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ABSTRACT: Caching is widely recognized as an effective mechanism for improving the perfor-
mance of the World Wide Web. One of the key components in engineering the Web caching systems
is designing document placement/replacement algorithms for updating the collection of cached docu-
ments. The main design objectives of such a policy are the high cache hit ratio, ease of implementation,
low complexity and adaptability to the fluctuations in access patterns. These objectives are essen-
tially satisfied by the widely used heuristic called the least-recently-used (LRU) cache replacement
rule. However, in the context of the independent reference model, the LRU policy can significantly
underperform the optimal least-frequently-used (LFU) algorithm that, on the other hand, has higher
implementation complexity and lower adaptability to changes in access frequencies.

To alleviate this problem, we introduce a new LRU-based rule, termed the persistent-access-
caching (PAC), which essentially preserves all of the desirable attributes of the LRU scheme. For this
new heuristic, under the independent reference model and generalized Zipf’s law request probabilities,
we prove that, for large cache sizes, its performance is arbitrarily close to the optimal LFU algorithm.
Furthermore, this near-optimality of the PAC algorithm is achieved at the expense of a negligible
additional complexity for large cache sizes when compared to the ordinary LRU policy, since the PAC
algorithm makes the replacement decisions based on the references collected during the preceding
interval of fixed length. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 00, 000–000, 2008
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1. INTRODUCTION

Since the invention of the World Wide Web (WWW), there have been an explosive growth in
multimedia information content and services that include data, audio, video, software down-
loads, remote service hosting, etc. These distributed multimedia content and services are
now an integral part of modern communication networks (e.g., the Internet) and, therefore,
are redefining the role of networking to incorporate the storage and service of information,
in addition to the traditional task of information transfer. Since network information and its
access are massively distributed, and the same content is repeatedly used by groups of users,
it is clear that bringing some of the more popular items closer to end-users can improve the
network performance, e.g., reduce the download latency and network congestion. This type
of information replication and redistribution system is often termed Web caching.

One of the key components of engineering efficient Web caching systems is designing
document placement/replacement algorithms that are selecting and possibly dynamically
updating a collection of frequently accessed documents. The design of these algorithms
has to be done with special care since the latency and network congestion may actually
increase if documents with low access frequency are cached. Thus, the main objective is
to achieve high cache hit ratios, while maintaining ease of implementation and scalability.
Furthermore, these algorithms need to be self-organizing and robust since the document
access patterns exhibit a high degree of spatial as well as time fluctuations.

The well-known heuristic named the least-recently-used (LRU) cache replacement rule
satisfies all of the previously mentioned attributes and, therefore, represents a basis for
designing many practical replacement algorithms. However, as shown in [10] in the context
of the stationary independent reference model with generalized Zipf’s law requests, this
rule is by a constant factor away from the optimal frequency algorithm that keeps in the
cache most frequently used documents, i.e., replaces least-frequently-used (LFU) items.
On the other hand, the drawback of the LFU algorithm is that it needs to know (measure)
the document access frequencies and employ aging schemes based on reference counters
to cope with evolving access patterns, which results in high complexity. In the context of
database disk buffering, [16] proposes a modification of the LRU policy, called LRU-K, that
uses the information of the last K reference times for each document to make replacement
decisions. It is shown in [16] that the fault probability of the LRU-K policy approaches, as K
increases, the performance of the optimal LFU scheme. However, practical implementation
of the LRU-K policy would still be of the same order of complexity as the LFU rule.
Furthermore, for larger values of K, that might be required for nearly optimal performance,
the adaptability of this algorithm to changes in traffic patterns will be significantly reduced.

In this article we design a new LRU-based policy, termed the persistent-access-caching
(PAC) rule, that essentially preserves all the desirable features of LRU caching, while
achieving arbitrarily close performance to the optimal LFU algorithm. Furthermore, the
PAC algorithm has only negligible additional complexity in comparison to the widely used
LRU policy. We analyze the PAC replacement scheme with i.i.d. requests that arrive at
Poisson time points. If a requested document at time t, say i, is not found in the cache, it is
placed inside only if it is requested more than k−1 times in interval (t−β, t). The parameters
k and β are the fixed design values of the PAC algorithm, whose detailed description will
be provided in the following section. In view of recent empirical studies (e.g., see [2]), we
assume that the popularities of Web documents follow generalized Zipf’s law distribution. To
this end, when the frequency of requesting a page i is equal to the generalized Zipf’s law c/iα ,
α > 0, we prove that the cache fault probability asymptotically approaches, as k increases,
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the performance of the optimal LFU algorithm. It is surprising that even for the small values
of k, the performance ratio between the PAC and optimal algorithms significantly improves
when compared to the ordinary LRU; for example, in the case of α > 1, this ratio drops
from approximately 1.78 for k = 1 to 1.18, 1.08 for k = 2, 3, respectively. Furthermore,
we show that the derived asymptotic results and simulation experiments match each other
very well, even for relatively small cache sizes.

Our analytical approach uses probabilistic (average-case) analysis that exploits the novel
large deviation technique and asymptotic results that were recently developed in [10, 12].
The computation of the LRU fault probability is mathematically equivalent to the evaluation
of the search cost distribution for the related move-to-front (MTF) searching scheme. For
recent work on average case analysis of MTF and LRU algorithms see [7,8,10,12,17] and
the references therein. For an alternative combinatorial (competitive) approach to analyzing
LRU caches the reader can consult [4, 15] and the references therein.

This article is organized as follows. In Section 2, we formally describe the PAC pol-
icy with a Poisson reference model. Then, using the Poisson decomposition/superposition
properties, we develop a representation theorem for the stationary search cost of the related,
persistent move-to-front algorithm. This representation formula, in conjunction with the
results on Poisson processes derived in Subsection 2.1, provides the starting point for prov-
ing our main theorems in Section 3. Informally, our main results show that for large cache
sizes, independent reference model, and generalized Zipf’s law request distributions, the
fault probability of the PAC algorithm approaches the optimal LFU policy, while using a
negligible additional complexity. Furthermore, in Section 4, extensive numerical experi-
ments show an excellent agreement between our analytical results and simulations. The
article is concluded in Section 5 with a brief discussion of our results and their possible
extensions.

2. MODEL DESCRIPTION AND PRELIMINARY RESULTS

Consider a set L = {1, 2, . . . , N} of N documents (possibly infinite), out of which x can
be stored in an easily accessible location, called cache. The remaining N − x documents
(items) are placed outside of the cache in a slower access medium. Documents are requested
at moments {τn}n≥1 that represent a positive increasing sequence of Poisson points of unit
rate. Furthermore, define a sequence of i.i.d. random variables {Rn}n≥1, independent from
{τn}n≥1, where {Rn = i} represents a request for item i at time τn. We denote request
probabilities as P[Rn = i] = qi and, without loss of generality, we assume q1 ≥ q2 ≥ . . .;
let M(qi)(u, t) be the number of requests for item i in an open interval (u, t). Documents
stored in the cache are ordered in a list, which is sequentially searched upon a request
for a document and is updated as follows. If a requested document at the moment τn, say
i, is found in the cache, we have a cache hit. In this case, if M(qi)(τn − β, τn) ≥ k − 1,
item i is moved to the front of the list while documents that were in front of item i are
shifted one position down; otherwise, the list stays unchanged. Furthermore, if document
i is not found in the cache, we call it a cache miss or fault. Then, similarly as before, if
M(qi)(τn − β, τn) ≥ k − 1, document i is brought to the first position of the cache list and
the least recently moved item, i.e., the one at the last position of the list, is evicted from the
cache. Previously described cache replacement policy is termed PAC(β, k) algorithm. Note
that β, k are fixed design parameters. The performance measure of interest is the cache fault
probability, i.e., the probability that a requested document is not found in the cache.
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Analyzing the PAC(β, k) algorithm is equivalent to investigating the corresponding MTF
scheme that is defined as follows. Consider a list L = {1, 2, . . . , N} and a process of
requests for documents determined by {Rn}n≥1 and {τn}n≥1 as in the preceding paragraph.
When a request for a document arrives, say Rn = i, the list is searched and the requested
item is moved to the front of the list only if M(qi)(τn − β, τn) ≥ k − 1; otherwise the
list stays unchanged. Previously described searching algorithm is termed persistent-MTF,
PMTF(β, k). The performance measure of interest for this algorithm is the search cost C(N)

n

that represents the position of the requested document at time τn.
Now, we claim that computing the cache fault probability of the PAC(β, k) algorithm

is equivalent to evaluating the tail of the searching cost C(N)
n of the PMTF(β, k) searching

scheme. Note that the fault probability of the PAC(β, k) algorithm stays the same regardless
of the ordering of documents in the slower access medium. In particular, these documents
can also be ordered in an increasing order of the last times they are moved to the front
of the cache list. Therefore, it is clear that the fault probability of the PAC(β, k) policy
for the cache of size x after the nth request is the same as the probability that the search
cost of the PMTF(β, k) algorithm is greater than x, i.e., P[C(N)

n > x]. Hence, even though
PAC(β, k) and PMTF(β, k) belong to different application areas, their performance analysis
is essentially equivalent. Thus, in the rest of the article we investigate the tail of the stationary
search cost distribution.

First, we prove the convergence of the search cost C(N)
n to stationarity. Suppose that the

system starts at t = 0 with initial conditions given by an arbitrary initial permutation �0

of the list and a sequence of requests R0 = {(τ0i, R0i)}i≥1 in interval (−β, 0); τ0i ∈ (−β, 0)

is the time of the ith initial request R0i. Denote the sequence of time points of requests for
document i as {τ (qi)

n }n≥1. Then, by the assumptions on the request process {Rn}, arrival times
{τn}, and Poisson decomposition theorem, we conclude that processes {τ (qi)

n }n≥1, i ≥ 1, are
Poisson and independent.

