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Abstract 
For an ATM multiplexer we develop a recursive 

asymptotic expansion method for approximating the 
queue length distribution and investigate the radius 
of convergence of the queue asymptotic expansion se- 
ries. The analysis focuses on “small” to “moderate” 
buffer sizes under the conditions of strictly stable mul- 
tiple time scale arrivals. For a class of examples we 
analytically determine the radius of convergence using 
methods of linear operator theory. We also give general 
sufficient conditions under which the radius converges 
to zero; this shows roughly what situations have to be 
avoided for the proposed method to work well. We 
combine the asymptotic expansion method with the 
EB approximation, and give an approximation proce- 
dure for the buffer probabilities for all buffer ranges. 
The procedure is tested on extensive numerical exam- 
ples. We suggest this procedure for efficient admission 
control in ATM networks. 

1 Introduction 
Numerous investigations have shown that the ar- 

rival processes (sources) that arise in ATM networks 
(like voice and video) have a very complex statistical 
structure; especially troublesome characteristic is the 
high statistical dependency (e.g. see [13]). Modeling 
of this high dependency usually leads to analytically 
very complex statistical characteristics; the associated 
evaluation of the queue length distribution is typically 
intractable. However, because of the stringent QOS re- 
quirements in ATM, only the tail of the queue length 
distribution in the domain of very small probabilities is 
needed. This has motivated many researchers to find 
simple approximations of the asymptotic behavior of 
the queue length distribution. 

More formally, let {At , t  > 0) be an integer val- 
ued, discrete time, stationary, and ergodic process (on 
a probability space ( O , F , P ) ) ,  and let c E M be the 
capacity of the server. Then, for any initial random 
variable 80, the following (Lindley ’s) equation 

Qt+i = (Qt + At - c)+ (1) 

completely defines the queue length process {Qt} .  
Queues of this type represent a natural model for 
ATM multiplexers. According to the classical result of 
Loynes’s [16], if lEAt < c (and {At , t  2 0) is stationapy 
and ergodic) {Qt}  couples with the unique stationary 
solution {Q;}  of the recursion (1) for any initial con- 
dition Qo; in particular P[Qt 2 z] + P[Qt > x] as 
t + 00 (for simplicity we will refer to Q; simply as Q). 

To go beyond the existence and uniqueness of the 
stationary queue length distribution P[& > z] one has 
to impose more restrictive assumptions than merely 
stationarity and ergodicity. Using the Theory of Large 
Deviations (see [19]), under the general assumptions 
(in addition to stationarity and ergodicity), of the 
Gartner-Ellis (Cram&) type, one can show that 

for some positive constant 6*, called the asymptotic de- 
cay rate (or the equivalent bandwidtb constant) [l, 71. 
(For the non Cramkr/Subexponential queueing asymp- 
totic a d y s i s  we refer the reader to [12] and refer- 
ences therein.) Also, in the case of (finite) Markov 
modulated arrivals the following stronger result holds: 
P[Q > z] - ae-e*x  as z -, 00, where a and 8’ are 
positive constants. Some numerical calculations for 
simple arrival processes (like On-Off Markov sources) 
have shown that the constant a is “usually” of the or- 
der one. This led many authors to believe that the 
simple approximation P[Q > x] M e-e*x holds; this 
approximation is commonly referred as [2] the effective 
bandwidth (EB) approximation. Based on this result 
admission control policies based on the concept of effec- 
tive bandwidth have been developed; see [l, 6, 8, 7, 141. 

However, as discussed in [2], the EB approximation 
may often be very inaccurate. This is usually the situ- 
ation when many sources (N) are multiplexed; in this 
case it was shown that a M e-rN for some constant 7. 
More formal analysis for the multiplexing of the large 
number of sources is given in [5].  

