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Abstract

We study the minimal/endogenous solution R to the maximum recursion on
weighted branching trees given by

R
D
=

(
N∨
i=1

CiRi

)
∨Q,

where (Q,N,C1, C2, . . . ) is a random vector with N ∈ N∪{∞}, P (|Q| > 0) >
0 and nonnegative weights {Ci}, and {Ri}i∈N is a sequence of i.i.d. copies

of R independent of (Q,N,C1, C2, . . . );
D
= denotes equality in distribution.

Furthermore, when Q > 0 this recursion can be transformed into its additive
equivalent, which corresponds to the maximum of a branching random walk
and is also known as a high-order Lindley equation. We show that, under
natural conditions, the asymptotic behavior of R is power-law, i.e., P (|R| >
x) ∼ Hx−α, for some α > 0 and H > 0. This has direct implications for the
tail behavior of other well known branching recursions.

Keywords: High-order Lindley equation, stochastic fixed-point equations,
weighted branching processes, branching random walk, power law
distributions, large deviations, Cramér-Lundberg approximation, random
difference equations, maximum recursion
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1. Introduction

In recent years considerable attention [1, 2, 3, 4, 5, 6, 7, 8] has been given
to the characterization and analysis of the solutions to the non homogeneous
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linear equation

RL
D
=

N∑
i=1

CiRL,i +Q, (1)

where (Q,N,C1, C2, . . . ) is a real-valued random vector with N ∈ N ∪ {∞},
P (|Q| > 0) > 0, and {RL,i}i∈N is a sequence of i.i.d. random variables inde-
pendent of (Q,N,C1, C2, . . . ) having the same distribution as RL. Equation
(1) has applications in a wide variety of fields, including the analysis of di-
vide and conquer algorithms [9, 10], e.g. Quicksort [11]; the analysis of the
PageRank algorithm [12, 1]; and kinetic gas theory [8]. Our work in [2, 3]
shows that the so-called endogenous solution, as termed in [13], of (1), under

the natural main root condition E
[∑N

i=1 |Ci|α
]

= 1 with positive derivative

0 < E
[∑N

i=1 |Ci|α log |Ci|
]
<∞ for some α > 0, has the power tail behavior,

P (|RL| > t) ∼ HLt
−α, t→∞,

where 0 ≤ HL < ∞. The main tool used in deriving this result was a gen-
eralization of Goldie’s Implicit Renewal Theorem [14] to weighted branching
trees.

Motivated by a different set of applications, we study in this paper the
maximum recursion on trees given by

R
D
=

(
N∨
i=1

CiRi

)
∨Q, (2)

where (Q,N,C1, C2, . . . ) is a random vector with N ∈ N∪{∞}, nonnegative
weights {Ci}, and P (|Q| > 0) > 0, and {Ri}i∈N is a sequence of i.i.d. random
variables independent of (Q,N,C1, C2, . . . ) having the same distribution as
R. Here and throughout the paper we use x ∨ y and x ∧ y to denote the
maximum and minimum, respectively, of x and y. We point out that by
taking the logarithm in (2) when Q > 0 a.s., we obtain the additive equivalent

X
D
=

N∨
i=1

(Yi +Xi) ∨ V, (3)

where X = logR, Yi = logCi, V = logQ, and the {Xi}i∈N are i.i.d. copies
of X, independent of (V,N, Y1, Y2, . . . ). Note that for N ≡ 1 and V ≡ 0,
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(3) reduces to the classical Lindley’s equation, satisfied by the reflected ran-
dom walk; and when V 6≡ 0, the recursion corresponds to a random walk
reflected on a random barrier. In general, the preceding additive equation
has been studied in the literature of branching random walks (see [13], §4.2).
Recursion (3) was termed “high-order Lindley equation” and studied in the
context of queues with synchronization in [15]. Unlike the classical Lind-
ley equation, it was shown in [15] that (3) can have multiple solutions. A
more complete analysis of the existence and the characterization of the entire
family of solutions was carried out in [16] (e.g., see Theorem 1 in [16]). In
addition, it can be shown that the study of (3) arises in the context of today’s
massively parallel computing, e.g., consider a job that is split into smaller
pieces which are sent randomly to different processors, and these pieces need
to be synchronized in order to complete their processing. In addition to
these applications, a better understanding of (2) immediately leads to im-
portant insights to other max-plus branching recursions. More precisely, for
the case of nonnegative weights, (2) is a natural lower bound for many other
recursions on trees [13].

For all of the reasons described above, we study in this paper the tail
behavior of the minimal/endogenous solution to the maximum recursion in
(2) (or (3)). Furthermore, we point out that under iterations of the fixed-
point equation (2) (or (3)), the minimal/endogenous solution is the primary
limiting value, unless one starts with very specific initial distributions (see
Theorem 1(ii) in [16]); we will discuss this in more detail in Section 3.