To prove the convergence of C(N)
n to stationarity, we define another process of Poisson

points of unit rate on the negative part of the real line {τ−n}n≥0 and set τ0 = 0. Also, we
define a sequence of i.i.d. random variables, {R−n}n≥0, independent from {τ−n}n≥0, where
P[R−n = i] = qi. Now, for each n we construct a PMTF(β, k) algorithm starting at τ−n, with
a sequence of requests {R−m : m = 0, 1, . . . , n − 1} at times {τ−m : m = 0, 1, . . . , n − 1}
and having the same initial condition as in the previous paragraph, given by �0 and R0 in
interval (τ−n − β, τ−n); let C(N)

−n be the search cost at τ0. Note that in this construction we
assume that for the PMTF(β, k) algorithm starting at τ−n there is no request at time τ−n. Now,
if we consider the shift mapping Rn−k → R−k and τn−k → τ−k for k = 0, 1, . . . , n − 1, we
conclude that, since the corresponding sequences are equal in distribution, the search costs

C(N)
−n and C(N)

n are also equal in distribution, i.e., C(N)
n

d= C(N)
−n . Thus, instead of computing

the tail of the search cost C(N)
n , we continue with evaluating the tail of C(N)

−n . In this regard,
we define a sequence of stopping times {T (−n)

i }n≥1, where −T (−n)

i represents the last time
before t = 0 that item i was moved to the front of the list in the case of the PMTF(β, k)

algorithm that started at τ−n; if item i is not moved in (τ−n, 0), we set T (−n)

i = −τ−n. Next,
we define stopping times Ti, i ≥ 1, as

Ti � − sup
{
τ

(qi)−n < 0 : τ
(qi)−n − τ

(qi)
−n−k+1 < β

}
, (1)

where process {τ (qi)−n }n≥0 contains the moments of requests for document i; again, from
the assumptions on the request process {R−n}n≥0 and arrival times {τ−n}n≥0, by Poisson
decomposition theorem, processes {τ (qi)−n }n≥1, i ≥ 1, are Poisson and mutually independent.
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Next, from the definitions of Ti and T (−n)

i , we conclude that equality Ti = T (−n)

i a.s. holds
on {T (−n)

i < −τ−n − β}. Therefore, the complementary sets of events are the same, i.e.,
{Ti ≥ −τ−n − β} = {T (−n)

i ≥ −τ−n − β}. Then, given the previous observations, we bound
the tail of the search cost C(N)

−n as

P
[
C(N)

−n > x, R0 = i,T (−n)

i < −τ−n − β
] ≤ P

[
C(N)

−n > x, R0 = i
]

≤ P
[
C(N)

−n > x, R0 = i, T (−n)

i < −τ−n − β
]

+ P
[
C(N)

−n > x, R0 = i, T (−n)

i ≥ −τ−n − β
]
. (2)

Next, since on event {R0 = i, T (−n)

i < −τ−n − β} the search cost C(N)
−n is equal to the

number of different documents that are moved to the front of the list from the last time that
item i was brought to the first position (including i), we derive

P
[
C(N)

−n > x, R0 = i, T (−n)

i < −τ−n − β
]

= P

[
R0 = i,

∑
j �=i

1
[
T (−n)

j < T (−n)

i < −τ−n − β
] ≥ x

]

= qiP

[∑
j �=i

1[Tj < Ti < −τ−n − β] ≥ x

]
,

where the last equality follows from the independence of processes {R−n}n≥1 and {τ−n}n≥0

and Ti = T (−n)

i , i ≥ 1, on {Ti < −τ−n − β}. Thus, since −τ−n → ∞ a.s. as n → ∞, we
conclude, by the monotone convergence theorem,

lim
n→∞

N∑
i=1

P
[
C(N)

−n > x, R0 = i, Ti < −τ−n − β
] =

N∑
i=1

qiP

[∑
j �=i

1[Tj < Ti] ≥ x

]
. (3)

Next, note that

P[Ti ≥ −τ−n − β] ≤ P[Ti > n(1 − ε)] + P[−τ−n ≤ n(1 − ε) + β]. (4)

Then, due to the strong law of large numbers, since β is a finite constant,

lim
n→∞ P[−τ−n ≤ n(1 − ε) + β] = 0. (5)

Furthermore, since Ti < ∞ a.s., we obtain

lim
n→∞ P[Ti > n(1 − ε)] = 0. (6)

Finally, equality of the events {T (−n)

i ≥ −τ−n − β} = {Ti ≥ −τ−n − β}, independence of
processes {R−n}n≥0 and {τ−n}n≥0 and (4) imply

lim
n→∞

N∑
i=1

P
[
R0 = i, T (−n)

i ≥ −τ−n − β
] ≤ lim

n→∞ P[−τ−n ≤ n(1 − ε) + β]

+ lim
n→∞

N∑
i=1

qiP[Ti > n(1 − ε)] = 0,

Random Structures and Algorithms DOI 10.1002/rsa
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where in the last equality we applied (5), (6) and the monotone convergence theorem. The
previous expression, in conjunction with (3) and (2), implies the following result:

Lemma 1. For any 1 ≤ N ≤ ∞, arbitrary initial conditions (�0, R0) and any x ≥ 0,
the search cost C(N)

n converges in distribution to C(N) as n → ∞, where

P[C(N) > x] �
N∑

i=1

qiP[Si(Ti) ≥ x] (7)

and Si(t) �
∑

j �=i 1[Tj < t], i ≥ 1.

Remark 1. Note that the assumption of Poisson request times is crucial for the analysis
of the PAC algorithm. In particular, if requests are i.i.d., the Poisson assumption implies the
independence of the stopping times Ti, 1 ≤ i ≤ N . Otherwise, if the request times are not
Poisson, e.g., discrete time arrivals, these variables may not be independent, which would
make the analysis possibly intractable. The Poisson embedding technique for LRU policy
with i.i.d. requests was first introduced in [7].

To evaluate the tail of the stationary search cost C(N), we need estimates for random
times Ti, i ≥ 1. In the next section we prove both lower and upper bounds for Ti, which we
use to prove our main results in Section 3.

2.1. Preliminary Results on Poisson Processes

Let {τ (q)
n }n≥1 be a positive increasing sequence of Poisson points with rate q and let M(q)(u, t)

be the number of Poisson points in an open interval (u, t). Now, we investigate the distri-
bution of the first time T such that the interval [T , T + β) contains at least k ≥ 1 Poisson
points, i.e.,

T � inf
{
τ (q)

n : τ
(q)

n+k−1 − τ (q)
n < β

}
. (8)

Throughout the article H denotes a sufficiently large positive constant, while h denotes a
sufficiently small positive constant. The values of H and h are generally different in different
places. For example, H/2 = H, H2 = H, H + 1 = H, etc.

Lemma 2. For any ε > 0, there exists q0 > 0, such that for all 0 < q ≤ q0, t ≥ 0,

P[T > t] ≤ e− qkβk−1

(k−1)! (1−ε)t + 2e−hεqk−1t . (9)

Proof. For k = 1 the bound trivially holds since T ≡ τ
(q)

1 and, thus, we assume that k ≥ 2.
To prove the upper bound in (9), we sample the sequence {τ (q)

n } and use the fact that the
stopping time T , as defined in (8), can only increase when a subset of points is removed
from the original process.

Let {τ (q,d)
n }n≥1 be a process obtained from {τ (q)

n }n≥1 by deleting some of the points accord-
ing to the following rule. Starting at the first point τ

(q)

1 , if the interval (τ
(q)

1 , τ (q)

1 + β)

contains strictly less than k − 1 points (excluding the point τ
(q)

1 ), we delete all the points
in (τ

(q)

1 , τ (q)

1 + β). Otherwise, we leave the interval (τ
(q)

1 , τ (q)

1 + β) unchanged. Next, we
repeat exactly the same procedure starting from the first point, say τ

(q)

i , after time τ
(q)

1 + β.
Following time τ

(q)

i + β we continue repeating this procedure indefinitely. The remaining

Random Structures and Algorithms DOI 10.1002/rsa
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(undeleted) points are enumerated in their increasing order as {τ (q,d)
n }n≥1. Now, let TU be

defined by (8) for the sequence {τ (q,d)
n }n≥1 instead of {τ (q)

n }n≥1. Since the sequence of points
{τ (q,d)

n }n≥1 is a subset of {τ (q)
n }n≥1, it is clear that

T ≤ TU . (10)

Now, we compute the distribution of TU . Let X be a random variable independent of
{τ (q)

n }n≥1 with a geometric distribution P[X = i] = (1 − p)i−1p, i ≥ 1, where p is defined as

p � P[M(q)(0, β) ≥ k − 1].
Then, we claim that

TU
d= τ

(q)

X + β(X − 1), (11)

where
d= represents equality in distribution. This equality follows from the construction of

the sequence {τ (q,d)
n }n≥1 and the memoryless property of the Poisson process. In this regard,

if the interval (τ
(q)

1 , τ (q)

1 + β) contains more or equal to (k − 1) points, then TU = τ
(q)

1 and
the probability of this event is P[M(q)(τ

(q)

1 , τ (q)

1 +β) ≥ k −1] = P[M(q)(0, β) ≥ k −1] = p.
Next, if (τ

(q)

1 , τ (q)

1 +β) contains less than (k −1) points, then TU > τ
(q)

1 +β since we deleted
all the points in (τ

(q)

1 , τ (q)

1 + β), and that happens with pobability 1 − p. Then, due to the
memoryless property of the Poisson process, the first point τ

(q,d)

2 of {τ (q,d)

i } after (τ
(q)

1 + β)

is at an exponential distance from (τ
(q)

1 +β). Furthermore, since the number of points of the
Poisson process in nonintersecting intervals of the same length is independent and equally
distributed, the probability that the interval (τ

(q,d)

2 , τ (q,d)

2 + β) contains more or equal to

(k − 1) points of the process {τ (q)
n }n≥1 is again p, and on this event TU = τ

(q,d)

2
d= τ

(q)

2 + β.
Clearly, by repeating this argument one derives (11).

Next, since τ
(q)

X is the sum of X exponential random variables and X is independent of
{τ (q)

n }n≥1, then it is easy to show (see Theorem 5.3, p. 89 of [5]) that τ
(q)

X is also exponential
with parameter pq. It is also straightforward to derive for any ε > 0 and all q ≤ q0 ≡
− log(1 − ε/2)/β

p = P[M(q)(0, β) ≥ k − 1] ≥ P[M(q)(0, β) = k − 1]
= e−qβ (qβ)k−1

(k − 1)! ≥ (1 − ε/2)
(qβ)k−1

(k − 1)! . (12)

At this point, using the observations from the previous paragraph, (10) and (11), we
obtain, for all q small enough (q ≤ q0),

P[T > t] ≤ P[TU > t]
≤ P

[
τ

(q)

X >
(

1 − ε

2

)
t
]

+ P

[
βX >

ε

2
t
]

≤ e−pq
(

1− ε
2

)
t + (1 − p)

ε
2 t
β

−1

≤ e− qkβk−1

(k−1)! (1−ε)t + 2e−hεqk−1t , (13)

where in the last inequality we applied the bound 1 − x ≤ e−x, x ≥ 0 and assumed that q0

is small enough such that 1/(1 − p) ≤ 2. This completes the proof.

Next, we will prove the lower bound for the stopping time T defined in (8).

Random Structures and Algorithms DOI 10.1002/rsa
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Lemma 3. For any ε > 0, there exists q0 > 0 such that for all 0 < q ≤ q0, t ≥ 0,

P[T > t] ≥ e− qkβk−1

(k−1)! (1+ε)t . (14)

Proof. Since the bound is immediate for k = 1, we assume k ≥ 2. The main idea behind
proving the lower bound in (14) is to split the time horizon into nonintersecting intervals,
where the event {τ (q)

n+k−1 − τ (q)
n < β} can happen only inside an interval. In that case, the

stopping time T is lower bounded by the time at the beginning of the interval containing T .
The detailed procedure is presented below.