In [lo, 111 we have investigated the impact of mul- 
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tiple time scales on the queue length distribution. The 
main motivation for the work done in [ll] as well as 
in the present paper is that many traffic sources, such 
as variable bit rate video (VBR), have a multiple time 
scale structure [15] that spans from a few ns to few 
hours (one hour = 3.6 1012ns). The impact of the 
multiple time scales on the mutiplexer performance has 
been independently reported in [NI. 

This paper is the natural continuation of the work 
done in [ll]. Therefore, for reasons of completeness, in 
section 2 we give a short summary of the main results 
and issues presented in [ll]. The rest of the paper is 
organized as follows. 

In section 3 we present a recursive asymptotic ex- 
pansion method for approximating of the queue length 
distribution for “small” to “moderate” buffer ranges 
under the condition of strictly stable multiple time 
scale arrivals. In section 4 we discuss the radius of 
convergence of the queue asymptotic expansion series. 
Using linear operator theory methods (for a class of 
examples) we analytically determine the radius of con- 
vergence. We also give general sufficient conditions 
under which the radius converges to zero. This re- 
sult directs our numerical investigations for deriving 
further conclusions about the qualitative behavior of 
the radius of convergence. Section 5 discusses the er- 
ror of asymptotic expansion approximation, and gives 
a simple criterion for its evaluation. Finally, by com- 
bining the asymptotic expansion method with the EB 
approximation, we propose an approximation for the 
buffer probabilities for all buffer ranges. This approx- 
imation is tested in section 6 on extensive numerical 
examples. The paper is concluded in section 7. 

2 Summary of Previous Work 
In this section we give a short summary of the main 

results obtained in [ll] where equation (2) was ex- 
tended to the case of arrival processes that converge 
in a cumulant sense. Based on this result, the asymp- 
totic independence of the EB constant on the slow time 
scale statistics was shown. (For the precise formula- 
tion of these results the reader is referred to [ll].) The 
EB constant turned out to be the same as the one for 
which traffic sources are continuously producing traffic 
at their “peak” rate. The immediate implication of this 
result is that an equivalent bandwidth based admission 
control (which solely depends on the EB constant) may 
significantly underutilize the system resources. 

In the same paper ([ 113) numerous numerical exam- 
ples are given that illustrate the “polygonal” behav- 
ior of the queue length distribution on the logarithmic 
scale. The polygonal behavior is due to the multiple 
time scale nature of the arrival processes (for illustra- 
tion see solid lines in Figure 1). Intuitively, different 
time scales are responsible for building up various re- 

Figure 1: Graph of log,,P[Qz = 23; for details see 
[JLA95b], Example 1. 

gions of the buffer. As the different time scales of the 
arrival processes start to mix, they result in different 
buffer decrease rates for different buffer sizes. Eventu- 
ally on the largest time scale the decrease rate becomes 
equal to the EB constant. Also the actual distribution 
obtained by statistical multiplexing of the six different 
parts of the Star Wars video on the slice level is shown 
in Figure 2. One can clearly see that Ihe queue length 
distribution can not be well approximated with a single 
line (exponential)! 

loo A 

Figure 2: Queue length distribution for multiplexing 6 
parts of the Star Wars video sequence on the slice level. 
The total length of the m/dtiplexed sequence is 1000,000 
slices (w 23 min). 

In what follows, we present a general superposition 
theorem for ATM multiplexers ([ll]). This theorem 
sets the stage for the work presented in this paper. We 

consider an arrival process of the form A$ X t ( B E ) .  
Assume that this process is Markov modulated, i.e., for 
each E > 0, the process B‘ is an irreducible aperiodic 
Markov Chain with state space (1 , .  . . , K}, and tran- 
sition probabilities {p;, = O(c),j  # k, 1 5 j ,  k 5 K}, 
such that the (unique) stationary distribution {T;} + 

{$},1 5 j 5 K ,  as e + 0 (Note that some of T: 

may be equal to zero). The conditional processes X ( . )  
are assumed to be stationary, ergodic processes inde- 
pendent of BE. We call this class of processes Nearly 
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Decomposable Markov Modulated stationary Processes 
(NDMMSP). Let Pj[Q' > z] %' lim*+mPIQ: > 
2, Bf = j ]  (note that we assume that this limit exists). 
Then the following theorem holds. 

