Theorem 10.3.6. IfE4—C) <O, foralln >0, P[C >x] <e™™, >0, and A
has a regularly varying distribution P[4 > x] = I(x)/x", then

h(3) (B!

PIQ® > (k+ &)B] = (EC — EA)~ BEDG-

5(I+o0(1)) asB— oo, (10.6)

where hi(8), 0 <o <1, k=0,1,2,..., are easily computable from

n(6)E J Xl dxy e dgy . (10.7)

0<xj<l,1<i<k+1
X)Xy 1 =0

HEURISTIC 10.3.7. In order that the queue exceeds a large buffer size b = (k + J)B
it is needed that exactly £ + 1 large arrivals (of the order B) occur at approximately
the same time. Since successive arrivals are independent this event is of the order
I(BY*! /B*+De=D)  The detailed proof of this result can be found in Jelenkovi¢ [32].

REMARK 10.3.8. (i) This result is related to Proposition 1 in Resnick and
Samorodnitsky [50], where, under conditions similar to our theorem, a rough
bound for the queue length increment during an activity period of the M /GI /oo
arrival process was derived. (ii) Note that /,(0) is explicitly given by

_ 1 _ o—1
ho(a)_i(a_l)éa_la 5. (10.8)

Now, we illustrate Theorem 10.3.6 with the following example (for more
examples see Jelenkovic [32, 34]).
Example 10.3.9. Parameterize the distribution of 42 as a8 = 1 — p, a® = pd /i**!,
1<i<B-1,d5=1- Zf:ol a;, where d = 1/{(¢+ 1) and {(x) is a Zeta func-
tion. For the choice of arrival parameters B = 300, o = 2.8, and p = 0.3 we compute
d=1/{(a+1)=0.273345, af =0.7, a® =0.0820/""!, 1 <i<B—-1, pf=
0.34086. For these values we numerically invert the z-transform of the queue
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length distribution. These exact values of P[Q® > x] are plotted with a gray line in
Fig. 10.2. The values of approximation (10.6) are plotted on the same figure with
dashed black lines. From the figure we can easily see that the approximation is
almost identical to the exactly computed probabilities.

10.4 FLUID QUEUES AND MULTIPLEXING

Fluid queues with long-tailed characteristics have received significant attention in
the recent queueing literature. The latest survey of the subject can be found in
Boxma and Dumas [14]. In this section some results from Jelenkovi¢ and Lazar [35]
are presented.

The physical interpretation for a fluid queue is that, at any moment of time ¢, fluid
is arriving to the system with rate @, and is leaving the system with rate c,. We term
a, and ¢, to be the arrival and the service process, respectively. Then, the evolution of
the amount of fluid @, (also called queue length) evolves according to

dQ,=(a,—c)dt if Q,>0, ora, >c, (10.9)

and dQ, = 0, otherwise. It is not very difficult to see that, starting from Q, = 0, the
solution Q,, ¢ > 0, to Eq. (10.9) is given by

0, = sup Jt(au —c,) du. (10.10)

O<us<t Ju

And, if a, and ¢, are stationary, Q, is equal in distribution to

P[Q,sxlzp[sup Wusx},

O<u<t
where W,déf fi(au —c¢,) du, t > 0. Now, whenever the stability condition

Ea, < Ec, is satisfied (by Birkhoff’s Strong Law of Large Numbers), P[Q, < x]
converges to a proper probability distribution; that is,

[FD[Q < x]déf ;lim [D[Qt <x]= [FD|: sup Wu Sxi|.

0<u<oo

. f o .
Furthermore, when the difference process x, &t a, — ¢, is driven by a stationary and
ergodic point process {7,,, —00 < n < oo}, that is,

xI:xT,,’ te[Tn7Tn+1)’
then the fluid queue process evolves as

0, =Qr +(—T)xp)", t€[T,. T, (10.11)
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where gt = max(q, 0). From the recursion above, it is clear that the process Q, is
essentially the same as the G/G/1 workload process. Hence, by the fundamental
stability theorem of Loynes there exists a unique stationary solution to Eq. (10.11).
We assume that {Q,, —0o < ¢ < oo} is that stationary solution.