First, we relabel points {τ (q)
n }n≥1 as {τ (q)

n (i) ≡ τ (q)
n (i, ω)}n≥1 using the following procedure.

Let τ
(q)

1 (0) = τ
(q)

1 and define a stopping time

Z1 = inf
{
i ≥ 1 : M(q)

(
τ

(q)

1 (0) + (i − 1)β, τ (q)

1 (0) + iβ
) = 0

}
.

Then, all the points in the interval (τ
(q)

1 (0), τ (q)

1 (0) + βZ1) are labeled as τ
(q)

1 (i), 1 ≤ i ≤
M(q)(τ

(q)

1 (0), τ (q)

1 (0) + βZ1). Next, the first Poisson point after time τ
(q)

1 (0) + βZ1 is named
τ

(q)

2 (0) and, similarly as before, we define a stopping time

Z2 = inf
{
i ≥ 1 : M(q)

(
τ

(q)

2 (0) + (i − 1)β, τ (q)

2 (0) + iβ
) = 0

}
.

Again, all the points in the interval (τ
(q)

2 (0), τ (q)

2 (0) + βZ2) are labeled as τ
(q)

2 (i), 1 ≤ i ≤
M(q)(τ

(q)

2 (0), τ (q)

2 (0) + βZ2). We continue this procedure indefinitely. Note that, due to the
Poisson memoryless property, the sequence of stopping times {Zi} is i.i.d. with geometric
distribution

P[Zi = j] = (P[M(q)(0, β) > 0])j−1
P[M(q)(0, β) = 0]. (15)

Next, we define for n ≥ 1 sets

An �
{
ω : τ (q)

n (i + k − 1) − τ (q)
n (i) ≤ β, 0 ≤ i ≤ M(q)

(
τ (q)

n (0), τ (q)
n (0) + βZn

)}
.

Then, using the definition of τ (q)
n (i), we show that

T = inf
{
τ (q)

n (i, ω) : ω ∈ An, n ≥ 1, 0 ≤ i ≤ M(q)
(
τ (q)

n (0), τ (q)
n (0) + βZn

)}
≥ TL � inf

{
τ (q)

n (0, ω) : ω ∈ An, n ≥ 1
}
, (16)

where the equality follows from |τ (q)
n (i) − τ (q)

m (j)| > β, for any n �= m, and the inequality
is implied by τ (q)

n (i) ≥ τ (q)
n (0) for any n ≥ 1.

Furthermore, we claim that

TL

d≥ τ
(q)

XL
, (17)

where XL is independent of {τ (q)
n } and has geometric distribution P[XL = j] = (1 − p)j−1p,

j ≥ 1, with success probability

p = P[An] ≤ P[{M(q)(0, β) ≥ k − 1} ∪ {M(q)(0, βZ1) ≥ k}]
(note that this p is different from the one in the proof of Lemma 2). The inequality in
(17) follows from the memoryless property of the Possion process, the definition of Zi and
the observation that we can always reduce the value of the stopping time TL by excluding
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the intervals of length βZi from its calculation. Furthermore, similarly as in the proof of
Lemma 2, τ

(q)

XL
is an exponential random variable with distribution

P
[
τ

(q)

XL
> t

] = e−pqt . (18)

Thus, to complete the proof, we need an upper bound on p. In this respect, using the union
bound, we upper bound the success probability p as

p ≤ P[{M(q)(0, β) ≥ k − 1} ∪ {M(q)(0, βZ1) ≥ k}]
≤ P[M(q)(0, β) ≥ k − 1] + P[M(q)(0, βZ1) ≥ k]
≤ P[M(q)(0, β) ≥ k − 1] + P[Z1 > k] + P[M(q)(0, βk) ≥ k]
= P[M(q)(0, β) ≥ k − 1] + P[M(q)(0, β) > 0]k + P[M(q)(0, βk) ≥ k], (19)

where in the last equality we used the geometric distribution of Z1 from (15). Finally, (16),
(17), (18), and (19), in conjunction with

P[M(q)(0, β) ≥ m] ≤ (qβ)m

m!
∞∑

i=0

(qβ)i ≤ (1 + ε)
(qβ)m

m!

for any ε > 0 and all q ≤ ε/(β(1 + ε)), yield the stated bound in the lemma.

3. MAIN RESULTS

In this section we derive our main results in Theorems 1, 2, and 3, where we estimate the
asymptotics of the tail of the stationary search cost C(N) for α being greater, less and equal
to one, respectively. Our method of proof uses probabilistic and sample path arguments
introduced in [12] for the case of the ordinary LRU (PAC(β, 1)) algorithm. The starting
point of our analysis is given by the representation formula in (7) from Section 2.

In this article we are using the following standard notation. For any two real func-
tions a(t) and b(t) and fixed t0 ∈ R ∪ {∞} we will use a(t) ∼ b(t) as t → t0

to denote limt→t0 [a(t)/b(t)] = 1. Similarly, we say that a(t) � b(t) as t → t0 if
lim inf t→t0 a(t)/b(t) ≥ 1; a(t) � b(t) has a complementary definition.

In the following theorem, we assume that N = ∞ and denote C ≡ C(∞).

Theorem 1. Assume that qi ∼ c/iα as i → ∞ and α > 1. Then, as x → ∞,

P[C > x] ∼ Kk(α)P[R > x], (20)

where

Kk(α) �
[
�

(
1 − 1

αk

)]α−1

�

(
1 + 1

k
− 1

αk

)
. (21)

Furthermore, function Kk(α) is monotonically increasing in α for fixed k with

lim
α↓1

Kk(α) = 1, lim
α↑∞

Kk(α) = Kk(∞) � 1

k
�

(
1

k

)
eγ /k , (22)
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Fig. 1. Function Kk(α) for k = 1, 2, 3.

where γ is the Euler constant, i.e., γ ≈ 0.57721 . . . , and Kk(α) is monotonically decreasing
in k for fixed α with

lim
k→∞

Kk(α) = 1. (23)

Remark 2. (i) It is well known that, in the case of the independent reference model,
the static algorithm that stores the most popular documents in the cache is optimal. For
direct arguments that justify this intuitively obvious statement see the first paragraph of
Subsection 4.1 in [13]; this is also recently shown in [3] using the formalism from Markov
decision theory. Therefore, P[R > x] is the fault probability of the optimal static policy
and P[C > x]/P[R > x] is an average-case competitive ratio between the performances
of the PAC and optimal algorithms. (ii) Figure 1 shows the significant improvements in
the performance of the PAC(β, k) algorithm for k = 1, 2, 3 when compared to the optimal
static policy. Note that already for k = 3 the PAC policy performs approximately within the
8% of the optimal static algorithm, which implies near optimality of the PAC rule even for
relatively small values of k. (iii) The asymptotic result in the present form, using alternative
approach that exploits the Tauberian technique for inverting the Laplace transform was
originally derived in [10] for the ordinary LRU.

In the proofs of the following theorems we use results proved in Lemma 2 of [10] and
Lemma 4 of [12] that are, for the reasons of convenience, stated in Lemmas 4 and 5 of the
Appendix.

Proof. First, we prove the upper bound for the asymptotic relationship in (20). Define the
sum of indicator functions S(t) �

∑∞
j=1 1[Tj < t]; note that S(t) is nondecreasing in t, i.e.,

S(t) ≤ S(t0(x)) for all t ≤ t0(x), where t0(x) is a positive function of x that we select later.
Then, after conditioning on Ti being larger or smaller than t0(x), the expression in (7) can
be upper bounded as

P[C > x] ≤ P[S(t0(x)) > x] +
∞∑

i=1

qiP[Ti ≥ t0(x)], (24)
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where in the previous expression we applied
∑∞

i=1 qi = 1 and P[S(t) > x] ≤ 1. Next, from
the assumption of the theorem and Lemma 3, it follows that for any ε > 0 there exists
j0 such that for all j ≥ j0 the bound (14) holds and, therefore, we can upper bound the
expectation of the sum S(t) as

ES(t) =
∞∑

j=1

P[Tj < t]

≤ j0 +
∞∑

j=1

(
1 − e− (qj )

kβk−1

(k−1)! (1+ε)t

)
.

Next, using the preceding bound and Lemma 4 of the Appendix, we conclude that, as
t → ∞,

ES(t) � �

(
1 − 1

αk

)
c

1
α β

k−1
αk

((k − 1)!) 1
αk

(1 + ε)
1
αk t

1
αk . (25)

Similarly, Lemma 2 implies that for every ε > 0 and all i large enough (i ≥ i0), inequality
(9) holds and, therefore,

ES(t) ≥

⌊
Ht

1
αk

⌋∑
i=i0

(
1 − e− (qi)

kβk−1(1−ε)

(k−1)! t − 2e−hε(qi)
k−1t

)

≥

⌊
Ht

1
αk

⌋∑
i=i0

(
1 − e− (qi)

kβk−1(1−ε)

(k−1)! t
)

−

⌊
Ht

1
αk

⌋∑
i=i0

2e−hε(qi)
k−1t . (26)

Then, by assumption of the theorem, for all i large enough (i ≥ i0, where i0 is possibly
larger than in (26))

(1 − ε)c/iα < qi < (1 + ε)c/iα , (27)

and, therefore, after lower bounding the second sum in (26), we obtain, as t → ∞,

ES(t) ≥

⌊
Ht

1
αk

⌋∑
i=i0

(
1 − e

− (1−ε)k+1ckβk−1t
iαk (k−1)!

)
− 2Ht

1
αk e

−hε
(1−ε)k−1ck−1

Hα(k−1)
t
1− k−1

k

=

⌊
Ht

1
αk

⌋∑
i=i0

(
1 − e

− (1−ε)k+1ckβk−1t
iαk (k−1)!

)
+ o

(
t

1
αk

)

=
∞∑

i=i0

(
1 − e

− (1−ε)k+1ckβk−1t
ikα(k−1)!

)
−

∞∑
i=

⌊
Ht

1
αk

⌋
+1

(
1 − e

− (1−ε)k+1ckβk−1t
iαk (k−1)!

)
+ o

(
t

1
αk

)
.

(28)
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Now, after defining L � ckβk−1(1 − ε)k+1/(k − 1)! and using the inequality 1 − e−x ≤ x
for all x ≥ 0, we derive

lim
t→∞

1

t
1
αk

∞∑
i=

⌊
Ht

1
αk

⌋
+1

(
1 − e

− ckβk−1(1−ε)k+1t
iαk (k−1)!