Theorem 1 Assume that X(j),l 2 j 2 K ,  are sta- 
tionary, and ergodic, and that the strict stability con- 
dition IEX(j) < c, 1 5 j 5 K i s  satisfied. Then for any 
2 

€+O limPj[Q' > z] = njP[Q(j) > 21, (3) 

where B[Q(j) > z] represents the queue length distri- 
bution given that the am'ual process is X(j). 

Proof: Given in [lo]. 
Remarks: (i) This theorem shows that for a small 
6 ,  P[Q' > z] w $'P[Q(j) > z]. Borrowing from 
linear system theory language, we call this relationship 
a superposition principle. (ii) For small buffer sizes, 
the queue length distribution does not depend on the 
long term dependency structure. 

Remark (ii) explains why in [15], due to the strin- 
gent time delay constraints (small buffer), it has been 
concluded that the dominant effect on the queue per- 
formance was the short term autocorrelation, and that 
the long term autocorrelation is negligible. This ef- 
fect was also noted in [17], where nearly decompos- 
able Markov Modulated Poisson processes are used to 
model video traffic (in our model this is obtained by 
specializing X(j) to be Poisson). 

As suggested in remark (i) we can approximate 
the queue length distribution with: a) P[Q' > z] M 

nfP[Q(j) > 21, or the even simpler approxima- 
tion b) P[Qf > z] M nje-e'(j)l where e-e*( i )  
is the EB approximation for P[Q(j) > z]. The latter 
approximation is exemplified in Figure 1 (graphs with 
dashed lines). However, this approximation may give 
poor results for the moderate or large buffer sizes, see 
Figure 3; the dashed line represents the approximation 
and the solid line the true probabilities. Note that the 
error has a tendency to increase with the buffer size. 

If we consider P[Q' = z] as a function of E then 
Theorem 1 gives us the first coefficient in the asymp- 
totic expansion of P[Q' = 4 with respect to epsilon. 
Naturally, in order to get a better approximation than 
the one given by Theorem 1 we have to obtain high or- 
der expansion coefficients of this asymptotic expansion. 
This will be explored in the rest of the paper. 

3 Asymptotic Expansion 
In this section we will investigate the problem of 

expanding the probabilities P[Q' = 23, under the strict 
stability conditions, into a series with respect to c. To 
do this we need to asmme more structured arrivals 

0- SO 100 150 aoo 
butt.= .I*. x 

Figure 3: Graph of log,, P[q = z] from Example 2. 

to the queue (than NDMMSPs that we used in the 
previous section). 

Assume that the arrival process is Nearly Decom- 
posable Markov Modulated I.I.D. (NDMMIID), i.e., 
the modulating process B; is Markovian with decom- 
posed state space S = Uf=lSkl and transition ma- 
trix { p i j } , i , j  € S,c € (0, l). It is assumed that 
pij are infinitely differentiable with respect to E ,  and 
lim,,opjj = 0 for i E Sk,j E S1,k # I ,  and 
lim,,op:j = p!j for k = 1.  Each matrix P i  = 
{p:j))i,jE~k is assumed to be irreducible. Let ne be 
the steady state distribution of the chain Be,  and 
?yo = lim,,on'; we m u m e  that each TO(&) > 0. 
Furthermore, when in +ate j ,  the source is generat- 
ing I.I.D. arrivals with the moment generating func- 
tion ai(%) = ~ ~ = o c a j , ~ s k , l ~ l  5 1. Assume that 
~ j ( z ) , j  E S satisfy Cramer conditions, i.e., there 
exists 6 E R,6 > 1 such that caj(6) < 00 for 
all j E S. Define A(c , z )  = {pf,aj(z)}fjEs, and 
Q ( 2 z )  = \ Q I ( € ~ z ) , - - *  ,QK(C,Z) )~ ,  where Qj(e,z) = 
C,=,q;,z , q;,k = P[Q = k,B' = f, and 
stands for transposition. In practice the recursion 
Qt+l = (Qt - c)+ + At is often used instead of (1) 
because of its simpler boundary condition. For that 
reason we will also use it in all our numerical examples. 
Other than that all the results, including the next the- 
orem (in the appropriate rephrased form), are valid for 
recursion (1) as well. Using the classical z-transform 
technique, the solution for Q(6, z )  is given by 