Our first main result, stated in Theorem 3.4, describes the tail behavior
of the minimal/endogenous solution to the maximum recursion (2) (or (3)).
In this regard, the application of the Implicit Renewal Theorem on Trees

(see Theorem 3.4 [3]), under the natural conditions E
[∑N

i=1C
α
i

]
= 1 and

0 < E
[∑N

i=1C
α
i logCi

]
<∞ for some α > 0, readily gives

P (R > t) ∼ Ht−α, t→∞, (4)

where 0 ≤ H < ∞. However, the main difficulty in establishing the power-
law behavior lies in proving that H > 0. Unlike in the linear case, it is not
clear that this constant should be positive at all, since at first glance the
expression which determines H in Theorem 3.4 of Section 3,

E

[
(Q+)α ∨

N∨
i=1

(CiR
+
i )α −

N∑
i=1

(CiR
+
i )α

]
,
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appears just as likely to be negative. Hence, our first main contribution lies
in a new sample-path construction showing that H > 0 under no additional
assumptions (besides those needed for the application of Theorem 3.4 in
[3]). Observe that in the additive case of equation (3), our result yields the
exponential asymptotics P (X > y) ∼ He−αy, which is the generalization of
the well known Cramér-Lundberg approximation. The latter is widely used
in insurance risk theory and queueing.

Furthermore, as an immediate corollary one obtains the strict positivity of
HL in the linear case with nonnegative (Q,N,C1, C2, . . . ). In this setting, the
work in [2] used a straightforward convexity argument to show that HL > 0
for α ≥ 1, but the corresponding question for α ∈ (0, 1) was left open. The
strict positivity of HL for α ∈ (0, 1) was recently resolved in [7] as part of
the more general real-valued case, but under additional assumptions that

include E
[∑N

i=1C
α+ε
i

]
< ∞. Note that in the additive equation (3), this

extra moment assumption corresponds to the finiteness of α+ ε exponential
moments of the {Yi}. Since the new results on the maximum hold without
such additional assumptions, Theorem 3.4 fully completes the prior work for
nonnegative (Q,N,C1, C2, . . . ).

We now go back to the linear recursion (1) with real-valued weights
(Q,C1, C2, . . . ), which has recently been considered in [5, 3, 7] (see also [8]
for the multivariate case). The work in [3] establishes the Implicit Renewal
Theorem on Trees for the real-valued case and shows that, under the usual

conditions E
[∑N

i=1 |Ci|α
]

= 1 and 0 < E
[∑N

i=1 |Ci|α log |Ci|
]
< ∞, the

endogenous solution to (1) has a power tail behavior of the form HLt
−α,

HL ≥ 0. In that paper the strict positivity of HL in its full generality re-
mained open. It was this open problem that motivated the work in [7], where
it was shown, using complex analysis and analytical functions, that HL > 0

under the additional assumptions N < ∞ a.s., E
[∑N

i=1 |Ci|α+ε
]
< ∞ and

E

[(∑N
i=1 |Ci|

)α+ε]
<∞.

In this paper, we revisit the problem of the strict positivity of HL for the
general real-valued case using our result on the maximum equation (2) (with
nonnegative weights {Ci}), under no additional assumptions on the vector
(N,C1, C2, . . . ) besides those needed for Theorem 3.4 in [3]. However, we
do require that Q does not reduce to a constant given (N,C1, C2, . . . ), i.e.,
Q can be a random, but not deterministic, function of (N,C1, C2, . . . ). Our
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Π = 1

Π1 = C1 Π2 = C2 Π3 = C3

Π(1,1) = C(1,1)C1

Π(1,2) = C(1,2)C1

Π(2,1) = C(2,1)C2

Π(3,1) = C(3,1)C3

Π(3,2) = C(3,2)C3

Π(3,3) = C(3,3)C3

Figure 1: Weighted branching tree

main set of arguments is based on Lévy’s symmetrization approach.
The paper is organized as follows. Section 2 includes a brief descrip-

tion of the weighted branching process. Section 3 contains our first main
result about the asymptotic behavior of the minimal/endogenous solution
to the maximum recursion (2), including the strict positivity of H. Sec-
tion 4 presents our proof of the positivity of the constant HL for the general
mixed-sign linear recursion (1).

2. Model description

We use the model from [3] for defining a weighted branching tree. To
this end, let N+ = {1, 2, 3, . . . } be the set of positive integers and let U =⋃∞
k=0(N+)k be the set of all finite sequences i = (i1, i2, . . . , in) ∈ U , where by

convention N0
+ = {∅} contains the null sequence ∅. To ease the exposition,

for a sequence i = (i1, i2, . . . , ik) ∈ U we write i|n = (i1, i2, . . . , in), provided
k ≥ n, and i|0 = ∅ to denote the index truncation at level n, n ≥ 0. Also, for
i ∈ A1 we simply use the notation i = i1, that is, without the parenthesis.
Similarly, for i = (i1, . . . , in) we will use (i, j) = (i1, . . . , in, j) to denote the
index concatenation operation, if i = ∅, then (i, j) = j.

To iteratively construct the weighted branching tree T , let{
(Ni, C(i,1), C(i,2), . . . )

}
i∈U be a sequence of i.i.d. random vectors. The ran-

dom variables {Ni}i∈U in this sequence define the structure of the tree as
follows; set N = N∅. Let A0 = {∅},

A1 = {i ∈ N : 1 ≤ i ≤ N}, and

An = {(i, in) ∈ U : i ∈ An−1, 1 ≤ in ≤ Ni}, n ≥ 2, (5)
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be the set of individuals in the nth generation. Next, assign to each node i
in the tree a weight Πi according to the recursion

Πi1 = Ci1 , Π(i1,...,in) = C(i1,...,in)Π(i1,...,in−1), n ≥ 2,

where Π = Π∅ ≡ 1 is the weight of the root node. See Figure 1.