)
≤ lim

t→∞
L

t
1
αk −1

∫ ∞

Ht
1
αk

1

uαk
du

= L

αk − 1

1

Hαk−1
→ 0 as H → ∞,

and, therefore, in conjunction with (28) and Lemma 4 of the Appendix, we conclude

lim
t→∞

ES(t)

t
1
αk

≥ �

(
1 − 1

αk

)
c

1
α β

k−1
αk

((k − 1)!) 1
αk

(1 − ε)
k+1
αk .

Therefore, after letting ε → 0, we derive

ES(t) � �

(
1 − 1

αk

)
c

1
α β

k−1
αk

((k − 1)!) 1
αk

t
1
αk as t → ∞. (29)

Now, if we select

t0(x) = xαk(1 − 2ε)αk(k − 1)!
(1 + ε)ckβk−1

[
�

(
1 − 1

αk

)]αk

and use (25) and (29), it is easy to show that (1 − 3ε)x ≤ ES(t0(x)) ≤ (1 − ε)x for all
x large enough. Now, large deviation bound for the sum of independent Bernoulli random
variables stated in Lemma 5 of the Appendix implies

P[S(t0(x)) > x] ≤ 2e−θES(t0(x)),

for some θ > 0. Thus, in conjunction with (24), we conclude that as x → ∞,

P[C > x] ≤ o

(
1

xα−1

)
+

∞∑
i=1

qiP[Ti ≥ t0(x)]. (30)

Next, from Lemma 2, there exists i0 such that for all i ≥ i0, Ti satisfies (9). We use i0

to denote a sufficiently large integer constant that is possibly different at different places
in the proof. Then, since for every i ≤ i0, inequality qi ≥ qi0 holds, the Poisson process
of rate qi can be constructed as a superposition of two independent Poisson processes with
rates qi0 and qi −qi0 . Therefore, in this construction, the process of rate qi will have on each
sample path more arrival points than the process of rate qi0 . Thus, it is straightforward that
Ti ≤st Ti0 , where ≤st denotes the usual stochastic ordering, and for all i ≤ i0,

P[Ti ≥ t] ≤ P[Ti0 ≥ t]. (31)

Therefore, we obtain

∞∑
i=1

qiP[Ti ≥ t0(x)] ≤
i0∑

i=1

qiP[Ti0 ≥ t0(x)] +
∞∑

i=i0

qie
− (qi)

kβk−1(1−ε)

(k−1)! t0(x) +
∞∑

i=i0

2qie
−hε(qi)

k−1t0(x)

� I1(x) + I2(x) + I3(x), (32)
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where in the last two sums we used the result of Lemma 2.
After using the bound (9) and replacing t0(x), it immediately follows that

I1(x) ≤
i0∑

i=1

qi

[
e− (qi0

)kβk−1(1−ε)

(k−1)! t0(x) + 2e−hε(qi0
)k−1t0(x)

]
= o

(
1

xα−1

)
as x → ∞. (33)

Note that for i large enough (i ≥ i0) inequality c/iα ≤ (1 + ε)c/uα holds for any
u ∈ [i, i + 1] and, therefore, using this bound, (27), the monotonicity of the exponential
function and replacing t0(x), yields

I2(x) ≤ (1 + ε)

∞∑
i=i0

c

iα
e

−ι(ε) xαk

iαk
[
�

(
1− 1

αk

)]αk

≤ (1 + ε)2

∫ ∞

1

c

uα
e

−ι(ε) xαk

uαk
[
�

(
1− 1

αk

)]αk

du, (34)

where ι(ε) � (1 + ε)−1(1 − ε)k+1(1 − 2ε)αk . Next, by applying the change of variable
method for evaluating the integral with z = xαkι(ε)[�(1 − 1

αk )]−αku−αk , we obtain that the
integral in (34) is equal to

c

xα−1(α − 1)

[
�

(
1 − 1

αk

)]α−1

(ι(ε))
1
αk − 1

k
α − 1

αk

∫ xαk ι(ε)[
�

(
1− 1

αk

)]αk

0
e−zz

1
k − 1

αk −1dz,

which, in conjunction with (34), implies

lim sup
x→∞

I2(x)

P[R > x] ≤ (1 + ε)2Kk(α)(ι(ε))
1
αk − 1

k → Kk(α) as ε → 0, (35)

where Kk(α) is defined in (21).
To estimate the asymptotics of I3(x), we use analogous steps to those we applied in

estimating I2(x). Thus, from the assumption qi ∼ c/iα as i → ∞, it follows that for i large
(i ≥ i0) inequalities (27) and c/iα ≤ (1 + ε)c/uα hold for all u ∈ [i, i + 1] and, therefore,
after replacing t0(x),

I3(x) ≤ 2(1 + ε)

∞∑
i=i0

c

iα
e

−hε xαk

iα(k−1)

≤ 2(1 + ε)2

∫ ∞

1

c

uα
e

−hε xαk

uα(k−1) du. (36)

Now, if k = 1, it is straightforward to compute the integral in the preceding expression
and obtain I3(x) ≤ 2(1 + ε)2(c/(α − 1))e−hεxα = o(1/xα−1) as x → ∞. Otherwise, for
k ≥ 2, after using the change of variable method for solving the integral in (36) with
z = hεxαku−α(k−1), we obtain, as x → ∞,

I3(x) ≤ 2(1 + ε)2 c

(hε)
1

k−1

(
1− 1

α

) 1

α(k − 1)

1

x
k

k−1 (α−1)
�

(
1

k − 1
− 1

α(k − 1)

)
= o

(
1

xα−1

)
.
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The previous expression, in conjunction with (35), (33), (32), and (30), yields, as x → ∞,

P[C > x] � Kk(α)P[R > x]. (37)

Next, we estimate an asymptotic lower bound for P[C > x] in (20). To this end, by
redefining t0(x) as

t0(x) � xαk(1 + 2ε)αk(k − 1)![
�

(
1 − 1

αk

)]αk
ckβk−1

,

using the monotonicity of S(t) and (29), we obtain ES(t) ≥ (1 + ε)x for all t ≥ t0(x) and
x large enough; which, in conjunction with Lemma 5 of the Appendix, implies P[S(t) >

x] ≥ 1 − ε for all t ≥ t0(x). Thus, for x large enough, after conditioning on Ti ≥ t0(x),
expression (7) can be lower bounded as

P[C > x] ≥ (1 − ε)

∞∑
i=1

qiP[Ti ≥ t0(x)]. (38)

Next, we proceed with estimating (38). By inequality (14) of Lemma 3 and assumption
of the theorem, for i large enough (i > i0), after replacing t0(x), we obtain

P[C > x] ≥ (1 − ε)

∞∑
i=i0+1

qie

− (qi)
k xαk (1+ε)(1+2ε)αk

ck
[
�

(
1− 1

αk

)]αk

.

Furthermore, similarly as in estimating I2(x), since for i large (i > i0) inequalities (27) and
c/iα ≥ (1 − ε)c/uα hold for all u ∈ [i − 1, i], in conjunction with the monotonicity of the
exponential function, we obtain

P[C > x] ≥ (1 − ε)3

∫ ∞

u=i0

c

uα
e

− xαk

uαk
[
�

(
1− 1

αk

)]αk ι(ε)

du, (39)

where ι(ε) � (1 + ε)k+1(1 + 2ε)αk . Then, using the change of variable method for solving
the previous integral with z = xαkι(ε)u−αk[�(1− 1

αk )]−αk , we obtain that the integral in (39)
is equal to

c

(α − 1)xα−1

α − 1

αk

[
�

(
1 − 1

αk

)]α−1

(ι(ε))
1
αk − 1

k

∫ xαk ι(ε)

iαk
0

[
�

(
1− 1

αk

)]αk

0
z

1
k − 1

αk −1e−zdz,

which implies

lim inf
x→∞

P[C > x]
P[R > x] ≥ (ι(ε))

1
αk − 1

k Kk(α) → Kk(α) as ε → 0,

where Kk(α) is defined in (21). The previous result in conjunction with (37) proves (20).
Finally, it is left to prove the monotonicity of function Kk(α) and its limits when α → ∞,

k → ∞. Since this proof, although technical, uses standard techniques from calculus, we
present it in the Appendix.
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Theorem 2. Assume that qi = hN/iα , 1 ≤ i ≤ N, where hN is the normalization constant
and 0 < α < 1. Then, for any 0 < δ < 1, as N → ∞,

P[C(N) > δN] ∼ Fk(δ) � 1 − α

αk
(ηδ)

1
αk − 1

k �

(
1

k
− 1

αk
, ηδ

)
(40)

where ηδ is the unique solution of the equation

1 − 1

αk
�

(
− 1

αk
, η

)
η

1
αk = δ;

note that �(x, y), y > 0, is the incomplete Gamma function, i.e., �(x, y) = ∫ ∞
y e−t tx−1dt.

Furthermore, Fk(δ), δ ∈ (0, 1), is a proper distribution with limδ→0 Fk(δ) = 1,
limδ→1 Fk(δ) = 0 and

lim
k→∞

Fk(δ) = 1 − δ1−α . (41)

Remark 3. (i) On Fig. 2 we present the relative performance of the PAC(20, k) replacement
scheme for k = 1, 2, 3, when compared to the optimal static arrangement. We assume that
the cache can store 1/10 of the total number of documents. Note that the performance
of the PAC algorithm drastically improves even for the small values of parameter k and,
thus, it is nearly optimal; (ii) For the ordinary MTF (k = 1) searching, the convergence of
C(N)/N in distribution as N → ∞ and the Laplace transform of the limiting function are
obtained in Lemma 4.5 of [6]. The result in its presented form, for the ordinary LRU, was
derived in [11]; (iii) It is possible to relax the assumption qi = hN/iα , 1 ≤ i ≤ N , e.g.,
by assuming that for any ε > 0, there exists i0, such that for all i0 ≤ i ≤ N , inequality
(1−ε)c/(iαN1−α) ≤ qi ≤ (1+ε)c/(iαN1−α) holds. In this case, the expression in (44) would
be replaced by this, slightly different form, and the rest of the proof would be identical; the
final asymptotic formula in this case would have factor c instead of 1−α and all of the other
factors in (40) would be the same; (iv) Note that a similar theorem could be proved for the

Fig. 2. Ratio Fk(1/10)/(1 − (1/10)1−α) for k = 1, 2, 3.
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case of α > 1 and N < ∞, in which case the asymptotic result would be less explicit than
the one stated in Theorem 1 and, therefore, we omit it.

