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Abstract

We study the classical move-to-front (MTF) algorithm for self-organizing lists within the Markov-modulated request
(MMR) model. Such models are useful when list accesses are generated within a relatively small set of modes, with the
request sequences in each mode being i.i.d. These modes are often called localities of reference and are known to exist in
such applications as tra�c streams of Ethernet or ATM networks and the locus of control or data accesses of executing
computer programs. Our main results are explicit formulas for the mean and variance of the search-cost, the number of
accesses required to �nd a given list element. By adjusting the number of modes, one can use the MMR methodology
to trade o� the quality of an approximation with the computational e�ort it requires. Thus, our results provide a useful
new tool for evaluating the MTF rule in linear-search applications with correlated request sequences. We illustrate the
computations with several examples. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Self-organizing lists; Move-to-front algorithm; Markov-modulated process; Hidden Markov-chains; Locality
of reference; Internet modeling

1. Introduction

Performance analysis of self-organizing data structures, e.g., lists and trees, has a long history; references
to the early work in this area can be found in [4,9]. Quite recently, interest in these data structures has been
rekindled by cache design problem in modern distributed networks. One of the most popular heuristics for
self-organizing lists has been the move-to-front (MTF) rule. MTF is de�ned on sequences of requests for
elements in a given list of N elements. In processing each new request, MTF moves the requested element
to the �rst position (i.e., the left-most position or head) of the list, if it is not already there; the ordering of
the remaining N − 1 elements of the list remains unchanged. If the new request is in the rth position, the
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cost of processing the request is r; this represents the number of comparisons needed to �nd the request in
a linear search of the list.
In the analysis of self-organizing lists, there have been two approaches: probabilistic and combinatorial

(amortized) analysis. We are interested in typical or average-case behavior, so we concentrate on the former
approach. For the latter, the reader is referred to Bentley and McGeoch [1]. Our speci�c objective is a prob-
abilistic analysis of the most common cost function: the position (search distance) of the currently requested
element. The novelty of our contribution lies in our extension of MTF theory to Markov-modulated request
(MMR) sequences.
There is a large literature on MMR models that spans a wide variety of applications in applied probability

and engineering, including speech recognition, communications engineering, statistics, and risk theory. See [6]
for many references. Equivalent names under which Markov-modulated models are known in the literature
are: Markov-modulated random walks, random walks on Markov chains, functions (or random functions) of
Markov chains, and hidden Markov chains. We de�ne them formally as follows. Let J = {Jt ; t = 0; 1; : : :} be
a discrete time, aperiodic, irreducible, �nite Markov chain with state space {1; : : : ; K}, and transition matrix
P = {pij}, and let R = {Rt; t = 0; 1; : : :} be a discrete-time process with state space {1; : : : ; N}. We say that
R is Markov-modulated if the pair process {(Rt; Jt); t¿0} is Markovian in its second coordinate, i.e., if

P[Rt = r; Jt = j|(Rt−1; Jt−1 = i); : : : ; (R0; J0)] = P[Rt = r; Jt = j|Jt−1 = i] = pijqjr ;

where qjr :=P[Rt = r|Jt = j]. To avoid trivialities we assume that for each r there exists at least one j
such that qjr ¿ 0. De�ne the stationary marginal distribution of R as qr :=P[Rt = r] =

∑K
i=1 �iqir , where

{�i; 16i6K}, is the stationary distribution of J . Since the process J , to be called the modulating process, is
ergodic, its stationary distribution is unique and positive. We assume that J is in its stationary regime, i.e.,
the distribution of J0 is chosen according to �. The process R models sequences of requests for elements of
the set L = {1; : : : ; N}. A discrete-time process {�t; t = 0; 1; : : :} is induced by R and that MTF rule, where
�t =(�t(1); : : : ; �t(N )) is a list (permutation) of the elements of L. We assume that, at t=0, all permutations
are equally likely, i.e., �0 is uniformly distributed over the set of all N ! permutations. According to MTF,
�t+1 is constructed from �t by bringing the element Rt to the �rst position of the list, if it is not already
there, and keeping the ordering of the remaining elements unchanged; thus, the positions of the elements that
were ahead of Rt are increased by one, while the positions of those behind Rt remain unchanged. Note that
the joint process {(Jt−1; �t); t¿1} is a Markov chain.
Early work on the probabilistic analysis of MTF dealt with i.i.d. requests; see [7] for key references.