3. The maximum recursion: R =
(∨N

i=1 CiRi

)
∨ Q

In this section, we study the maximum fixed-point equation given by

R
D
=

(
N∨
i=1

CiRi

)
∨Q, (6)

where (Q,N,C1, C2, . . . ) is a random vector with N ∈ N ∪ {∞}, {Ci} ≥ 0
and P (|Q| > 0) > 0, and {Ri}i∈N is a sequence of i.i.d. random variables
independent of (Q,N,C1, C2, . . . ) having the same distribution as R. As
already mentioned, the additive version of (6), given in (3), was termed
“high-order Lindley equation” and studied in the context of queues with
synchronization in [15]. The full characterization of its multiple solutions
was given in [16]. More recently, a related recursion where Q ≡ 0, N = ∞,
and the {Ci} are real valued deterministic constants, has been analyzed in
[17]. The more closely related case of Q ≡ 0 and {Ci} ≥ 0 being random was
studied earlier in [18]. For this and other max-plus equations appearing in a
variety of applications see the survey by [13].

Using standard arguments, we start by constructing an endogenous solu-
tion to (6) on a tree and then we show that this solution is finite a.s. and
represents the unique limit under iterations provided that the initial values
and the weights satisfy appropriate moment conditions.

Following the notation of Section 2, define the process

Vn =
∨
i∈An

QiΠi, n ≥ 0, (7)

on the weighted branching tree T . The convention throughout the paper
is that (Q,N,C1, C2, . . . ) = (Q∅, N∅, C(∅,1), C(∅,2), . . . ) denotes the random
vector corresponding to the root node. Next, define the process {R(n)}n≥0
according to

R(n) =
n∨
k=0

Vk, n ≥ 0.
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It is not hard to see that R(n) satisfies the recursion

R(n) =

(
N∅∨
j=1

C(∅,j)R
(n−1)
j

)
∨Q∅ =

(
N∨
j=1

CjR
(n−1)
j

)
∨Q, (8)

where {R(n−1)
j } are independent copies of R(n−1) corresponding to the tree

starting with individual j in the first generation and ending on the nth gen-
eration. One can also verify that

Vn =

N∅∨
k=1

C(∅,k)
∨

(k,i2,...,in)∈An

Q(k,i2,...,in)

n∏
j=2

C(k,i2,...,ij)
D
=

N∨
k=1

CkV(n−1),k,

where {V(n−1),k} is a sequence of i.i.d. random variables independent of
(N,C1, C2, . . . ) and having the same distribution as Vn−1.

We now define the random variable R according to

R , lim
n→∞

R(n) =
∞∨
k=0

Vk. (9)

Note that R(n) is monotone increasing sample-pathwise, so R is well de-
fined. Also, by monotonicity of R(n) and (8), we obtain that R solves

R =

(
N∅∨
j=1

C(∅,j)R
(∞)
j

)
∨Q∅ =

(
N∨
j=1

CjR
(∞)
j

)
∨Q,

where {R(∞)
j }j∈N are i.i.d. copies of R, independent of (Q,N,C1, C2, . . . ),

see also Section 2 in [16]. Clearly this implies that R, as defined by (9), is
a solution in distribution to (6). However, this solution might be ∞. Next,
we establish in the following lemma the finiteness of moments of R, and in
particular that R < ∞ a.s.; its proof uses standard contraction arguments
but is included for completeness; e.g. see Theorem 6 (i) in [16]. Conditions
under which R is infinite a.s. can be found in Corollary 4 in [16].

Lemma 3.1. Assume that ρβ = E
[∑N

i=1C
β
i

]
< 1 and E[|Q|β] <∞ for some

β > 0. Then, E[|R|γ] <∞ for all 0 < γ ≤ β, and in particular, |R| <∞ a.s.

Moreover, if β ≥ 1, R(n) Lβ→ R, where Lβ stands for convergence in (E| · |β)1/β

norm.
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Proof. It follows immediately that

E
[
|R|β

]
≤ E

[
∞∑
k=0

∑
i∈Ak

|Qi|βΠβ
i

]
=
∞∑
k=0

E[|Q|β]ρkβ =
E[|Q|β]

1− ρβ
<∞,

That R(n) Lβ→ R whenever β ≥ 1 follows from noting that |R(n) − R|β ≤∣∣∨∞
k=n+1 Vk

∣∣β and the same arguments used above.

Although this paper focuses only on the solution R defined by (9), it
is important to mention that equation (6) can have multiple solutions, as
the work in [16] describes. The solution R receives the name “endogenous”
since it is constructed explicitly from the weighted branching tree, and the
name “minimal” since it is the stochastically smallest solution, in the sense
that any other solution R′ to (6) satisfies P (R′ > t) ≤ P (R > t) for all
t > 0. For the case when Q ≥ 0 and there exists a unique υ > 0 such

that E
[∑N

i=1C
υ
i

]
= 1 and −∞ < E

[∑N
i=1C

υ
i logCi

]
< 0 (referred to as the

“regular case”), Theorem 1 (ii) and (iii) of [16] characterizes the entire family
of solutions to (6). Moreover, under some additional technical conditions, all
other solutions to (6) are given in terms of R (M = logR in [16]) and the
limit W (υ) of the martingale Wk(υ) =

∑
i∈Ak Πυ

i . To better understand the
nature of these other solutions, as well as to highlight the importance of the
endogenous/minimal solution R, we will next define the process {R∗n} that
is obtained from iterating equation (6) starting from an initial value R∗0.