Proof. First, we estimate the asymptotic upper bound for P[C > δN] as N → ∞. Similarly
as in the proof of Theorem 1, we define the sum S(t) �

∑N
j=1 1[Tj < t]. For any t0 > 0,

since S(t) is nondecreasing in t, we have S(t) ≤ S(t0) for all t ≤ t0. Thus, after conditioning
on Ti being larger or smaller than t0 in expression (7), we easily obtain the following upper
bound

P[C(N) > δN] ≤ P[S(t0) > δN] +
N∑

i=1

qiP[Ti ≥ t0]. (42)

Then, by Lemma 3, for N large and any ε > 0, there exists i0 such that for all i ≥ i0

inequality (14) holds and, in conjunction with the monotonicity of the exponential function,
we obtain

ES(t) =
N∑

i=1

P[Ti < t]

≤ i0 +
N∑

i=i0+1

(
1 − e−(qi)

k βk−1(1+ε)t
(k−1)!

)

≤ N −
∫ N

i0

e
− hk

N
uαk

βk−1

(k−1)! (1+ε)t
du. (43)

At this point, note that from the assumption
∑N

i=1 hN/iα = 1, it directly follows that for N
large enough

(1 − ε)
1 − α

N1−α
≤ hN ≤ (1 + ε)

1 − α

N1−α
. (44)

Thus, if we replace t = ηNk/ξ(ε) in (43), where η > 0 is a fixed constant, using inequalities
(43) and (44), we bound ES(ηNk/ξ(ε)) for N large as

ES

(
ηNk

ξ(ε)

)
≤ N −

∫ N

i0

e
− Nαkη

uαk du, (45)

where ξ(ε) is defined as

ξ(ε) � (1 + ε)k+1(1 − α)kβk−1

(k − 1)! .

Similarly, by Lemma 2, for any ε > 0 and N large, there exists i0 such that for all i ≥ i0

inequality (9) holds and, in conjunction with the monotonicity of the exponential function,
we obtain

ES(t) =
N∑

i=1

P[Ti < t] ≥
N∑

i=i0

P[Ti < t]
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≥
N∑

i=i0

(
1 − e− (qi)

kβk−1(1−ε)

(k−1)! t − 2e−hε(qi)
k−1t

)

≥ N − i0 −
∫ N

i0

e
− hk

N
uαk

βk−1(1−ε)
(k−1)! t

du − 2
∫ N

i0

e
−hε

hk−1
N

uα(k−1)
t
du.

Then, after replacing the bound in (44) and letting t increase in N as t = ηNk/ξ(ε), we
obtain that

ES

(
ηNk

ξ(ε)

)
≥ N − i0 −

∫ N

i0

e
− Nαk

uαk η

(
1−ε
1+ε

)k+1

du − 2
∫ N

i0

e
−hε Nαk−α+1

uαk−α du. (46)

Next, by using the change of variable z = Nαkηu−αk to solve the integral in (45), we
obtain

ES

(
ηNk

ξ(ε)

)
≤ N − N

1

αk
η

1
αk

∫ η Nαk

iαk
0

η

e−zz−1− 1
αk dz. (47)

Furthermore, since

∫ ηNkα

η

e−zz−1− 1
αk dz ↑ �

(
− 1

αk
, η

)
as N → ∞,

we obtain, for N large enough,

ES

(
ηNk

ξ(ε)

)
≤ N − N(1 − ε)

1

αk
η

1
αk �

(
− 1

αk
, η

)
. (48)

Now, define the function f (η) as

f (η) � 1 − 1

αk
η

1
αk �

(
− 1

αk
, η

)
, (49)

and let ηδ(ε0) be a unique solution to the equation

f (η) = δ(1 − 2ε0), (50)

for some ε0 > 0; the uniqueness of the solution will be justified at the end of the proof.
Then, from (48), it follows

ES

(
ηδ(ε0)Nk

ξ(ε)

)
≤ N(1 − (1 − ε)(1 − δ(1 − 2ε0))).

Thus, for all ε < ε0δ(1 − 2ε0)/(1 − δ(1 − 2ε0)), the preceding expressions are bounded by

ES

(
ηδ(ε0)Nk

ξ(ε)

)
≤ (1 + ε0)δ(1 − 2ε0)N ≤ (1 − ε0)δN .

Now, since S(t) is nondecreasing in t, we conclude that for all small ε > 0 and t ≤ t0 �
ηδ(ε0)Nk(ξ(ε))−1

ES(t) ≤ (1 − ε0)δN .
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Next, by applying analogous arguments to those in (47, 48) to estimate upper bounds for
integrals on the right hand side of (46), one can show that for N large enough

ES

(
ηδ(ε0)Nk

ξ(ε)

)
≥ (1 − ε)N

[
1 − (1 − ε)

1

αk
ηδ(ε0)

1
αk �

(
− 1

αk
, ηδ(ε0)

)]
= (1 − ε)N[1 − (1 − ε)(1 − δ(1 − 2ε0))].

Finally, using the previously derived inequality, for all ε < ε0δ(1 − 2ε0)/(1 − δ(1 − 2ε0)),
one can show that

ES

(
ηδ(ε0)Nk

ξ(ε)

)
≥

(
1 − ε0δ(1 − 2ε)

1 − δ(1 − 2ε0)

)2

δ(1 − 2ε0)N = hδN . (51)

At this point, in view of the preceding bounds on ES(·), we use the large deviation
(Chernoff) bound for the sum of N independent Bernoulli random variables from Lemma 5
of the Appendix to conclude

P[S(t0) > δN] ≤ 2e−θε0 hδN ,

for some θε0 > 0. Thus, after upper bounding the first term in (42), using (51) and replacing
t0, we derive

P[C(N) > δN] ≤ o(1) +
N∑

i=1

qiP[Ti ≥ t0] as N → ∞. (52)

Next, we estimate the second term on the right hand side of (52). The same arguments
that resulted in inequality (31) in the proof of Theorem 1, in conjunction with (9), yield, for
N and i0 large enough,

N∑
i=1

qiP[Ti ≥ t0] ≤
i0∑

i=1

qiP[Ti ≥ t0] +
N∑

i=i0

qiP[Ti ≥ t0]

≤ P[Ti0 ≥ t0] +
N∑

i=i0

qie
− (qi)

kβk−1(1−ε)

(k−1)! t0 + 2
N∑

i=i0

qie
−hε(qi)

k−1t0

� I1(δ) + I2(δ) + I3(δ). (53)

After replacing t0 in I1(δ), it is straightforward to conclude

I1(δ) ≤
[

e− (qi0
)kβk−1(1−ε)

(k−1)! t0 + 2e−hε(qi0
)k−1t0

]
= o(1) as N → ∞. (54)

Next, we estimate I2(δ). After applying inequality (44), replacing t0, using the monoto-
nicity of the exponential function and relation hN/iα ≤ (1 + ε)hN/uα for all u ∈ [i, i + 1]
and i large (i ≥ i0), we obtain

I2(δ) ≤ (1 + ε)2

∫ N

i0

1 − α

uαN1−α
e

−ι(ε)
ηδ (ε0)

uαk Nαk

du, (55)
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where we define ι(ε) � (1− ε)k+1(1+ ε)−(k+1). Then, similarly as before, using the change
of variable method for solving the integral with z � ι(ε)ηδ(ε0)u−αkNαk , we derive

I2(δ) ≤ (1 + ε)2(ι(ε))
1
αk − 1

k
1 − α

αk
(ηδ(ε0))

1
αk − 1

k

∫ ι(ε)
ηδ (ε0)Nαk

iαk
0

ι(ε)ηδ(ε0)

z
1
k − 1

αk −1e−zdz

≤ (1 + ε)2(ι(ε))
1
αk − 1

k
1 − α

αk
(ηδ(ε0))

1
αk − 1

k �

(
1

k
− 1

αk
, ι(ε)ηδ(ε0)

)
.

Thus, after letting ε ↓ 0, ε0 ↓ 0, we conclude

I2(δ) ≤ 1 − α

αk
(ηδ)

1
αk − 1

k �

(
1

k
− 1

αk
, ηδ

)
, (56)

since, by continuity of f (η), ηδ(ε0) → ηδ as ε0 ↓ 0, where ηδ is the unique solution to the
equation f (ηδ) = δ.

Finally, we estimate I3(δ). Here, we observe two possible cases: k = 1 and k ≥ 2. For
k = 1, after applying (44), replacing t0, and using relation hN/iα ≤ (1 + ε)hN/uα for all
u ∈ [i, i + 1] and i large (i ≥ i0), we obtain

I3(δ) ≤ 2(1 + ε)2 1 − α

N1−α
e−hεN

∫ N

i0

1

uα
du

≤ 2(1 + ε)2e−hεN = o(1) as N → ∞.

Next, we estimate I3(δ) for k ≥ 2. Similarly as before, after using (44), replacing t0, in
conjunction with the monotonicity of the exponential function and hN/iα ≤ (1 + ε)hN/uα

for all u ∈ [i, i + 1] and i large (i ≥ i0), we obtain

I3(δ) ≤ 2
(1 + ε)2(1 − α)

N1−α

∫ N

i0

1

uα
e

− hεNαk−α+1

uα(k−1) du.

Then, using the change of variable method for solving the integral, with z =
hεNαk−α+1u−α(k−1), we derive, for N large,

I3(δ) ≤ 2hε
1

k−1

(
1
α −1

)
N

1
k−1

(
1
α −1

) ∫ hεN
(

N
i0

)α(k−1)

hεN
e−zz− 1

k−1

(
1
α −1

)
−1dz

≤ 2hε
1

k−1

(
1
α −1

)
N

1
k−1

(
1
α −1

) ∫ ∞

hεN
e−zdz

≤ 2hε
1

k−1

(
1
α −1

)
N

1
k−1

(
1
α −1

)
e−hεN = o(1) as N → ∞. (57)

Finally, (57), (56), (54), (53), and (52) imply

lim sup
N→∞

P[C(N) > δN] ≤ 1 − α

αk
(ηδ)

1
αk − 1

k �

(
1

k
− 1

αk
, ηδ

)
. (58)
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Next, we estimate the asymptotic lower bound for P[C(N) > δN]. By Lemma 2, for
any ε > 0 and N large, there exists i0 such that for all i ≥ i0 inequality (9) holds and, in
conjunction with the monotonicity of the exponential function, we obtain

ES(t) =
N∑

i=1

P[Ti < t] ≥
N∑

i=i0

P[Ti < t]

≥
N∑

i=i0

(
1 − e− (qi)

kβk−1(1−ε)

(k−1)! t − 2e−hε(qi)
k−1t

)

≥ N − i0 −
∫ N

i0

e
− hk

N
uαk

βk−1(1−ε)
(k−1)! t

du − 2
∫ N

i0

e
−hε

hk−1
N

uα(k−1)
t
du.