Q(E, Z) = [ I f  - A(€,  ~ ) ] - ' A ( C ,  z)II(€), (4) 

where I I ( E )  = {IIf)TSjlN, and IIf = C;i',q;&' - 
zk), q j k  dg' limt,,P[&t = k,Bt = j]. Because 
of the smoothness assumption on p i j  it follows that 
A(€,%)  = C T - o A k ~ k ,  Q(c,z) = x F = o Q k ~ k ,  and 
D(c) = C,"=,n3ck. Then, the following result holds 
for the expansion coefficients Q k  . 

Theorem 2 The Taylor expansion coeficients of 
&(E, z )  with respect io are recursively given by: Q0 = 
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[ I zc  - Ao]-lAoIIo 1 a nd 

Qk = [I,' - A']-' 

k 2 1. Boundary vectors I I k ,  k 2 0, are uniquely ob- 
tained from the analyticity of the functions Q k ( z )  i n  the 
unit circle, and the equation Qk(l )  = lim+,o(&)kT'. 

Proof: Given in [9]. 
Note: Nearly decomposable Markov queueing pro- 
cesses with a finite state space have been previously 
considered in the literature (see [3]). However, we are 
unaware of any work which considers an infinite state 
space, or a moment generating function approach, and 
the determination of the boundary conditions. 

It is important to observe that for the exact solution 
of equation (4) one has to solve for all the roots in the 
unit circle of the polynomial det[lzc -A(€, z) ] .  Usually 
for the case of statistical multiplexing this polynomial 
is of a very large degree, and the number of roots is 
very large, i.e, often impossible to solve. However, ij 
there i s  enough structure, the matrix Ao may be of a 
diagonal or  block diagonal f o r m ,  and the polynomial 
det[Izc -Ao] may  be decomposed into Q product, which 
i s  incomparably easier t o  solve. Also, the large number 
of roots, (if not all, see equation (6) and section 6) may 
vanish. 

4 Radius of Convergence 
In this subsection we attempt to find the radius of 

convergence of the queueing series Q k c k .  In gen- 
eral this is a very difficult problem. However, under 
more restrictive assumptions than in the previous sec- 
tion, we will be able to give some answers to this prob- 
lem. 

More precisely, we define the radius of convergence 
of the queueing series as r = SUP{€ : 1 Qkekl  < 
00, 1.1 5 1). We assume that the modulating chain 
is totally decomposable, i.e., each s k  is just one point. 
This implies that the matrix A' is diagonal with di- 
agonal elements { a j ( z ) }  and A ( E , z )  = A ' ( ~ ) p ( r ) ~ ,  
P ( E )  = { p f i } .  We also assume that P ( E )  has a finite 
asymptoticexpansion, i.e., P ( E )  = P k c k ,  that T' 

is a constant vector independent of E ,  and c = 1. Then 
vectors Qkl k 2 1, have the form Q k ( z )  = ( z  - l ) q k ( z ) .  
Further, Qo = (z - 1)[Iz - Ao]-lAo[I - A0'(1)]1r, 
i.e., IIo = ( z  - 1)[1 - Ao'(1)]n; boundary conditions 
IIk, 1 5 k 5 n are obtained from Theorem 2; and for 
all k > n, 

n 

qk(z )  = [ I z  - AO1-l C A ' ( q k - ' ( z )  - q k - ' ( l ) ) .  