Let
R∗n , R(n−1) ∨ Vn(R∗0), n ≥ 1,

where
Vn(R∗0) =

∨
i∈An

R∗0,iΠi, (10)

and {R∗0,i}i∈U are i.i.d. copies of an initial value R∗0, independent of the
entire weighted tree TQ,C . R∗0 is referred to as the “terminal” value in [16]
(T = logR∗0, R

∗
0 ≥ 0) since it corresponds to the value of the leaves in the

weighted branching tree with finitely many generations. It follows from (8)
and (10) that

R∗n+1 =
N∨
j=1

Cj

R(n−1)
j ∨

∨
i∈An,j

R∗0,i

n∏
k=2

C(j,...,ik)

 ∨Q =
N∨
j=1

CjR
∗
n,j ∨Q,
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where {R(n−1)
j } are independent copies of R(n−1) corresponding to the tree

starting with individual j in the first generation and ending on the nth gen-
eration, and An,j is the set of all nodes in the (n + 1)th generation that are
descendants of individual j in the first generation. Moreover, {R∗n,j} are i.i.d.
copies of R∗n, and thus, R∗n is equal in distribution to the process obtained
by iterating (6) with an initial condition R∗0. This process can be shown
to converge in distribution to R for any initial condition R∗0 satisfying the
following moment condition (see also Theorem 9 in [16]).

Lemma 3.2. Suppose E[|Q|β], E[|R∗0|β] < ∞ and ρβ < 1 for some β > 0,
then

R∗n ⇒ R,

with E[|R|β] < ∞. Furthermore, under these assumptions, the distribution
of R is the unique solution with finite β-moment to recursion (6).

Proof. The result is immediate from Lemma 5.2 in [2] by noting that

|Vn(R∗0)| ≤
∨
i∈An

∣∣R∗0,iΠi

∣∣ .

Remarks 3.3. (a) Lemma 3.2 establishes a certain type of uniqueness of the
solution to (6), in the sense that R is the only possible limit for the iterative
process {R∗n} for any initial value R∗0 possessing finite β moment with ρβ < 1.
It is therefore to be expected that all other solutions to the maximum recursion
must arise from violating this assumption. (b) Theorem 1 (ii) of [16] states
that in the regular case (see the comments after Lemma 3.1), if R∗0 ≥ 0 and
limt→∞ t

υP (R∗0 > t) = γ (υ < α), then R∗n ⇒ R(γ), where

P (R(γ) ≤ t) = E
[
1(R ≤ t)e−γW (υ)tυ

]
.

Moreover, R(γ) solves (6) provided R <∞ a.s. and E
[
W1(υ) log+W1(υ)

]
<

∞.

Now we are ready to state the main result of this section, which charac-
terizes the asymptotic behavior of R.

Theorem 3.4. Let (Q,N,C1, C2, . . . ) be a random vector with N ∈ N∪{∞},
{Ci} ≥ 0 and P (|Q| > 0) > 0, and R be the solution to (6) given by (9).
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Suppose that there exists j ≥ 1 with P (N ≥ j, Cj > 0) > 0 such that the
measure P (logCj ∈ du, Cj > 0, N ≥ j) is nonarithmetic, and that for some

α > 0, E[|Q|α] < ∞, 0 < E
[∑N

i=1C
α
i logCi

]
< ∞ and E

[∑N
i=1C

α
i

]
= 1.

In addition, assume

1. E
[(∑N

i=1Ci

)α]
<∞, if α > 1; or,

2. E

[(∑N
i=1C

α/(1+ε)
i

)1+ε]
<∞ for some 0 < ε < 1, if 0 < α ≤ 1.

Then,

P (R > t) ∼ Ht−α, P (R < −t) = o
(
t−α
)
, t→∞,

where 0 ≤ H <∞ is given by

H =
1

E
[∑N

i=1C
α
i logCi

] ∫ ∞
0

vα−1

(
P (R > v)− E

[
N∑
i=1

1(CiRi > v)

])
dv

=
E
[
(Q+)α ∨

∨N
i=1(CiR

+
i )α −

∑N
i=1(CiR

+
i )α
]

αE
[∑N

i=1C
α
i logCi

] .

Furthermore, H > 0 if and only if P (Q+ > 0) > 0.

Remarks 3.5. (a) The condition E[|Q|α] < ∞ is only needed to obtain the
result about the negative tail. The result about the positive tail P (R > t) only
requires E[(Q+)α] < ∞. (b) The equivalent result for the lattice case can be
obtained by using the corresponding Implicit Renewal Theorem on Trees in
[3]. (c) Corollary 5 in [16] provides upper bounds for the tail behavior of any
finite solution to the maximum equation (6).