Then, after replacing the bound in (44) and setting t = ηNk/ξ(ε), η > 0, in the preceding
inequality, we obtain

ES

(
ηNk

ξ(ε)

)
≥ N − i0 −

∫ N

i0

e
− Nαkη

uαk du − 2
∫ N

i0

e
−hε Nαk−α+1

uαk−α du

� N − i0 − I1 − I2, (59)

with ξ(ε) redefined as ξ(ε) � (1 − ε)k+1βk−1(1 − α)k((k − 1)!)−1.
First, we estimate the upper bound of I1 for N large. Using completely analogous steps

to those applied in estimating expressions (45), (47), and (48), after applying the change of
variable z = Nαkηu−αk to solve the integral, we obtain

I1 ≤ Nη
1
αk

1

αk

∫ (
N
i0

)αkη

η

e−zz−1− 1
αk dz

≤ Nη
1
αk

1

αk
�

(
− 1

αk
, η

)
. (60)

Now, we redefine ηδ(ε) to be the unique solution to the equation f (ηδ) = (1 + 2ε)δ, for
some ε > 0, where f (η) was defined in (49). Then, after replacing ηδ(ε) in (60), we obtain

I1 ≤ N(ηδ(ε))
1
δ

1

αk
�

(
− 1

αk
, ηδ(ε)

)
= N(1 − δ(1 + 2ε)). (61)

Next, we estimate the upper bound of I2. Similarly as before, in estimating I3(δ), we
observe two possible cases: k = 1 and k ≥ 2. In the case where k = 1, we obtain

I2 ≤ 2
∫ N

i0

e−hεN du = 2(N − i0)e
−hεN = o(1) as N → ∞.

Furthermore, in the case of k ≥ 2 and large N ,

I2 ≤ 2
∫ N

i0

e
− hεNαk−α+1

uα(k−1) du

≤ 2hε
1

α(k−1) N1+ 1
α(k−1)

∫ ∞

hεN
e−zdz

≤ 2hε
1

α(k−1) N1+ 1
α(k−1) e−hεN = o(1) as N → ∞, (62)

Random Structures and Algorithms DOI 10.1002/rsa



PERSISTENT-ACCESS-CACHING ALGORITHM 21

where in the first integral we use the change of variable z = hεNαk−α+1u−αk+α .
Finally, (62), (61), and (59) imply that for any ε > 0 and N large enough

ES

(
ηδ(ε)Nk

ξ(ε)

)
≥ N − i0 − N(1 − δ(1 + 2ε)) − ε,

which for all N ≥ (i0 + ε + δ(1 + ε))/(1 + 2ε)δ yields

ES

(
ηδ(ε)Nk

ξ(ε)

)
≥ (1 + ε)δN . (63)

Now, since S(t) is increasing in t, we obtain that for all N and t large, t ≥ t0 �
ηδ(ε)Nk(ξ(ε))−1,

ES(t) ≥ (1 + ε)δN . (64)

At this point, using the previous observations, the monotonicity of S(t) and (7), after
conditioning on Ti being greater than t0, we obtain the lower bound

P[C(N) > δN] ≥ P[S(t0) > δN]
N∑

i=1

qiP[Ti ≥ t0]. (65)

Now, given the inequality (64), the large deviation (Chernoff) bound from Lemma 5 of
the Appendix implies for any ε > 0 and N large enough

P[S(t0) > δN] ≥ 1 − ε.

Thus, the previous inequality and (65) yield

P[C(N) > δN] ≥ (1 − ε)

N∑
i=1

qiP[Ti ≥ t0].

Now, by Lemma 3, for any ε > 0 and i large (i ≥ i0), inequality (14) holds, and, therefore

P[C(N) > δN] ≥ (1 − ε)

N∑
i=i0+1

hN

iα
e

− hk
N βk−1(1+ε)t0

iαk (k−1)! ,

which, using the inequality hN/iα ≥ (1 − ε)hN/uα for all i large (i ≥ i0) and u ∈ [i − 1, i],
the monotonicity of the exponential function, inequality (44) and replacing t0, yields

P[C(N) > δN] ≥ (1 − ε)3 1 − α

N1−α

∫ N

i0

1

uα
e

− ι(ε)ηδ (ε)Nkα

uαk du, (66)

where we redefine ι(ε) � (1 + ε)k+1(1 − ε)−(k+1). Next, similarly to bounding I2(δ) in
(55–56), we use the change of variable z = ι(ε)ηδ(ε)Nαku−αk to solve the integral in (66),
we derive for N large

P[C(N) > δN] ≥ (1 − ε)3(ηδ(ε))
1
αk − 1

k
1 − α

αk
(ι(ε))

1
αk − 1

k

∫ (
N
i0

)kαηδ(ε)ι(ε)

ι(ε)ηδ(ε)

e−zz
1
k − 1

αk −1dz,
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which, after taking lim infN→∞ and letting ε → 0, renders

lim inf
N→∞

P[C(N) > δN] ≥ 1 − α

αk
(ηδ)

1
αk − 1

k �

(
1

k
− 1

αk
, ηδ

)
,

where ηδ is the unique solution to the equation f (η) = δ. The previous expression, in
conjunction with (58), concludes the proof of this theorem.

Finally, we prove the uniqueness of the solution ηδ for any 0 < δ < 1 and the limiting
values for Fk(δ) when k → ∞, δ → 0, and δ → 1. Again, this part of the proof uses
standard techniques from calculus and, therefore, we move it to the Appendix.

The following theorem estimates the tail of the search cost distribution P[C(N) > δN]
as N → ∞ in the case of α = 1. Since the proof of this result uses completely analogous
arguments to the ones used in the proof of Theorem 2, to avoid repetitions we just state the
result and present an outline of the proof.

Theorem 3. Assume that qi = hN/i, 1 ≤ i ≤ N, where hN is the normalization constant.
Then, for any 0 < δ < 1, as N → ∞,

(log N)P[C(N) > δN] ∼ Fk(δ) � 1

k
�(0, ηδ), (67)

where ηδ uniquely solves the equation

1 − 1

k
η

1
k �

(
−1

k
, η

)
= δ;

note that �(x, y), y > 0, is the incomplete Gamma function, i.e., �(x, y) = ∫ ∞
y e−t tx−1dt.

Furthermore, for any 0 < δ < 1,

lim
k→∞

Fk(δ) = log

(
1

δ

)
. (68)

Remark 4. (i) In the context of the ordinary MTF searching (k = 1), the convergence in
distribution of the ratio log C(N)/ log N to a uniform random variable on the unit interval
was first proved in Lemma 4.7 of [6]. (ii) Similarly as in the remark (iii) after Theorem 2,
it is possible to relax the assumption qi = hN/i, 1 ≤ i ≤ N . Again, by assuming that
for any ε > 0, there exists i0 such that for all i0 ≤ i ≤ N , inequality (1 − ε)c/ log N <

qi < (1 + ε)c/ log N holds, the expression (69) needs to be replaced by the last inequality
implying an almost identical formula to the one in (67), where the only difference is that
1/k is replaced by c/k on the right-hand-side of (67).

Outline of the proof. To estimate the upper bound, we use the same arguments as in
inequality (42). Note that for any ε > 0 and N large enough, the normalization constant hN

is bounded by

(1 − ε)
1

log N
< hN < (1 + ε)

1

log N
. (69)

Thus, after bounding ES(t), similarly as in (43) and (45), setting t = η(N log N)k/ξ(ε),
where η > 0 is a fixed constant, we obtain

ES

(
η(N log N)k

ξ(ε)

)
≤ N −

∫ N

i0

e
− Nkη

uk du; (70)
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note that in this case ξ(ε) is defined as

ξ(ε) � (1 + ε)k+1βk−1

(k − 1)! .

Then, using the change of variable z = Nkηu−k in the integral in (70) and applying the
analogous steps as in (47–50), we obtain that for all t ≤ t0 � ηδ(ε0)(N log N)k(ξ(ε))−1, any
ε0 > 0, N large and ε > 0 small enough (ε < ε0δ(1 − 2ε0)/(1 − δ(1 − 2ε0))),

ES(t) ≤ (1 − ε0)δN ,

where ηδ(ε0) is the unique solution to the equation

f (η) � 1 − 1

k
η

1
k �

(
−1

k
, η

)
= δ(1 − 2ε0).

Next, using the large deviation bound from Lemma 5 of the Appendix, similarly as in
(52), we derive, as N → ∞,

P[C(N) > δN] ≤ o

(
1

log N

)
+

N∑
i=1

qiP[Ti ≥ t0]. (71)

Now, after splitting the sum in the previous expression, analogously as in (53), we obtain,
for N and i0 large enough,

N∑
i=1

qiP[Ti ≥ t0] ≤ i0P[Ti0 ≥ t0] +
N∑

i=i0

qie
− (qi)

kβk−1(1−ε)

(k−1)! t0 +
N∑

i=i0

qie
−hε(qi)

k−1t0

� I1(δ) + I2(δ) + I3(δ). (72)

Then, after replacing t0 and using similar arguments that led to (54) and (57), we obtain

I1(δ) = o

(
1

log N

)
, I3(δ) = o

(
1

log N

)
as N → ∞. (73)

Now, by upper bounding the sum in I2(δ) with an integral, as in (55), applying the change
of variable z = (1 − ε)k+1(1 + ε)−(k+1)ηδ(ε0)Nku−k and using the same arguments that led
to (56), we conclude

I2(δ) � 1

log N

1

k
�(0, ηδ) as N → ∞, (74)

where ηδ uniquely solves the equation f (η) = δ, and, therefore, in conjunction with (73),
(72) and (71), yields the asymptotic upper bound for P[C > δN].

To prove the asymptotic lower bound for P[C > δN] in (67), we start by estimating
ES(t) using the identical arguments as in the proof of the lower bound in Theorem 2. Thus,
by setting t = η(N log N)k/ξ(ε), η > 0, we define, similarly as in (59), for any ε > 0 and
i0, N large enough

ES

(
η(N log N)k

ξ(ε)

)
≥ N − i0 −

∫ N

i0

e
− Nkη

uk du −
∫ N

i0

e
−hε

Nk log N
uk−1 du

� N − i0 − I1 − I2, (75)

Random Structures and Algorithms DOI 10.1002/rsa
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where ξ(ε) is redefined as ξ(ε) � (1 − ε)k+1βk−1((k − 1)!)−1. Then, using the change
of variable z = Nkηu−k for solving the integral of I1 and the analogous arguments as in
(61–64), for all t ≥ t0 � ηδ(ε)(N log N)k(ξ(ε))−1, any ε > 0 and N large, we obtain the
inequality

ES(t) ≥ (1 + ε)δN ,

where ηδ(ε) is the unique solution to the equation f (η) = (1 + 2ε)δ. Then, applying the
same reasoning as in (65), in conjunction with the large deviation bound for the sum of
independent Bernoulli random variables proved in Lemma 5 of the Appendix, we derive
that for N large

P[C(N) > δN] ≥ (1 − ε)

N∑
i=1

qiP[Ti ≥ t0].