I= 1 (6) 

Now, with fk 'ef ( q k ,  & l , .  . . , Q~-"+'), we can 
construct a linear operator A such that 

fk = A f k - l ,  (7) 
where ft is given by recursion 6 and ff = f;::, 2 5 
j 5 n. Thus, the radius of convergence of the queueing 
series is given by 1/r = li&+m llA"f""ll'/", where 
11 . 11 can be chosen to be the Euclidian norm. One 
way of finding the preceding limit is to find all the 
eigenvalues (A) and eigenvectors ( ex )  of the operator 
A, and then possibly find the integral representation of 
the function f" as 

r = J e x 4 W  + S", (8) 
for an appropriately chosen spectral measure p ,  and 
function g" belonging to the null space of the operator 
A. If D is the set of points that support measure p,  
then (under appropriate conditions) 1/r = sup{lAl : 
A E D}. In order to get more intuition about the 
problem let us work out the following example. (Our 
intention here is not to rigorously answer the questions 
regarding linear operators, rather to use the spectral 
concept to obtain the desired answer; for the general 
theory of linear operators see [4].) 
Example 1 Let's assume that the arrival process is 
two state modulated with the transition probabilities 
€pol , ~ ~ 1 0 ;  when in state one the source is producing 2 
packets with probability (1 - a) and zero packets with 
probability Q, and when in state 0 there are no arrivals, 
i.e., QO(Z)  = l , ~ l ( z )  = a + (1 - a)z2. After some alge- 
bra, by applying Theorem 2 and recursion (6) one finds 

that Qx = pio/(~ol+plo), QY = -, 
Also, for each 

k 2 1, $# = c::-z&c,:; - z3  za . This implies that we 
only need to calculate q [ ,  that is recursively given, for 
k > l , b Y  
q k + f  q * ( I )  d (a - z + a z )  + (-1 + 2 a) q k ( Z )  b (z )  

( - 1 + 2 a )  (-1+z) ( a - z + a z )  (z) = 

where d = ( - p o i  + 2 a p o 1  + p ~ o ) ,  and b(z )  = 
( -a(Pff l  + P f o ) + P O i  ( 1 - a ) z - P i o ( 1 - Q ) z 2 ) .  

Now that we have all the expansion coefficients at 
our disposal, we will take a linear operator approach 
to determine the radius of convergence of the queue 
distribution asymptotic series. As we mentioned before 
the above recursion can be viewed as a linear operator 
A that acts on the set of real functions that are finite in 
the interval [-1,1]. Then, for each real A, there is an 
eigenfunction ex that satisfies the equation Aex = Aex. 
These eigenfunctions are given by 

1 
and QO(Z)  = (-1,"23ip":l";p"~~~~~+~z~. 

1 

(9) 
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where b(z) is defined by (9), and z E R. Assuming that 
there exists the integral representation (8) for q;, the 
support of the spectral measure p( e )  can be determined 
as follows. Observe that qt  has a simple pole at z = 
a/( l  - U). Therefore, the only eigenfunctions that can 
be used to approximate q: are either ones that have the 
same pole z = a/(l  - a), or the ones that do not have 
real poles at all. After relatively simple analysis it can 
be found that there is no eigenfunction with the pole 
z = a/( l  - a). The exclusion of all the eigenfunctions 
with real poles from the set of eigenfunctions gives the 
support of the spectral measure p to be the real interval 
(AI ,  A2), where A j ,  i = 1,2, are analytically given by 

= ( p o i  - 3aP0;  + 2 a 2 p 0 1  -4UP1o+4Q2Pio 

f 2 J ( - l + a )  a d p l o )  (-1+2a)-2, 

where d = pol - 2 a pol - plo. (This argument is sim- 
ilar with one arguing that for the spectral approxima- 
tion of the even periodic functions one can only con- 
sider {cos(nwz), n > 0)) If we assume that the spectral 
measure for the integral representation of qi is sup- 
ported on the whole interval (Xl,X2), it follows that 

We graphically investigate this radius of conver- 
gence. The results are plotted in Figure 4 for 
different values of parameters: plo = 1, pol = 
1/10, 1/100,1/1000, and a E (0.5,l) (or equivalently 
for the utilization going from one to zero). The graph 
appears to be virtually the same for different values 
of po l ;  however, it heavily depends on the utilization 
parameter a (utilization p = 2(1 -U)). We see that for 
a very close to 0.5 (utilization one) the radius of con- 
vergence is very small, and approaches zero as p goes 
to one. For a > 0.935, ( p  < 0.129) the series converges 
for all e E (0,l). 

r = l /m=( lkJ l  1W. 