Proof. The first part of the proof about the right tail, P (R > t), will follow
from an application of the Implicit Renewal Theorem on Trees, Theorem 3.4
in [3], once we verify the finiteness of∫ ∞

0

∣∣∣∣∣P (R > t)− E

[
N∑
i=1

1(CiRi > t)

]∣∣∣∣∣ tα−1dt. (11)

To see that (11) is indeed finite, note that by Lemma 4.10 in [3] we have that

0 ≤
∫ ∞
0

(
E

[
N∑
i=1

1(CiRi > t)

]
− P

(
N∨
i=1

CiRi > t

))
tα−1dt <∞.
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Also, since R∗ ,
(∨N

i=1CiRi

)
∨Q ≥

∨N
i=1CiRi, then

0 ≤
∫ ∞
0

(
P (R∗ > t)− P

(
N∨
i=1

CiRi > t

))
tα−1dt

=
1

α
E

(( N∨
i=1

CiRi

)
∨Q

)+
α

−

( N∨
i=1

CiRi

)+
α

=
1

α
E

[
(Q+)α ∨

N∨
i=1

(CiR
+
i )α −

N∨
i=1

(CiR
+
i )α

]
≤ 1

α
E[(Q+)α].

Combining these two observations gives that (11) is finite, and by Theo-
rem 3.4 (a) in [3] we obtain the result with the integral representation of H.
To derive the second expression for H follow the same steps used at the end
of the proof of Theorem 4.1 in [2].

For the negative tail, P (R < −t), simply note that

P (R < −t) = P

((
N∨
i=1

CiRi

)
∨Q < −t

)
≤ P (Q < −t)

≤ P (|Q| > t) ≤ E [|Q|α1(|Q|α > t)] t−α,

where in the last step we used Markov’s inequality. Since E[|Q|α] <∞, then
E[|Q|α1(|Q|α > t)] = o(1) as t→∞, proving the result.

The rest of the proof is devoted to showing that the constant H > 0 if and
only if P (Q+ > 0) > 0. Note that if Q ≤ 0 a.s. then R+ = 0 and therefore
H = 0, so it only remains to show that H > 0 whenever P (Q+ > 0) > 0.
Hence, assume from now on that P (Q+ > 0) > 0.

The main idea of the proof is to construct a minorizing random variable
for R for which we can directly estimate the expectation appearing in the
numerator of H. We start by fixing 0 < δ < E[(Q+)α] ∧ 1 and choosing

α/2 < β < α and q > 0 such that ρβ < 1, E

[(∑N
i=1C

β
i

)α/β]
< ∞, and

E[(Q+)α1(Q+ > q)] < δ/6; define K = β−1
∫∞
0

(e−u − 1 + u)u−α/β−1du <
∞. Note that such β always exists under the assumptions of the theorem,
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since when 0 < α ≤ 1 we have that for any α/(1 + ε) ≤ β < α,

E

( N∑
i=1

Cβ
i

)α/β
 ≤ E

( N∑
i=1

C
α

1+ε

i

)α
β
· (1+ε)β

α

 = E

( N∑
i=1

C
α

1+ε

i

)1+ε
 <∞,

and when α > 1 we have that for any 1 ≤ β < α,

E

( N∑
i=1

Cβ
i

)α/β
 ≤ E

( N∑
i=1

Ci

)α
β
·β
 = E

[(
N∑
i=1

Ci

)α]
<∞.

Now let {Di,j : i ∈ U, 1 ≤ j ≤ r} be nonnegative i.i.d. random variables,
independent of T , having the same distribution as D, where D satisfies

0 ≤ D ≤ d a.s., E[Dα] = 1 and E[Dβ] < 1,

(e.g., take D to have density f(x) = (α/2)xα−11(0 ≤ x ≤ 21/α)). For each
i ∈ T define the random variable

Qi = Qi

r∏
j=1

D(i,j),

where r ∈ N is such that

qαE[(Q+)β]

(δ/6)(1− ρβ)
(E[Dβ])r < δ/6

and

KE

( N∑
i=1

Cβ
i

)α/β
(E[(Q+)β]

1− ρβ

)α/β
(E[Dβ])αr/β < αδ/2.

Let
R =

∨
i∈T

QiΠi,

and note that for any t > 0,

P (R > t) = P (R+ > t) = P

((∨
i∈T

QiΠi

)+

> t

)
= P

(∨
i∈T

drQ+
i Πi > drt

)

≥ P

(∨
i∈T

r∏
j=1

D(i,j)Q
+
i Πi > drt

)
= P

(∨
i∈T

Q+
i Πi > drt

)
= P (R > drt).

12



We now apply the first part of this theorem to the new random variable R
to obtain

P (R > v) ∼
E
[
(Q+)α ∨

∨N
i=1(CiR

+
i )α −

∑N
i=1(CiR

+
i )α
]

αE
[∑N

i=1C
α
i logCi

] · v−α

as v →∞. The positivity of H will then follow once we show

E , E

[
(Q+)α ∨

N∨
i=1

(CiR+
i )α −

N∑
i=1

(CiR+
i )α

]
> 0.

We start by writing E as

E = E

((Q+)α −
N∨
i=1

(CiR+
i )α

)+
− E [ N∑

i=1

(CiR+
i )α −

N∨
i=1

(CiR+
i )α

]
, E1 − E2.