10.4.1 Fluid Queue with a Single On/Off Process

This section presents a complete asymptotic analysis of a fluid queue with a single
subexponential on/off arrival process. A general storage model in a two-state
random environment was investigated by Kella and Whitt [39].

More formally, consider two independent sequences of i.i.d. random variables
(9, n>0}, {z9" n>0}, )T =" =0. Define a point process T,;’ffdéf
S (@™ 42, n > 0; this process will be interpreted as representing the
beginnings of off periods in an on/off process. Furthermore, define an on/off
process a,, with rate r, as

a,=r if TP <i<T" pn>1,
and a, = 0 otherwise.
Then, if we observe the queue at the beginning of on periods, the queue length QF
evolves as follows (P stands for Palm probability [8]).

O =@+ (= —ery™)", n=0. (10.12)

Let F and F be the distribution and the integrated tail distribution, respectively,
of °.

Theorem 104.1. Ifr > c, (r — o)br,, < cbktyg, and Fy € & (or F € S*), then

_ o]
PIO? > x] ~ r—¢ J P > u] du asx — oo.  (10.13)
dEToff - (}’ - C)[Eron x/(r—c)

Proof. Define 4, = (r — ¢)t%" and C, = ¢t and apply Theorem 10.3.1. W

10.4.1.1 Time Averages. At this point, we will compute queue time averages
based on the queue Palm probabilities computed in Theorem 10.4.1. For this we
need a stationary version a} of the on/off arrival process a,. Let 7", —oco <
n < oo, be a stationary point process that represents the beginnings of the on/off
periods, with a convention that 73" < 0 < 77". Then, according to Resnick and
Samorodnitsky [51], the random variable 75" can be represented as —7;" =
B(T‘(’(g +g)+(1 - B)r?on), where the random variables B, ‘EE’(‘f), ‘c‘(’Oﬁ; are independent
of {o%, ‘cgff, n<-—1}, rgff, B is a Bernoulli random variable with
P[B =0]=1—P[B = 1] = Et*"/(Er® 4 Ez°™), and 0 rz’of)f are distributed as
integrated tail distributions of 7°", 1°T, respectively. Furthermore, the net increment
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of the load that comes to the queue in the interval [T}, 0] is given by the following
equation:

0
J (@) —c) dt = B[(r — o)t§" — cx{yi] + (1 — B)(r — o)tly). (10.14)

on
TO

Theorem 10.4.2. Ifr > c, (r — o)br,, < cEtyg, and Fy € & (or F € &%), then

1 o0

P n

PlO, > x] ~ PO, > x] + [ETOff—-i-[E‘EmL/(r_c) Pl > u]du  (10.15)
(o ¢]

NKJ Pz*" > u] du as x — oo, (10.16)
x/(r—c)
where
r—c 1

k= : 10.1
C[ETOff - (r - C)[E'Eon + [E'L'Off + [E,Eon ( 0 7)

REMARK 10.4.3. (i) This theorem improves on known results [16, 51] that were
obtained under the assumption of t°" being regularly varying. (ii) The following
proof can be carried out to establish the relationship between the Palm and time
averages in much more general settings like semi-Markov fluid queues.

Most of the results in this chapter can be found elsewhere and therefore these
proofs are omitted. Here, as an illustration of a subexponential proving technique,
the following proof of Theorem 10.4.2 is presented. This proof is taken from
Jelenkovi¢ and Lazar [35].

Proof. Let {Q,, —00 <t < 0o} be a unique stationary solution to Eq. (10.12).
Then, by using Eq. (10.14), and the independence of B of Oy, t(ff, (), 4", we
obtain

POy > x] =P[Qy > x,B=1]+P[Q, > x, B =0]
= PlO7, + 10" (r —¢) — cr?(g >x,B=1]
+ P[O7, + (r — o)1) > x, B=10]

Eroff on o
= Fron 3 Epor 197, T 7070 —©) —etig) >
Ezon o
+ o Eeon D19, + (0= 1) > 2 (10.18)

(Note that Of = Or,)- Since QO and T(p) are independent and subexponential and
have asymptotically proportional (equivalent) tails, by applying Lemma 5(ii)(A) of
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Jelenkovi¢ and Lazar [35], it follows that
P[Or, + (r — o)t > x] ~ PQ7, > x] + P[(r — o)rip) > x] asx — oo. (10.19)