Next, by Lemma 3 and the analogous arguments as in (66), after using the change of
variable z = (1 + ε)k+1(1 − ε)−(k+1)ηδ(ε)Nku−k to solve the integral and letting ε → 0, we
conclude

P[C(N) > δN] � 1

log N

1

k
�(0, ηδ) as N → ∞,

where ηδ is the unique solution to the equation f (η) = δ. Thus, the previous lower bound
and asymptotic upper bounds (73) and (74) prove (67).

Finally, it is left to prove the uniqueness of the solution ηδ of the equation f (η) = δ and
the limit in (68). We omit the details of this proof since these properties follow directly from
similar arguments as in the proof of Theorem 2.

4. NUMERICAL EXPERIMENTS

In this section we illustrate our main results stated in Theorems 1, 2, and 3, using simulation
experiments. Since the asymptotic results are obtained for infinite number of documents
N in Theorem 1, while in Theorems 2 and 3 the number N is passed to infinity, it can be
expected that asymptotic expressions give reasonable approximation of the fault probability
P[C(N) > x], only if both N and x are large (with N much larger than x). However, our
experiments show that the obtained approximations work well for relatively small values
of N and almost all cache sizes x < N . Furthermore, our simulations validate significant
improvement in performance of the introduced PAC(β, k), k ≥ 2, algorithm when compared
to the ordinary LRU scheme (k = 1), as predicted by our asymptotic results.

4.1. Convergence to Stationarity

To ensure that the simulated values of the fault probabilities do not deviate significantly
from the stationary ones, we first estimate the difference between the distributions of C(N)

and C(N)
n , where C(N)

n is the search cost after n requests with arbitrary initial conditions.
Thus, using (2–4) with ε = 1/2, we upper bound the difference between the tails of these
distributions as

sup
x

∣∣P[
C(N)

n > x
] − P[C(N) > x]∣∣ ≤ P

[
τn <

n

2

]
+

N∑
i=1

qiP

[
Ti >

n

2
− β

]
,
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where τn is the nth arrival point in a Poisson process of unit rate. Thus, by applying the
bound in (13) to the preceding inequality and then setting ε = 1/2, we obtain

en � P

[
τn <

n

2

]
+

N∑
i=1

qi

[(
e−piqi

3
4

(
n
2 −β

)
+ (1 − pi)

n
2 −β

4β
−1) ∧ 1

]
; (76)

recall that pi = P[M(qi)
β ≥ k − 1], 1 ≤ i ≤ N , where M(q)

t is a counting Poisson process
of rate q and x ∧ y = min(x, y). The first term in expression (76) is easy to estimate
since P[τn < n/2] = P[M(1)

n/2 > n]; in addition, since the Poisson distribution is highly
concentrated around the mean, this term converges very fast to zero. Therefore, it is easy to
see that the error bound in (76) is dominated by the sum. Furthermore, the value of the sum
decreases as β increases since pi = O(βk−1qk−1

i ). Hence, the increase of the parameter β

speeds up the convergence of the search cost process {C(N)
n } to stationarity. This makes the

algorithm more adaptable to possible fluctuations in document popularities. On the other
hand, the larger β implies the larger expected size of the additional storage needed to keep
track of the past requests. Thus, although the stationary performance of the PAC algorithm
is invariant to β, this value provides an important design parameter whose choice has to
balance between the algorithm complexity and adaptability.

Next, once the process {C(N)
n } is in stationarity, we estimate the error of the measured

empirical distribution for a given measurement interval. To this end, let C(N)
−n be the search

cost at time τ−n, Ti be as defined in (1) and observe that

P
[
C(N)

0 > x, C(N)
n > x

] = P
[
C(N)

−n > x, C(N)

0 > x
]

≤
N∑

i=1

P
[
C(N)

−n > x, R0 = i, Ti < −τ−n − β, C(N)

0 > x
]

+
N∑

i=1

qiP[Ti ≥ −τ−n − β] ≤ P[C(N) > x]2 + en,

where in the last inequality we used the independence P[C(N)
−n > x, R0 = i, Ti < −τn −

β, C(N)

0 > x] = P[C(N)
−n > x]P[R0 = i, Ti < −τn − β, C(N)

0 > x]. Hence, using the
Chebyshev’s inequality and the preceding bound, we obtain

P

[∣∣∣∣∣ 1

m

m∑
n=1

1
[
C(N)

n > x
] − P[C(N) > x]

∣∣∣∣∣ > δ

]
≤ 1

(δm)2
Var

(
m∑

n=1

1
[
C(N)

n > x
])

≤ r(δ, m) � 2

δ2m

m∑
n=0

en. (77)

By choosing δ to be a fraction of the smallest measured probability P[C(N) > x], we will
use the preceding bound to estimate the necessary length of the measurement interval m
such that the measurement error r(δ, m) is acceptable.

4.2. Experiments

In the presented experiments we take the number of documents to be N = 1300 with
popularities satisfying qi = hN/iα , 1 ≤ i ≤ 1300, where hN = (

∑N
i=1 1/iα)−1. Also, we

Random Structures and Algorithms DOI 10.1002/rsa
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Fig. 3. Illustration for Experiment 1.

select β = 20 and α : (1) α = 1.2, (2) α = 1, and (3) α = 0.8. In each experiment,
before conducting measurements, we let the first n = 1010 requests to be a warm-up time
for the system to reach stationarity. After estimating en in (76) for a given warm-up time of
n = 1010 requests, we obtain that en < 10−6 for all experiments, which is negligible when
compared to the smallest measured probabilities (>10−2) and, therefore, the measured fault
probabilities are essentially the stationary ones. Then, the actual measurement time is also
set to be m = 1010 requests long. Note that the smallest measured probabilities are greater
than 10−2. Hence, in estimating the confidence bound in (77) we set δ to be 10% of 10−2 and
obtain a very tight bound on the measurement error for all experiments r(10−3, 1010) < 0.06.
Finally, the initial permutation of the list is chosen uniformly at random and the initial set
of requests in (−β, 0) is taken to be empty. The fault probabilities are measured for cache
sizes x = 50j, 1 ≤ j ≤ 15. Simulation results are presented with “*" symbols on Figs. 3–5,
while our approximations are presented with the solid lines on the same figures.

4.2.1. Experiment 1. We set α = 1.2 and measure the cache fault probabilities for values
PAC(20, k), k = 1, 2, algorithm. We compare the obtained measurements with our approx-
imation given by P(e)(x) = Kk(α)P[R > x], as implied by Theorem 1. The experimental
results for the cases when k ≥ 3 are almost indistinguishable from the performance of the
optimal algorithm, P[R > x], and for that reason we did not present them on Fig. 3. Figure 3
shows an excellent agreement between the approximation P(e)(x) and experimental results,
as well as a significant improvement in performance for k = 2.

4.2.2. Experiment 2. Here, we select α = 1 and measure the cache fault probabilities
for k = 1, 2, 3. Since the normalization constant hN = log N + γ + o(1) as N → ∞, where
γ is the Euler’s constant, the ratio hN/ log N converges slowly to one and, therefore, instead
of using the approximation P[C(N) > x] ≈ (log N)Fk(x/N), as suggested by Theorem 3,
we define P(e)(x) = hN Fk(x/N). Again, the accuracy of the approximation P(e)(x) and the
improvement in performance are apparent from Fig. 4.
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Fig. 4. Illustration for Experiment 2.

4.2.3. Experiment 3. Finally, the third example assumes α = 0.8 and considers cases
k = 1, 2, 3. Similarly as in the case of α = 1, due to the slow convergence of hN N1−α/(1−α)

to one as N → ∞, we use an estimate P(e)(x) = hN(N1−α/(1 − α))Fk(x/N) instead of
Fk(x/N) that can be inferred from Theorem 2. Similarly, the validity of the approximation
P(e)(x) and the benefit of the PAC algorithm are evident from Fig. 5.

Fig. 5. Illustration for Experiment 3.
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5. CONCLUDING REMARKS

In this article we propose a new LRU-based PAC(β, k) replacement rule that possesses all
of the desirable properties of the LRU policy, such as the low complexity, ease of imple-
mentation, and adaptability to variability in access patterns. In the case of the independent
reference model, we show that the performance (fault probability) of the PAC policy, for
large cache sizes, is very close to the optimal frequency algorithm even for small values
of k = 2, 3. Furthermore, this performance improvement requires negligible additional
complexity for large caches since β is fixed. Mathematical model considers request process
satisfying generalized Zipf’s law popularity distribution with Poisson arrival times. Our
analytical approach uses probabilistic (average-case) analysis that exploits the novel large
deviation technique introduced recently in [12]. Theoretical results also show that β does
not influence the asymptotic performance but, given the observations in Subsection 4.1, it is
an important design parameter representing the tradeoff between faster adaptability (larger
β) and lower complexity (smaller β). In addition, theoretical results are further validated
using simulations that show a significant improvement of the PAC algorithm in comparison
to the ordinary LRU scheme, even for small values of cache sizes and the total number of
documents. These demonstrated performance improvements, both analytical and experi-
mental, as well as the simplicity of implementation, suggest a potential use of the proposed
PAC policy for practical purposes.

Given the analytic approach established in our recent work on the analysis of the LRU
policy in the presence of dependent requests [12] and variable page sizes [13] (see also
[17]), it can be shown that analogous results hold for the PAC algorithm as well. In the
context of the ordinary MTF with lighter tailed request distributions, the asymptotic fluid
limits of the search cost derived in [10] could be analogously extended to the PAC policy
as well. Finally, we would like to mention that our algorithm relates to the earlier proposed
“k-in-a-row" rule [9,14]; this rule was studied in the context of the expected list search cost,
but not the distribution.

APPENDIX

The following lemmas correspond to Lemma 2 and Lemma 4 from [10] and [12],
respectively.

Lemma 4. Let Bi(t), i ≥ 1 be independent Bernoulli random variables with P[Bi(t) =
1] = 1 − e−qit , i ≥ 1, S(t) = ∑∞

i=1 Bi(t) and assume qi ∼ c/iα as i → ∞, with α > 1 and
c > 0. Then, as t → ∞,

m(t) � ES(t) ∼ �

(
1 − 1

α

)
c

1
α t

1
α .

Lemma 5. Let {Bi, 1 ≤ i ≤ N}, N ≤ ∞, be a sequence of independent Bernoulli random
variables, S = ∑N

i=1 Bi and m = E[S]. Then for any ε > 0, there exists θε > 0, such that

P[|S − m| > mε] ≤ 2e−θεm.

Proof of the properties of Kk(α) from Theorem 1. Since the function on the right hand
side of (21) is well defined for all real k ≥ 1, we will assume that Kk(α) is defined for
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all real values of k ≥ 1 and α > 1 as well. Thus, proving that Kk(α) is monotonic over real
k will in particular imply the monotonicity over integer values.