To analyze E1 note that

E1 ≥ E

((Q+)α1(Q+ ≤ q)−
N∨
i=1

(CiR+
i )α

)+

1

(
N∨
i=1

(CiR+
i )α ≤ δ/6

)
≥ E

[(
(Q+)α1(Q+ ≤ q)− δ/6

)+]
− E

[(
(Q+)α1(Q+ ≤ q)− δ/6

)+
1

(
N∨
i=1

(CiR+
i )α > δ/6

)]

≥ E
[
((Q+)α1(Q+ ≤ q)

]
− δ

6
− qαE

[(
r∏
j=1

Dα
j

)
1

(
N∨
i=1

(CiR+
i )α > δ/6

)]

= E
[
(Q+)α

]
− E

[
(Q+)α1(Q+ > q)

]
− δ

6
− qαP

(
N∨
i=1

(CiR+
i )α > δ/6

)
,

where in the last equality we used the observation that (Q+)α = (Q+)α
∏r

j=1D
α
j ,

13



where
∏r

j=1D
α
j is independent of T , and E

[∏r
j=1D

α
j

]
= 1. It follows that

E1 ≥ E[(Q+)α]− δ

3
− qαP

(
N∨
i=1

(CiR+
i )β > (δ/6)β/α

)

≥ E[(Q+)α]− δ

3
− qα

(δ/6)β/α
E

[
N∑
i=1

(CiR+
i )β

]
(by Markov’s inequality)

= E[(Q+)α]− δ

3
− qαρβ

(δ/6)β/α
E
[
(R+)β

]
.

By the same arguments used in the proof of Lemma 3.1,

E[(R+)β] ≤ E

[
∞∑
k=0

∑
i∈Ak

(Q+
i )βΠβ

i

]
=
E
[
(Q+)β

]
1− ρβ

=

(
E[Dβ]

)r
E[(Q+)β]

1− ρβ
.

(12)
Our choice of r now guarantees that

E1 ≥ E[(Q+)α]− δ

3
− qαE[(Q+)β]

(δ/6)(1− ρβ)
(E[Dβ])r > E[(Q+)α]− δ

2
.

It remains to bound E2. Follow the same steps as in the proof of Lemma 4.6
in [2] to obtain

αE2 =

∫ ∞
0

E

[
N∑
i=1

1(CiR+
i > t)− 1

(
N∨
i=1

CiR+
i > t

)]
tα−1dt

≤ E

β−1(E[(R+)β]
N∑
i=1

Cβ
i

)α/β ∫ ∞
0

(
e−u − 1 + u

)
u−α/β−1du


≤ KE

( N∑
i=1

Cβ
i

)α/β
((E[Dβ]

)r
E[(Q+)β]

1− ρβ

)α/β

(by (12)).

Our choice of r now gives E2 < δ/2. We conclude that

E > E[(Q+)α]− δ > 0.

14



4. The linear recursion

In this section of the paper we explain how Theorem 3.4, which estab-
lishes the power-law behavior of the endogenous solution R to the maximum
equation (6), can be used to show that the constant HL given by Theorem 4.6
in [3] is strictly positive.

Consider the linear equation

RL
D
=

N∑
i=1

CiRL,i +Q, (13)

where (Q,N,C1, C2, . . . ) is a real-valued random vector with N ∈ N ∪ {∞}
and P (|Q| > 0) > 0, and {RL,i}i∈N is a sequence of i.i.d. random variables
independent of (Q,N,C1, C2, . . . ) having the same distribution as RL. The
results in this section refer to the endogenous solution given by

RL =
∞∑
k=0

∑
i∈Ak

ΠiQi. (14)

We refer the reader to Section 4 in [3] for detailed conditions under which
RL is well defined and how it solves (13). We point out that all our results
for the maximum recursion assume that the weights {Ci} are nonnegative,
so the connection between RL and R is much more difficult to make in this
case.

As mentioned in the introduction, the idea behind our proof lies in first
considering what we call a “symmetric tree”, and using a novel argument to
show that the corresponding endogenous solution to the linear recursion on
this symmetric tree follows a power-law asymptotic behavior with a strictly
positive constant of proportionality. The second step is to construct a sym-
metric tree using two coupled versions of a general (non-symmetric) tree and
show how the solution to the general case is lower bounded by the symmetric
solution. The first of these two steps is given in the following proposition.

Proposition 4.1. Let (Q,N,C1, C2, . . . ) be a random vector with N ∈ N ∪
{∞} and P (|Q| > 0) > 0, and RL be the solution to (13) given by (14).

Assume that for some 0 < β ≤ 1, E[|Q|β] <∞ and E
[∑N

j=1 |Cj|β
]
< 1. In

addition, suppose that

(Q,N,C1, C2, . . . )
D
= (−Q,N,C1, C2, . . . ). (15)

15



Then,

P (|RL| > t) ≥ 1

2
P

(
max
i∈T
|ΠiQi| > t

)
.

Remarks 4.2. (a) We call a weighted branching tree whose root vector sat-
isfies (15) a symmetric tree. We will show how one can easily construct such
trees in the proof of Corollary 4.4 below. (b) That the solution RL for sym-
metric trees follows a power-law behavior with strictly positive constant of
proportionality if and only if Q 6≡ 0 immediately follows from the preceding
proposition and Theorem 3.4 applied to the weighted branching tree having
root vector (|Q|, N, |C1|, |C2|, . . . ). (c) The proof of Proposition 4.1 follows
the ideas of the Lévy-type maximal inequalities from [20] (see Theorem 1.1.1)
adapted to weighted branching trees.