Figure 4: Radius of convergence r versus load parameter 
Q (utilization p = 2(1 - a) ,  for three different values of 

Although the previous analysis gives the precise re- 
sult on the radius of convergence, it is usually not fea- 
sible to determine it for more complex cases. However, 
the fact that radius of convergence goes to zero as the 

pol = 10-i1 i = 1,2,3.  

utilization in at least of one of the states approaches the 
capacity of the channel can be proven in much greater 
generality. We state that result in the following theo- 
rem. 

Theorem 3 The radius of convergence of the queueing 
asymptotic series whose expansion coeficients qk, k. 2 
n, are given by recursion (6) converges to  zero if at 
least in one of the states i, the utilization pj = uj'(1) 
converges t o  the capacity (c = 1) of the channel. 

Proof: Given in [9]. 
We illustrate this theorem in Figure 5; different 

curves illustrate different numerical examples whose 
detailed description is given in [9]. From numerous nu- 
merical experiments we have observed that the radius 
of convergence is typically larger than its long it8 
the utilization of the subchains is smaller than 0.95 and 
X ( i )  does not have a heavy tail (see [9]). The depen- 
dence of the radius of convergence on the heavy tail of 
X ( i )  is illustrated in Figure 6; the dashed line repre- 
sents the heavy tail case. Since the ratio between the 
time scales (= E) is usually smaller than we con- 
clude that the asymptotic expansion will be a useful 
tool for approximating the small buffer queue length 
distribution. 

-1.5 

-2 

-a.s - 
*. 

; -3 
-3.5 

-4 

4 . 5  

0.9 0 . 9 2  0 . 9 4  0.96 0.98 
uti1ir.tion 

Figure 5: Dependence of the radius of convergence on the 
conditional utilization. 

0 . 9  0 . 9 2  0.9. 0 . 9 6  0.98 
uri1i..tion 

Figure 6: The dependence of the radius of convergence the 
the heavy tail of X ( i ) ;  the dashed line represents the heavy 
tail case. 
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5 Expansion Error 
In order to evaluate the expansion error one has to 

(i) estimate the error of the approximation of the an- 
alytical function Q(z,  E )  with its finite approximation 
Q ( z ,  E )  def Qkck; and (ii) translate this approxi- 
mation into the error of the queue ltngth distribution, 
which means to translate IQ(%, E )  - Q(z ,  €)I into the er- 
ror of its expansion coefficients with respect to z. It 
is clear that the error function IQ(%, E )  - Q(z ,  E ) !  has 
to be of the order of O ( ( E / r ) K + l )  in the unit circle. 
However, how this error translates into the error on 
the queue length distribution needs to be investigated. 
For one thing we know that it strongly depends on the 
ratio E/r. Numerical illustrations of this dependency 
are given in [9]. 

Regardless of all the difficulties for arriving at  a pre- 
cise theoretical analysis of the radius of convergence 
and expansion error, we have found that these quan- 
tities exhibit rather nice numerical behavior. The fol- 
lowing simple heuristic criterion usually gives good es- 
timates of the radius of convergence 

where K is the largest index for which we calculated 
Q k ,  sjk is obtained by inverse z-transform of Q k ,  and 
i,,, is the maximum index for which this transform 
is computed. An even more important quantity is the 
relative error of the probabilities, ideally defined as 

where pi is the true probability, and the $'s are its 
approximations obtained with the k term expansion. 
Obviously, the pi's are not available; replacing them 
with @!+', we obtain the estimate 