The independence of 73" and r?(g, and 13" € &, by the definition of long-tailed
distributions it follows that [P[tJ"(r —c¢) — cr?oﬁ)c > x] ~ Pt*(r —¢) > x] =
o(P[Qr, > x]) as x — oo. Subsequently, by applying Lemma 5(i)(A) of Jelenkovi¢
and Lazar [35],

PlOr, + 10" (r —¢) — crz’g > x] ~ P[Qr, > x]) asx— oo. (10.20)

Finally, by replacing asymptotic relations (10.19) and (10.20) in Eq. (10.18), we
obtain Eq. (10.15); combination of Egs. (10.13) and (10.15) gives Eq. (10.16). This
completes the proof. |

10.4.2 Asymptotic Reduced Load Equivalence

In this section we consider multiplexing one long-tailed on/off process with
exponential processes in a fluid queue. In Boxma [12, 13], a precise asymptotics
of the embedded queue distribution was obtained for multiplexing on/off sources,
one of which had regularly varying on periods, while the others had exponentially
distributed on periods. A similar setting with intermediately varying on periods was
investigated in Rolski et al. [52]. Jelenkovi¢ and Lazar [35] observed that this
queueing system is asymptotically interchangeable with a queueing system in which
the on/off process is arriving alone and the exponential processes are replaced by
their mean values. This result has been generalized in Agrawal et al. [2]. The title of
this subsection is borrowed from the title of their paper.

In the remainder of this section, a result from Jelenkovi¢ and Lazar [35] is
presented. In order to state the result, the following definitions are introduced.

Definition 10.4.4. A distribution function F is intermediate regular varying
FedRif

lim liminf F_(iét)
8Ll t—oo F(t)

REMARK 10.4.5. For recent results on distributions of intermediate regular varia-
tion we refer the reader to Cline [19]. Some basic properties of ¥ are: X C &
A C IR. Also, it is not very difficult to see that F# C 9 *S. Therefore, all of the
results obtained in this chapter apply for ##. In addition, directly from the
definition it can be shown that F € SZ |, F(f) dt < 00, = F| € J 4.

Under the general large deviation Girtner—Ellis conditions (see Weiss and
Shwartz [57]) on the arrival process, it can be proved that the queue length
distribution is exponentially bounded. To avoid stating Gértner—Ellis conditions,
we will define an arrival process e, to be exponential, if whenever this process is fed
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into a constant server fluid queue, the queue length distribution is exponentially
bounded.

Definition 10.4.6. We say that a stationary and ergodic arrival process e, is
exponential if for any server capacity ¢ > e, there exists K = K(c¢) and
0 = 0(c) > 0 such that

0
|]3’|:sup J (e, —¢) du > x] < Ke %%,
—t

t>0

REMARK 10.4.7. The main examples when the conditions of this definition are
satisfied (i.e., Gartner—Ellis conditions hold) are finite state space Markov chains or
processes. Also, in terms of the on/off processes the conditions will hold whenever
the distribution of on periods is exponentially bounded and off periods have a finite
mean.

Recall that ' and F| represent the distribution and the integrated tail distribution,
respectively, of an on period. Then, we arrive at the following result (see Jelenkovi¢
and Lazar [35]).

Theorem 10.4.8. Consider a single server queue with a capacity c, and two
independent arrival streams e, and a,. Assume that e, is an exponential process and
a, is an on/off process with rate r, F € J?/?f, and generally distributed off periods
with a finite mean. If E(e, + a,) < ¢, r > ¢ e Ee,, then the queue asymptotics of
this queueing system is equal to the queue asymptotics in which only the on/off
process arrives and the server capacity is replaced by c, that is, it is given by Eq.

(10.16) in which c is replaced by c'.

REMARK 10.4.9. This result is true with exactly the same proof if the assumption of
e, being exponential is replaced with P[sup,-, ff (e, —¢) du > x] = o(F,(x)), for all
c > Ee,.

HEURISTIC 10.4.10. Large buildups in this fluid queue occur due to long and
isolated on periods in @,. During these long on periods the fluctuations in the
exponential arrival stream e, average out, and therefore its contribution to the
asymptotic behavior is only through its mean value.