First, we prove the monotonicity in α for all fixed k. Since PAC(β, 1) algorithm is the
same as the ordinary LRU, the monotonicity of K1(α) follows from Theorem 3 of [10].
Thus, we continue with the proof of monotonicity for values of k ≥ 2. Proving that Kk(α)

is monotonically increasing in α is equivalent to showing that log Kk(α) monotonically
increases in α. Thus, we observe the following function

log Kk(α) = log
α − 1

αk
+ (α − 1) log �

(
1 − 1

αk

)
+ log �

(
1

k
− 1

αk

)

= log �

(
1 + 1

k
− 1

αk

)
+ (α − 1) log �

(
2 − 1

αk

)
− (α − 1) log

(
1 − 1

αk

)
.

Function log Kk(α) monotonically increases in α if its derivative with respect to α is positive
for all α > 1. Thus,

d

dα
(log Kk(α)) = log �

(
2 − 1

αk

)
− log

(
1 − 1

αk

)
− α − 1

α

1

αk − 1

+ α − 1

α2k
�(0)

(
2 − 1

αk

)
+ 1

α2k
�(0)

(
1 + 1

k
− 1

αk

)
, (A1)

where �(k), k = 0, 1, . . . , are Polygamma functions (see equation 6.4.1, p. 260 of [1]).
Furthermore, since �(0)(1) = −γ (Euler’s constant) and �(1) = 1, by using the continuity
and passing α → ∞ in (A1), we conclude

d

dα
log Kk(α) → 0 as α → ∞.

Therefore, to show that d/dα(log Kk(α)) ≥ 0 for all α > 1, it is enough to prove that the
second derivative

d2

dα2
log Kk(α) = 1

α4k2

[
�(1)

(
1 + 1

k
− 1

αk

)
+ (α − 1)�(1)

(
2 − 1

αk

)]

+ 2

α3k

[
�(0)

(
2 − 1

αk

)
− �(0)

(
1 + 1

k
− 1

αk

)]
(A2)

is nonpositive for all α ∈ (1, ∞). Now, equation 6.4.1 on page 260 of [1] implies that
�(0)(z) is monotonically increasing (�(1)(z) ≥ 0) and concave (�(2)(z) ≤ 0) and, similarly,
�(1)(z) is monotonically decreasing (�(2)(z) ≤ 0) and convex (�(3)(z) ≥ 0) for all z > 0.
Thus, since for any α > 1, k ≥ 1, arguments of the functions �(0) and �(1), i.e., 2 − 1/(αk)

and 1 + 1/k − 1/(αk), belong to the interval [1, 2], and given the values �(0)(1) = −γ ,
�(0)(2) = −γ + 1, �(1)(1) = π 2/6, �(1)(2) = π 2/6 − 1, we derive the following linear
bounds for all 1 ≤ z ≤ 2:

�(0)(z) ≥ −γ − 1 + z and �(1)(z) ≤ π 2

6
+ 1 − z. (A3)

Next, by first upper bounding �(0)(2 − 1/(αk)) with 1 − γ , and then using the inequalities
from (A3) in (A2), one obtains after some easy algebra

d2

dα2
log Kk(α) ≤ 18 + (−18 − 24k + π 2)α − 2k(−18 + π 2)α2 + k2(−12 + π 2)α3

6k2α4(αk − 1)2
.

(A4)
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Thus, it is left to prove that for any α > 1 and k ≥ 2, the expression on the right hand side
of (A4) is less or equal to zero. In that respect, we analyze the numerator of (A4)

f (α, k) � 18 + (−18 − 24k + π 2)α − 2k(−18 + π 2)α2 + k2(−12 + π 2)α3.

First, we show that function f (α, k) is decreasing in k for all k ≥ 2 and any fixed α > 1.
Thus, by taking the derivative of f with respect to k, we obtain

df

dk
= α[2kα2(−12 + π 2) − 2α(−18 + π 2) − 24]

≤ α[2α2(−24 + 2π 2) − 2α(−18 + π 2) − 24] < −8α < −8,

since the maximum of the quadratic term in the previous expression is less than −8. There-
fore, function f (α, k) decreases in k. Since k ≥ 2 and α > 1, we can upper-bound its value
by f (α, 2), i.e.,

f (α, k) ≤ 18(1 − α) + (−48 + π 2)α − 4(−18 + π 2)α2 + 4(−12 + π 2)α3

≤ α[4α2(−12 + π 2) + α(72 − 4π 2) − 48 + π 2] < −7α < −7,

since in this case the quadratic term in the second inequality is less than −7. Therefore,
we obtained that f (α, k) ≤ 0 for all k ≥ 2, α > 1, and, thus, from (A4) it follows that
d2/dα2(log Kk(α)) ≤ 0. This concludes the proof of monotonicity of function Kk(α) in
α. Finally, the second limit in (22) follows by straightforward application of the equation
6.1.33, p. 256 of [1]. Next, the first limit in (22) in the case of k = 1 follows from Theorem 3
of [10]. Otherwise, for k ≥ 2, the limit follows directly from expression (21) after replacing
α = 1.

To prove the monotonicity of function Kk(α) in k, we observe the first derivative with
respect to k of function log Kk(α) and obtain

d

dk
log Kk(α) =

(
1 − 1

α

)
1

k2

[
�(0)

(
1 − 1

αk

)
− �(0)

(
1 + 1

k
− 1

αk

)]
< 0,

where the last inequality follows from the monotonicity of function �(0)(z) as discussed
earlier. Thus, Kk(α) is monotonically decreasing in k for all real k ≥ 1. In particular, Kk(α)

is decreasing for integer values of k ≥ 1. Finally, the monotonicity of Kk(α) and (22) imply
(23), i.e.,

1 = Kk(1) ≤ Kk(α) ≤ Kk(∞) → 1 as k → ∞,

which concludes the proof of the theorem.

The completion of the proof of Theorem 2. First, observe the function f (η), as defined
in (49). After expressing the function �(−1/(αk), η) in the integral form and applying
integration by parts, we obtain

f (η) = 1 − 1

αk
η

1
αk

∫ ∞

η

e−t t−
1
αk −1dt

= 1 − e−η + η
1
αk

∫ ∞

η

e−t t−
1
αk dt. (A5)
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Now, since for any η > 0

d

dη
f (η) = 1

αk
η

1
αk −1

∫ ∞

η

e−t t−
1
αk dt > 0,

we conclude that f (η) is monotonically increasing in η > 0. Now, note that from (A5), it is
straightforward to conclude f (η) > 0 for any η > 0. Furthermore, since f (η) is continuous
function in η ≥ 0 and

f (η) ≤ 1 − e−η + η
1
αk �

(
1 − 1

αk

)
→ 0 as η → 0,

we conclude limη→0 f (η) = 0. Next, note that for η ≥ 1, we can upper bound f (η) as

f (η) = 1 − e−η + η
1
αk

∫ ∞

η

e−t t−
1
αk dt ≤ 1 − e−η + η

1
αk η− 1

αk e−η = 1,

and, therefore
1 ≥ f (η) ≥ 1 − e−η → 1 as η → ∞.

Thus, f (η) is strictly increasing continuous function for η > 0 with limη→0 f (η) = 0 and
limη→∞ f (η) = 1. This implies that for any 0 < δ < 1, there is a unique solution ηδ > 0 of
the equation f (η) = δ.

Next, we prove the limitting value of the asymptotic expression in (40) when k → ∞.
Note that since

�

(
1 − 1

αk

)
−

(
1 − 1

αk

)−1

η1− 1
αk = �

(
1 − 1

αk

)
−

∫ η

0
t−

1
αk dt

≤
∫ ∞

η

e−t t−
1
αk dt ≤ �

(
1 − 1

αk

)
, (A6)

then, using the continuity of �(x) at x = 1, for any ε > 0, there exists η0 and k0, such that
for all k ≥ k0, 0 < η ≤ η0

1 − ε ≤
∫ ∞

η

e−t t−
1
αk dt ≤ 1 + ε. (A7)

Thus, for any k ≥ k0 and η ≤ η0

f (η) ≥ f1(η) � η
1
αk (1 − ε). (A8)

Now, using (A8) and the fact that functions f (η), f1(η) are monotonically increasing, if the
solution η∗

δ of the equation f1(η) = δ satisfies η∗
k,δ ≤ η0, it follows that the unique solution

ηk,δ ≡ ηδ of the equation f (η) = δ must satisfy

ηk,δ ≤ η∗
k,δ . (A9)

Then, from (A8), it follows

ηk,δ ≤
(

δ

1 − ε

)αk

,
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and, therefore, if ε < 1 − δ, there exists k0 (possibly greater than before), such that for all
k ≥ k0 inequality η∗

k,δ ≤ η0 holds, which in conjunction with (A9) yields

lim
k→∞

ηk,δ = 0. (A10)

Next, it is not hard to check that

d

dηk,δ
Fk(δ) =

(
1 − α

αk

)2

η
1
αk − 1

k −1

k,δ

∫ ∞

ηk,δ

e−t t
1
k − 1

αk −1dt − 1 − α

αk
e−ηk,δ η−1

k,δ

≤
(

1 − α

αk

)2

η
1
αk − 1

k −1

k,δ e−ηk,δ

∫ ∞

ηk,δ

t
1
k − 1

αk −1dt − 1 − α

αk
e−ηk,δ η−1

k,δ = 0,

and, therefore, for all k large, after using (A9) and replacing ηk,δ with η∗
k,δ in expression (40),

applying integration by parts and similar arguments as in (A6), we lower bound Fk(δ) as

Fk(δ) ≥ 1 − α

αk

(
η∗

k,δ

) 1
αk − 1

k

∫ ∞

η∗
k,δ

e−t t
1
k − 1

αk −1dt

= 1 − (
η∗

k,δ

) 1
αk − 1

k �

(
1 + 1

k
− 1

αk
, η∗

k,δ

)
→ 1 −

(
δ

1 − ε

)1−α

as k → ∞, (A11)

which, after letting ε → 0, implies

lim inf
k→∞

Fk(δ) ≥ 1 − δ1−α . (A12)

Next, similarly as before, using the arguments that led to (A7) and the limit in (A10),
for any ε > 0 there exists k0 > 0, such that for all k ≥ k0, inequality ηk,δ ≤ η0 holds and,
furthermore, we can upper bound f (η) for all η ≤ η0 as

f (η) ≤ f2(η) � ε + (1 + ε)η
1
αk .

Then, using the analogous reasoning as before, for all k ≥ k0, the solution η∗
k,δ =

((δ − ε)/(1 + ε))αk to the equation f2(η) = δ must be smaller than ηk,δ . Thus, using
the monotonicity of Fk(δ) in ηδ and similar arguments as in (A11), after replacing ηδ ≡ ηk,δ

with η∗
k,δ in (40), we obtain

lim sup
k→∞

Fk(δ) ≤ 1 −
(

δ − ε

1 + ε

)1−α

,

which, after letting ε → 0, in conjunction with (A12), yields (41).
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