Our MTF model lies within the broader framework of Markovian request sequences. The MTF scheme with
time-dependent Markovian requests was investigated in [10], where a formula for the expected search cost
was derived. Special cases of the Markov model that are analytically more tractable were investigated by
Rodrigues [13], who also examined convergence to stationarity [12]. Dobrow and Fill [5] derived transient
and stationary probabilities for MTF in the Markov model. They also investigated spectral properties and the
rate of convergence to stationarity.
Our interest in the MMR model stemmed from its 
exibility as a tractable model of the high-correlation

(locality) structure encountered in the tra�c streams (e.g., voice, video, and multimedia) of modern com-
munication networks. (References to these models can be found in [7].) But more generally, our methods
extend the computational tools for evaluating the performance of linear-search heuristics in an environment
of Markovian request sources. They will be signi�cantly more e�cient than existing techniques when MMR
models apply with the number K of modes relatively small.
The analysis of the MTF algorithm appears in Section 2, where we develop explicit formulas for the

transient and steady-state mean and variance of the cost function. In Section 3 we give numerical examples
of MMR models and study the performance of MTF in these models. We conclude in Section 4 with an
application of our results to LRU caching.
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2. Mean and variance of the search cost

We derive explicit formulas for the mean and variance of the search cost Ct : the current position of the
element Rt in the list state �t . Thus, the search cost at time t is a measure of the time required by a
linear search of the list to �nd the element requested at time t. The reversed Markov chain {J̃ t} and the
corresponding modulation process {R̃t} arise naturally in the following analysis. The transition probability
matrix of J̃ is denoted by P̃= {p̃ij}, where p̃ij=�jpji=�i. For each i 6= j, let Ajit be the event that j is to the
left of i in �t . Given that Rt = r, the cost Ct is the number of elements to the left of r in the list plus 1 to
account for r itself. Thus, if we let

∑∗
r1 ;:::; rk denote the sum over all sequences of distinct elements r1; : : : ; rk

with ri ∈ {1; : : : ; N}; 16i6k, then we have the well-known indicator-function representation,
Ct = 1 +

∑
k; r

∗
1(Rt = r; Akrt )

= 1 +
∑
16i6K

∑
k; r

∗
1(Jt = i; Rt = r; Akrt ) (1)

and hence, after taking expectations,

ECt = 1 +
∑
16i6K

∑
k; r

∗
P[Jt = i; Rt = r; Akrt ]: (2)

The ith summand P[Jt = i; Rt = r; Akrt ] in the above expression can be written

P[Jt = i; Rt = r; Akrt ] =
t∑

m=1

P[Jt = i; Rt = r; Rt−1 =∈ {r; k}; : : : ; Rt−m+1 =∈ {r; k}; Rt−m = k]

+P[Jt = i; Rt = r; Rt−1 =∈ {r; k}; : : : ; R0 =∈ {r; k}; Akr0 ]:
Recall that �0 is a permutation chosen uniformly at random, so we have P[Akr0 ] = 1=2 for all k; r. In terms of
the reversed processes, we can write

P[Jt = i; Rt = r; Akrt ] =
t∑

m=1

P[J̃ 0 = i; R̃0 = r; R̃1 =∈ {r; k}; : : : ; R̃m−1 =∈ {r; k}; R̃m = k]

+
1
2
P[J̃ 0 = i; R̃0 = r; R̃1 =∈ {r; k}; : : : ; R̃t =∈ {r; k}]: (3)