10.4.3 Multiplexing On/Off Sources

The problem of multiplexing on/off sources arises frequently as the basic model of
contention in multimedia communication systems, as well as in some storage
systems. The analysis of this problem dates back to Rubinovitch [53] and Cohen
[21]. Cohen obtained a complete Laplace transform solution to this problem.
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However, inverting the Laplace transform is usually a very tedious process. Hence,
computationally tractable exact and approximate solution techniques are needed. For
Markovian (fluid) on/off processes a thorough investigation of this problem was
done in Anick et al. [3]. Many other results for multiplexing Markovian on/off
processes followed. These led to the equivalent bandwidth theory for Markovian (or
in general exponentially bounded) arrival processes; extensive references can be
found in Duffield and O’Connell [24], Elwalid et al. [25], and Glynn and Whitt [26].

The analysis of a fluid queue in which more than one long-tailed process is
multiplexed appears to be a very difficult problem. This is due to the fact that the
renewal structure of an aggregate arrival process may be very complex, although the
appearance of each individual process may be truly innocuous (like an on/off
process). The complex autocorrelation structure of the aggregate process obtained by
multiplexing long-tailed on/off processes has been examined in Heath et al. [28].
General bounds for multiplexing long-tailed fluid processes have been derived in
Choudhury et al. [16]. In Poisson scaling the limiting case of an infinite number of
on/off processes converges to the so-called M /GI /oo process. Asymptotic results
for a fluid queue with a heavy-tailed M /GI /oo arrival process have been obtained in
Boxma [12, 13] and Jelenkovi¢ and Lazar [35]. Recently, new results on this model
have been derived in Heath et al. [29] and Resnick and Samorodnitsky [50]. For
various bounds in this context see Nain et al. [46].

10.4.3.1 Activity Period of an M/GI/oo Process. Let T,, n >0, —oco <
n <oo, be a stationary Poisson process with rate A. Define A4 =
Yo W WT, <t <T,+7"), r>0. Note that 4> represents the number of
customers in an M/GI/oo queue; for that reason A?° is usually called an
M /GI /oo process. An important observation is that this process represents a
Poisson limit of a large number of on/off processes. Hence, it can be used as a
good approximation of an aggregate process obtained by multiplexing a large (finite)
number of on/off processes.

An important parameter that in many ways determines the fluid queue perfor-
mance is the length of the arrival process activity period. Let /°>°" be a generic
activity period of an M /GI /oo process.

Theorem 10.4.11. The asymptotics of the distribution of 1°>°" and its integrated
tail are related as follows:

() IfF, €, then

00 on 00
J P > u] du ~ M J Plz*" > u] du ast— oo.

t t
(i) If in addition F € 9%, then

P/ > 1] ~ APl > 1] as t — oo.
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REMARK 10.4.12. For the case of 7" being regularly varying P[t*" > ] =
I(1)/t*, 1 <a <2, this result was obtained in Boxma [12] where Karamata’s
Tauberian/Abelian theorems were used to asymptotically relate 7°°-°" and 7°".

HEURISTIC 10.4.13. Cohen [21] shows that the expected number EN* of on
periods in one activity period is ¥, Hence, by using the basic heuristics that a
long period 7/°>°" occurs due to exactly one long period we can jump into the
conclusion

P > {] ~ EN®P[™ > 1] = AF"P[r > 4].

However, it requires much more to rigorously prove this theorem (see Jelenkovic¢ and
Lazar [35]).

10.4.3.2 Queue Increment During an Activity Period. Let B,, n>1, be a
sequence of random variables representing the total amount of fluid that is brought
to the system during the nth activity period, that is, B, = ft’; AP dt, where ¢4 and £
represent the beginning and end of the nth activity period, respectively. Furthermore,
define D, Lt B, —cl)", 0 < ¢ <r; note that D, = D, is a nonnegative random
variable. If we imagine that 47° represents the rate at which the fluid is arriving to a
fluid queue, and that ¢ is the constant rate at which the queue drains, then D,
represents the queue increment during the nth activity period. In order to derive the
queueing asymptotics, we first have to understand the asymptotic behavior of D,. A
proof of the following result can be found in Jelenkovi¢ and Lazar [35].