Excellent numerical agreement between t?: and e: is 
exemplified in Figure 7 for k = 1,8  (true error is plotted 
with solid lines, and the estimated one with dashed 
lines.) Thus, should the relative error not exceed 6 ,  
using the k term expansion we can estimate the buffer 
range Bmax for which our approximation is within the 
specified error range, i.e., 

Bmas(h) = max{i : i;-'(i) < 6). (10) 
Finally, once we find the desired number of the ex- 

pansion coefficients k and the buffer range Bmax(k), 
we can estimate the tail probabilities p i ,  i > BmaZ.(k), 
with EB approximation, i.e., 

where e* is the EB constant. This procedure is going 
to be tested in the following section with numerical 
examples. 

h l f . Z  .i.. i 

Figure 7: e , (k)  (solid lines), and estimated relative error 
&(k) (dashed lines) versus the buffer size i; the graphs 
are parameterized by the number of terms 6 used in the 
asymptotic expansion. 

6 Statistical Multiplexing: Numerical 

Consider n heterogeneous NDMMIID sources with 
m.g. matrices given by Ai(%, E )  = Er!, A'€'. Then, 
the m.g.m. for the aggregate process is given as 

Examples 

n 

A(z, E )  = @Ai(%, e ) ,  (11) 
i=l 

where @ stands for the Kronecker product. Since Kro- 
necker product is a distributive operation with respect 
to addition, by identifying the coefficients with respect 
to E in equation (11) we can calculate the coefficients 
of the asymptotic expansion of A(z ,  E )  = E::,, Akek. 
If each of the sources happens to be of the form 
Ai@,€)  = A! + EA;,  i.e., consists of only two time 
scales, than Ak,  1 5 k 5 n are simply given by 

1, -1 

l < l l < . . . < l k < ? I  i=l  

12-1 

A P B A : ~ ~ . . . . @ A ; ~ @  6 A;. 
i= l1+1  i = l k + l  

We will use the formula above in the following nu- 
merical examples. Consider statistical multiplexing of 
the heterogeneous On-Off traffic sources; each source i 
is characterized with transition Probabilities pial, pilo.  
When in state zero, the source is producing no arrivals 
and when in state one the source sends i.i.d. arrivals 
with m.g.f. ail(%) = di0 + (1 - Ca,o$z*; note that for 
different values of b we can experiment with source 
burstiness. (There is no particular reason for choos- 
ing sources like this, except that it makes them easy to 
parameterize.) 
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Figure 8: Approximate “probabilities” from example 5 for 
k = 0 , 3  

-6 . 

-. . 
L 
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Figure 9: Total queue distribution approximation, ob- 
tained by combination of the asymptotic expansion method 
and EB approximation. 

Example 4 In this example we consider SMUX of 5 
heterogeneous On-Off sources with the following set 
of parameters: pi01 = 1/(4 + i),pilo = 1/2,i = 1,5, 

= 5.5 lov3. The aggregate A(€,  z) matrix has a di- 
mension 32 x 32! We have calculated first four ex- 
pansion functions Qk(z), k = 0,3, and its z-transform 
inverses; the results are plotted in Figure 8. For the 
relative error bound 6 = 0.2 we have estimated the reli- 
able buffer region Bmoo = 83 (i m 7 For buffer 
sizes i > Elmot we have used the EB approximation 
(6. = 0.0657). The combination of asymptotic expan- 
sion and EB approximation is plotted in Figure 9. We 
see (Figure 9) that the transition between the two ap- 
proximations is smooth. Therefore, although we have 
no error estimate in the EB domain, from the smooth- 
ness of fit we can expect that the approximation is 
excellent in the EB domain too. This smoothness of 
fit can be used as a heuristic criterion for the overall 
goodness of the approximation. 