For a more compact notation, we introduce the matrices

Qr1 ;:::; rk = {p̃ij(qjr1 + · · ·+ qjrk )}; Q̂r1 ;:::; rk = {p̃ij(1− qjr1 − · · · − qjrk )}: (4)

Let �(Q) denote the spectral radius of matrix Q. Then, by the assumptions on P and qjr from the introduction
and Corollary 1, p. 8 of [14], it follows that

�(Qr1 ;:::; rk )¡ 1 (5)

for any choice of r1; : : : ; rk . Next, the mth summand in (3) can be expressed as∑
i1 ;:::; im

P[J̃ 0 = i; R̃0 = r; J̃ 1 = i1; R̃1 =∈ {r; k}; : : : ; J̃ m−1 = im−1; R̃m−1 =∈ {r; k}; J̃ m = im; R̃m = k]

=
∑
i1 ;:::; im

�iqirp̃ii1 (1− qi1r − qi1k) · · · p̃im−2im−1
(1− qim−1r − qim−1k)p̃im−1imqimk

=�iqir(Q̂
m−1
rk Qke)(i); (6)
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where e is a column vector of ones, and (Q̂
m−1
rk Qke)(i) is the ith element of the vector Q̂

m−1
rk Qke. Similarly,

we �nd that

P[J̃ 0 = i; R̃0 = r; R̃1 =∈ {r; k}; : : : ; R̃t =∈ {r; k}] = �iqir(Q̂trke)(i): (7)

Finally, after substituting (3), (6), and (7) into (2) and using (5), we arrive at the following result.

Theorem 1. The expected search cost is expressed by

ECt = 1 +
∑
k; r

∗
[
Cr(I − Q̂rk)−1Qke + CrQ̂

t
rk

(
−(I − Q̂rk)−1Qke +

1
2
e
)]
;

where Cr = (�1q1r ; : : : ; �KqKr). Furthermore; the stationary expected cost is given by

� := lim
t→∞ ECt = 1 +

∑
k; r

∗
Cr(I − Q̂rk)−1Qke: (8)

Computing the stationary search cost by (8) involves inversions of K × K matrices instead of the N × N
matrices required in the general Markov model. The number of inversions needed is normally large, so when
K is su�ciently smaller than N , major reductions in computation time are possible.
Theorem 1 gives classical results as special cases. In particular, Markov-modulated requests become i.i.d.

if we reduce the matrix P to the scalar 1 and put q1r = qr :=P[Rt = r]. Then Q̂rk =1− qr − qk ; Qk = qk , and
Cr = qr are also scalars which when substituted into Theorem 1 give [2,11]

ECt = 1 + 2
∑
r¡k

qrqk
qr + qk

+
∑
r¡k

(qr − qk)2(1− qr − qk)t
2(qr + qk)

; (9)

with the stationary mean

� = 1 + 2
∑
r¡k

qrqk
qr + qk

: (10)

If requests are generated by an aperiodic, irreducible, �nite-state Markov chain, R, then the stationary
expected search cost is given by [10]

� = 1 +
∑
r; k

∗ 1
mrk + mkr

; (11)

where mij is the expected �rst passage time from state i to state j in R. To verify this, put qir = 1 (i = r)
and J = R, and hence K = N . We have Cr = (0; : : : ; �r; : : : ; 0) and Q̂rk = P̃rk , where P̃rk is obtained from
P̃ by replacing the rth and kth columns by zero columns. Similarly, Qke is a column vector with elements
p̃1k ; : : : ; p̃Nk , so for each r 6= k, we have Cr(I−Q̂rk)−1Qke as the probability of starting in state r and reaching
state k before again visiting state r in the Markov chain P̃. Then, by Lemmas 3:1:1 and 3:1:2 of [10], it follows
that Cr(I − Q̂rk)−1Qke = 1=(mrk + mkr), which when substituted into Theorem 1 gives (11).
To compute the second moment of Ct , we square (1) and obtain