Theorem 10.4.14. Consider an M /GI /oo arrival process with on periods being
regularly varying P[t°" > x] = I(x)/x*, a > 1, where o is noninteger. If 0 < c <r,
then

X

AEz"
PID, > x]~ e P[f°“ ~ o+ rAEr — ¢

:| as x — oo. (10.21)

REMARK 10.4.15. Recently in Resnick and Samorodnitsky [50] it was shown that
this result holds under a more general condition of 7°" being intermediately regularly
varying and 0 < ¢ < r 4+ rAE®".

10.4.3.3 Queueing Asymptotics. Let QF® be the queue size observed at the
beginning of the nth activity period of the M /GI /oo arrival process.

Theorem 10.4.16. Let p = EAX = ArEt®™ < c. If ¢ <r, and " is regularly
varying with noninteger exponent o > 1, then

P, oo
D e Pl i)
200 [ piro P > ul du c—p
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Proof. Denote with 4, =D,,,, C, = clS%, use E(C, — 4,) = & (c — p)/A

n n o

and apply Theorem 10.3.1. |

In the next theorem, under more general assumptions, we obtain a tight lower
bound for the fluid queue asymptotics with M /GI /oo arrivals (see Jelenkovi¢ and
Lazar [35]). For this fluid queue we denote its queue content process as O7°. It was
conjectured [35] that the following bound represents actually the exact asymptotics.
Theorem 10.4.17. Let pdéf[EA,w’s =ArEt®™ <c. If r+p > c, and t™ € IR,
then

P[O* > x] - Ar

lim inf .
e T Pl > u]ldu — c—p

e L/(,,er,c)

10.4.3.4 M/G/oo Approximation: Simulation Results. Based on Theorems
10.4.16 and 10.4.17, it is suggested that the queueing probabilities obtained by
multiplexing N long-tailed on/off processes @/, 1 <i < N, are approximated as

A o0
PIOY > x] ~ i”J P > u] du, (10.22)
Cn x/(r—cy)

where ¢y e N Eal, and Ay =Y Ea./(rEx™). This approximation is termed an
M /G /oo approximation. This approximation is to be used when the queue is stable
and r + (N — DEa > c is satisfied.

For simulation purposes we consider a discrete-time “fluid” queue. Correspond-
ingly, we replace exponential off periods with geometrically distributed random
variables P[t°" = /] = p(1 — p)'~!, t=1,2, 3, . ... For on periods we consider the
Pareto family P[t** > ¢f]=1/t*, t=1,2,...,a > 0. Here, for the discrete Pareto
case we use

Ayr a1 _—s
PO} =] %—CN (r—cy)'x7, (10.23)
N

where ¢y, and Ay are as defined earlier.
The efficacy of the approximation (10.23) is illustrated in the following simula-
tion experiment (for additional experiments see Jelenkovi¢ and Lazar [35]).

Example 10.4.18. Choose p =0.05, « =3, r =2, ¢=3. This gives Et°" =
1.202, and Ea! = 0.113. Then, for N = 20, 25 processes, the approximations are
given by f/x3, B = 4.14, 48.04, respectively. The desirable closeness between the
simulation results and the approximations is represented in Fig. 10.3. It is interesting
to observe that in this case the peak rate of each individual process is smaller than
the capacity of the server.
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Fig. 10.3 Illustration for Example 10.4.18.

Note that in this experiment, for the case of N = 20 processes, the probabilities
are very small (107%). Hence, in order to achieve reasonable simulation accuracy,
we had to choose a very large number (10°) of simulated on/off intervals. This
means that the aggregate process was approximately 2 x 10'" samples long. The
simulation of this case took 77 hours on a modern (200 MIPS) IBM workstation. On
the other hand, it is needless to say that the evaluation of Eq. (10.23), or Eq. (10.22),
only takes a negligible amount of time!

10.5 CONCLUSION

In this chapter a variety of asymptotic results for queues with subexponential
characteristics were presented. All of these results are explicit, insightful, and, as
demonstrated with numerical examples, accurate. Due to these desirable character-
istics, these results could be of practical use in designing future communication
networks that will be able to carry efficiently and reliably bursty multimedia traffic.
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