Let us now compare this approximative method 
with the classical exact z-transform inversion. The 
first step in order to obtain the exact solution is to 
find the inverse of [Iz - A(€,  z)], then to find 31 roots 
of the polynomial det[lz - A(€,  z)] in the unit circle; 
to use these roots to obtain boundary probabilities 

dio = 1 - 9/(40 (2 + i)), i = 1,4, d50 = 791/800,b = 4, 

Qj0,l 5 j 5 32, and at last to find the inverse Z- 
transform of the vector Q(e,z). For comparison, we 
have not been able to complete even the first step, 
i.e., to find [Iz - A(e,z)]-l after 24 hours, when we 
stopped the program. (Computation was attempted 
with Mathematica 2.2 on (150MHz, 64M RAM, lOOM 
virtual memory) on SGI machine. However, (using the 
same environment Mathematica + SGI) we obtained 
@;,l 5 i 5 150, in less than an hour. This clearly 
shows the efficacy of the asymptotic expansion method. 
The second example that we have chosen is even of a 
large size (64 x 64). 
Example 5 In this example we multiplex 6 On-Off 
sources. The dimensionality of the problem is 64 x 64. 
It is needless to say that it is completely hopeless to 
find the exact solution. The parameters are: pi01 = 
1/(4 + i ) ,  pilo = 1/2,i = 1,6, dlo = 1 - 9/160, 
d20 = 1 - 9/200, dso = 1 - 9/240, d40 = 1 - 9/240, 
d50 = 1 - 9/600, de0 = 1 - 9/480, b = 2, 6 = 6.7 lom4. 
Again we have calculated the fir@ four coefficients 
Qk(z),k = 0,3. The inverses of Qk(z),k = 0,3 are 
plotted in Figure 10. Using the same method we cal- 
culate: i m 9 Bmor (6 = 0.2), 6’ = 0.1298. 
And with the combination of the EB approximation 
we present the solution in Figure 11. Again, we can 
observe the smoothness of the fit between the asymp- 
totic expansion and the EB domain. 

turf.= .I=. x 

Figure 10: Approximate “probabilities” from example 5 
for A = 0,3.  

We have already seen that using the asymptotic ex- 
pansion method we were able to solve rather sizable 
examples, for which the exact solution is either very 
difficult or almost impossible to find. Having in mind 
that all the calculations are done with Mathematica 
2.2 which is known to be slow for intensive numeri- 
cal problems, we expect that this method is going to 
be much faster when implemented in C. With this in 
mind we expect that our method will be very useful for 
large practical problems that arise in ATM admission 
control. 
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Figure 11: Total queue distribution approximation, ob- 
tained by combination of the asymptotic expansion method 
and EB approximation. 

7 Conclusion 
In this paper we have developed a recursive asymp- 

totic expansion for approximating the queue length dis- 
tribution of “small” to “moderate” buffer ranges under 
the condition of strictly stable multiple time scale ar- 
rivals. We discussed the radius of convergence of the 
asymptotic expansion series. Using methods of linear 
operator theory (for a class of examples) we were able 
to analytically solve for the radius of convergence. We 
also gave general sufficient conditions under which the 
radius converges to zero; this roughly shows which sit- 
uations have to be avoided for the method to work well. 
Further investigation of the radius of convergence was 
done numerically. The numerical analysis indicated 
that the radius of convergence is reasonably large as 
long as the arrivals utilization is not very close to one 
(capacity), or exhibit heavy tail. Also, we numerically 
showed that a simple probability error estimation gives 
reliable results. At last, combining the asymptotic ex- 
pansion method with the EB approximation, we sug- 
gested an approximation for the buffer probabilities of 
all buffer ranges. In short, our procedure can be sum- 
marized as follows: 

e calculate the desired number k of expansion co- 
efficients, and estimate the qveue distribution by 
inverting Q” 

e estimate the reliable buffer range Bmaz. 
e use EB constant for  approximating the probabali- 

This procedure has been tested on extensive numerical 
examples. We suggest to apply it to eacient admission 
control in ATM networks. 
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