C2t = 1 + 3
K∑
i=1

∑
k; r

∗
1 (Jt = i; Rt = r; Akrt ) +

K∑
i=1

∑
k1 ; k2 ; r

∗
1 (Jt = i; Rt = r; Ak1rt A

k2r
t ): (12)

Let Ak1k2rt be the event that the relative (left-to-right) ordering of k1; k2, and r in �t is k1k2r. We observe that
Ak1rt A

k2r
t is the union of the two disjoint events Ak1k2rt and Ak2k1rt , and then take the expected value of (12) to
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obtain

EC2t = 3ECt − 2 +
K∑
i=1

∑
k1 ; k2 ; r

∗
P[Jt = i; Rt = r; Ak1k2rt ] + P[Jt = i; Rt = r; Ak2k1rt ]: (13)

The probabilities P[Jt = i; Rt = r; A
k1k2r
t ] in the expression above are computed by

P[Jt = i; Rt = r; Ak1k2rt ]

=
t−1∑
m1=1

t∑
m2=m1+1

P[Jt = i; Rt = r; Rt−1 =∈ {k1; k2; r}; : : : ; Rt−m1+1 =∈ {k1; k2; r}; Rt−m1 = k1;

Rt−m1−1 =∈ {k2; r}; : : : ; Rt−m2+1 =∈ {k2; r}; Rt−m2 = k2]

+
t∑

m1=1

P[Jt = i; Rt = r; Rt−1 =∈ {k1; k2; r}; : : : ; Rt−m1+1 =∈ {k1; k2; r}; Rt−m1 = k1;

Rt−m1−1 =∈ {k2; r}; : : : ; R0 =∈ {k2; r}; Ak2 ;r0 ]

+P[Jt = i; Rt = r; Rs =∈ {k1; k2; r}; 06s6t − 1; Ak1k2r0 ]; (14)

so we have

Theorem 2. The stationary variance is given by

lim
t→∞ Var(Ct) = � − 1− (� − 1)2 +

∑
k1 ; k2 ; r

∗
Cr(I − Q̂rk1k2 )−1(Qk1 (I − Q̂rk2 )−1Qk2 + Qk2 (I − Q̂rk1 )−1Qk1 )e:

(15)

Proof. From (14), a time-reversal argument, and (5), it follows that

lim
t→∞ P[Rt = r; Ak1k2rt ] =

∞∑
s1=0

∞∑
s2=0

CrQ̂
s1
rk1k2Qk1Q̂

s2
rk2Qk2e

= Cr(I − Q̂rk1k2 )−1Qk1 (I − Q̂rk2 )−1Qk2e:
Substituting the expression above into (13) and then subtracting the square of the mean (�2) gives the result
of the theorem.

If requests are i.i.d. with P[Rt = r] = qr , then by specializing quantities as before, we get (recall that
qr = P[Rt = r])

lim
t→∞ Var(Ct) = � − 1− (� − 1)2 +

∑
k1 ; k2 ; r

∗ qrqk1qk2 [(qr + qk1 ) + (qr + qk2 )]
(qr + qk1 )(qr + qk2 )(qr + qk1 + qk2 )

: (16)

For the general Markov model, the expression for the variance of the search cost was �rst derived in [13,
Theorem 4:1]. That result can also be derived directly from Theorem 2, but we refrain from doing so, as the
computation is quite awkward.
For a useful special case, assume that the list is partitioned into K disjoint subsets Li; l6i6K; Li =

{(i; 1); : : : ; (i; Ni)};
∑K

i=1 Ni = N , and that, when the underlying Markov chain is in mode i (Jt = i), the
request sequence can only access items from the subset Li, i.e., qi; (i; r)¿ 0 for 16r6Ni and qj; (i; r) = 0 for
j 6= i. With a small abuse of notation we write q(i; r) = qi; (i; r).
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Theorem 3. For the stationary expected cost; we have

�= 1 +
∑
i

�i
∑

16k; l6Ni

∗ q(i; k)q(i; l)
q(i; k) + q(i; l)

+
∑
i; j

∗ ∑
16k6Ni;16l6Nj

�i�jq(i; k)q( j; l)
�iq(i; k) + �jq( j; l) − �i�jq(i; k)q( j; l)(1=�i + 1=�j − mij − mji) ; (17)

where mij is the expected �rst passage time from state i to state j in J .