Proof of Proposition 4.1. We start by defining the process

W0 = Q, Wk =
∑
i∈Ak

ΠiQi, k ∈ N,

and with some abuse of notation, the process

V0 = |Q|, Vk =
∨
i∈Ak

|ΠiQi|, k ∈ N.

Next, consider the events

B0 = {V0 > t}, Bk =

{
max

0≤i≤k−1
Vi ≤ t, Vk > t

}
, k ∈ N,

and note that they are disjoint and satisfy

P

(
max
k≥0

Vk > t

)
=
∞∑
k=0

P (Bk) =
∞∑
k=0

(P (Bk, |RL| > t) + P (Bk, |RL| ≤ t)) .

(16)
To analyze the second probability on the right hand side, for each k =
1, 2, 3, . . . , let mk : N → Nk be a bijective function, and use it to define
the events Bk,1 = Bk ∩

{
|Πmk(1)Qmk(1)| > t

}
and

Bk,j = Bk∩
{

max
1≤r≤j−1

|Πmk(r)Qmk(r)| ≤ t, |Πmk(j)Qmk(j)| > t

}
, j = 2, 3, 4, . . . ,
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where the convention is to set Πmk(r) ≡ 0 if mk(r) /∈ Ak. Note that the
{Bk,j} are disjoint and P (Bk) =

∑∞
j=1 P (Bk,j). The key observation is that

under the symmetry assumptions of the lemma we have that for any k ≥ 0,
and r ∈ N the sequences

{(Qi, Ni, C(i,1), C(i,2), . . . ) : i ∈ T } and

{(Qi, Ni, C(i,1), C(i,2), . . . ) : i ∈ T , i 6= mk(r)}
∪ {(−Qmk(r), Nmk(r), C(mk(r),1), C(mk(r),2), . . . )}

have the same distribution. It follows that for any k ≥ 0 and r ∈ N,

RL =
∑
j 6=k

Wj +
∑

i∈Ak,i6=mk(r)

ΠiQi + Πmk(r)Qmk(r)

D
=
∑
j 6=k

Wj +
∑

i∈Ak,i6=mk(r)

ΠiQi − Πmk(r)Qmk(r)

= RL − 2Πmk(r)Qmk(r),

and since the events {Bk,j} are insensitive to changes in the sign of the {Qi},
we have that for any k ≥ 0,

P (Bk, |RL| ≤ t) =
∞∑
r=1

P (Bk,r, |RL| ≤ t)

=
∞∑
r=1

P
(
Bk,r,

∣∣2Πmk(r)Qmk(r) −RL

∣∣ ≤ t
)

≤
∞∑
r=1

P
(
Bk,r, 2

∣∣Πmk(r)Qmk(r)

∣∣− |RL| ≤ t
)

=
∞∑
r=1

P
(
Bk,r, |RL| ≥ 2

∣∣Πmk(r)Qmk(r)

∣∣− t)
≤

∞∑
r=1

P (Bk,r, |RL| > t) (since
∣∣Πmk(r)Qmk(r)

∣∣ > t on Bk,r)

= P (Bk, |RL| > t) .

This and equation (16) complete the proof.

We now proceed to the second step of our proof, the one that shows
how to lower bound the endogenous solution RL in the general case with the
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solution to the linear equation (13) on a closely related symmetric tree. The
following technical lemma will be useful to explain our construction.

Lemma 4.3. Let X be a real-valued random variable and let Y = (Y1, Y2, . . . ) ∈
R∞ be a random vector on the same probability space. Define for x ∈ R,

FY(x) = E [1(X ≤ x)|Y] .

Then, FY(x) is nondecreasing in x a.s. and F−1Y (t) = inf{x ∈ R : FY(x) ≥ t}
exists a.s. Moreover, if U1, U2 are two independent Uniform(0,1) random
variables, independent of Y, then

X1 = F−1Y (U1) and X2 = F−1Y (U2)

are identically distributed and conditionally independent given Y, and

(Xi, Y1, Y2, . . . )
D
= (X, Y1, Y2, . . . ), i = 1, 2.

Proof. That FY(x) is nondecreasing in x a.s. follows from the fact that
1(X ≤ x) is nondecreasing. Moreover, the pseudo inverse F−1Y (t) is well
defined for all t ∈ R and satisfies F−1Y (t) ≤ x if and only if t ≤ FY(x) for all
t, x. Now consider the two random variables X1 and X2 from the statement
of the lemma. Then, for any x1, x2 ∈ R,

E [1(X1 ≤ x1, X2 ≤ x2)|Y]

= E
[
1(F−1Y (U1) ≤ x1)1(F−1Y (U2) ≤ x2)

∣∣Y]
= E

[
1(F−1Y (U1) ≤ x1)

∣∣Y]E [1(F−1Y (U2) ≤ x2)
∣∣Y]

(since U1, U2 and Y are independent)

= E [1(X1 ≤ x1)|Y]E [1(X2 ≤ x2)|Y] ,

which shows the conditional independence given Y. Furthermore, for any
x ∈ R,

E [1(Xi ≤ x)|Y] = E
[
1(F−1Y (Ui) ≤ x)

∣∣Y]
= E [1(Ui ≤ FY(x))|Y] = FY(x) = E [1(X ≤ x)|Y]

for i = 1, 2. Hence, X1 and X2 have the same conditional distribution as
X|Y, from where it follows that for any measurable A ⊆ R∞ and i = 1, 2,

P ((Xi, Y1, Y2, . . . ) ∈ A) = E [E [1((Xi, Y1, Y2, . . . ) ∈ A)|Y]]

= E [E [1((X, Y1, Y2, . . . ) ∈ A)|Y]]

= P ((X, Y1, Y2, . . . ) ∈ A) .
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We now derive as a corollary the strict positivity of the constant in
Theorem 4.6 of [3] for the general case. Note that the result holds un-
der no additional assumptions beyond those required in that theorem, in

other words, we only require E
[(∑N

i=1 |Ci|
)α]

< ∞ when α > 1 and

E

[(∑N
i=1 |Ci|α/(1+ε)

)1+ε]
<∞ for some ε > 0 (which does not imply ρα+ε <

∞) when 0 < α ≤ 1; compare these to conditions (C) and (A) in [7], re-
spectively. We also point out that Theorem 4.6 of [3] does not require the

existence of the first root 0 < υ < α of the equation E
[∑N

i=1 |Ci|υ
]

= 1, but

only the derivative condition 0 < E
[∑N

i=1 |Ci|α log |Ci|
]
< ∞. Finally, our

main result on the asymptotic behavior of the minimal/endogenous solution
R to the maximum equation (Theorem 3.4) gives that HL > 0 provided Q is
not a deterministic function of the weights {Ci} and assuming all the other
conditions in Theorem 4.6 of [3] are satisfied. We have included the entire
statement of the theorem for completeness.

Corollary 4.4. Let (Q,N,C1, C2, . . . ) be a random vector, with N ∈ N ∪
{∞}, {Ci}i∈N real-valued weights, Q a real-valued random variable with P (|Q| >
0) > 0 and R be the solution to (13) given by (14). Suppose that there ex-
ists j ≥ 1 with P (N ≥ j, |Cj| > 0) > 0 such that the measure P (log |Cj| ∈
du, |Cj| > 0, N ≥ j) is non lattice, and that for some α > 0, E[|Q|α] < ∞,

E
[∑N

i=1 |Ci|α log |Ci|
]
> 0 and E

[∑N
i=1 |Ci|α

]
= 1. In addition, assume

1. E
[∑N

i=1 |Ci|
]
< 1 and E

[(∑N
i=1 |Ci|

)α]
<∞, if α > 1; or,

2. E

[(∑N
i=1 |Ci|α/(1+ε)

)1+ε]
<∞ for some 0 < ε < 1, if 0 < α ≤ 1.

Then, provided Q is not a deterministic function of (N,C1, C2, . . . ), we have

P (|R| > t) ∼ HLt
−α, t→∞,

where 0 < HL <∞ and

HL =
E
[∣∣∣∑N

i=1CiRi +Q
∣∣∣α −∑N

i=1 |CiRi|α
]

αE
[∑N

i=1 |Ci|α log |Ci|
] .
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Remark 4.5. Note that the same arguments used in the proof of Proposi-
tion 4.1 work, for any choice of Q 6≡ 0, if the weights {Ci} are symmetric, in
which case the strict positivity of HL holds without any assumptions on Q.

Proof. Let {(Qi, Ni, C(i,1), C(i,2), . . . )}i∈U be a sequence of i.i.d. vectors and
construct its corresponding random variable

R =
∞∑
k=0

∑
i∈Ak

ΠiQi.

Now use this sequence and Lemma 4.3 to construct a second i.i.d. sequence
{(Q̂i, Ni, C(i,1), C(i,2), . . . )}i∈U where

(Q̂,N,C1, C2, . . . )
D
= (−Q,N,C1, C2, . . . )

and such that Q̂i andQi are conditionally independent given (Ni, C(i,1), C(i,2), . . . )

for all i ∈ U . Denote by R̂ the corresponding process

R̂ =
∞∑
k=0

∑
i∈Ak

ΠiQ̂i,

and note that |R| D= |R̂|. Next define

R =
R + R̂

2
=
∞∑
k=0

∑
i∈Ak

Πi

(
Qi + Q̂i

2

)
,

∞∑
k=0

∑
i∈Ak

ΠiQi,

and observe that R satisfies the conditions of Proposition 4.1, and therefore

P (|R| > t) ≥ 1

2
P

(
max
i∈T
|ΠiQi| > t

)
.

Note that the assumption thatQ is not a deterministic function of (N,C1, C2, . . . )
implies that Q 6≡ 0. Moreover, by Theorem 3.4,

P

(
max
i∈T
|ΠiQi| > t

)
∼ Ht−α

as t→∞ for some constant 0 < H <∞. The last step is to note that

P (|R| > t) ≤ P
(
|R|+ |R̂| > 2t

)
≤ P (|R| > t) + P (|R̂| > t) = 2P (|R| > t).
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Birkhäuser, Basel, 2004, Ch. Stochastic fixed points involving the max-
imum, pp. 325–338.

[19] P. Billingsley, Probability and Measure, 3rd Edition, Wiley-Interscience,
New York, 1995.
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