Remarks. Note that when the underlying Markov chain J represents an i.i.d. sequence (i.e., each row in P is
equal to the distribution �), then 1=�i + 1=�j −mij −mji = 0 and (17) reduces to (10). At the other extreme,
if each subset reduces to Li = {(i; 1)} and hence J = R, then (17) yields the result for Markovian requests
stated in (11).
For the proof of Theorem 3, we �rst assemble a couple of well-known results for �nite Markov chains.

Let mij be the expected �rst passage time from state i to state j in J , and let jp
(n)
ii be the probability of

going from state i to state i in n steps without visiting j (these are called taboo probabilities [8, p. 45]);
let m̃ij; jp̃

(n)
ii represent the analogous quantities for the reversed chain J̃ . We denote by P̃

∗i
the matrix obtained

from P̃ by replacing its ith column by zero column; similarly, P̃
∗ij
denotes the matrix resulting from the

replacement of columns i and j by zeros.

Lemma 1. Let i 6= j. Then
(i) m̃ii=(m̃ij + m̃ji) = 1=(1 +

∑∞
n=1 jp̃

(n)
ii ) = det(I − P̃

∗i
)=det(I − P̃∗ij

);
(ii) mjj = m̃jj = 1=�j;
(iii) mij + mji = m̃ij + m̃ji.

Proof. The �rst equality in (i) follows from [8, Eq. (14), p. 49, Corollary 1, p. 65]. The second equality is
just an algebraic identity. Statements (ii) and (iii) represent Lemma 3:1:2 in [10].

Proof of Theorem 3. We will show that the expression in (17) follows directly from (8). First, note that
C(i; k) = (0; : : : ; 0; �iq(i; k); 0; : : : ; 0); (i; k) ∈ Li and that Q(i; k) has only 1 nonzero column; it is the ith column of
P̃ multiplied by q(i; k). Also, for k 6= l, we have Q(i; k)(i; l) = Q(i; k) + Q(i; l) and Q̂(i; k)(i; l) = P − Q(i; k)(i; l). These
observations and simple algebra yield

C(i; k)(I − Q̂(i; k)(i; l))−1Q(i; l)e = �i
q(i; k)q(i; l)
q(i; k) + q(i; l)

;

this justi�es the �rst sum in (17).
When a pair of items (i; k) and (j; l) belong to di�erent subsets (i 6= j), then q(i; k)( j; l) has two nonzero

columns which are the ith and jth columns in P multiplied by q(i; k) amd q( j; l), respectively; also, we have
Q̂(i; k)( j; l) = P − Q(i; k)( j; l). Then

C(i; k)(I − Q̂(i; k)( j; l))−1Q( j; l)e=
�iq(i; k)q( j; l)

det(I − Q̂(i; k)( j; l))
K∑
j1=1

(−1)i+j1p̃j1j det((I − Q̂(i; k)( j; l))∗i∗j1 )

= �iq(i; k)q( j; l)
det(I − P̃∗j

)

det(I − Q̂(i; k)( j; l))
; (18)
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where (I − Q̂(i; k)( j; l))∗i∗j1 is the matrix obtained from (I − Q̂(i; k)( j; l)) by deleting its j1th row and ith column.
The �rst equality in (18) just exploits the determinant representation of (I − Q̂(i; k)( j; l))−1; the second equality
follows from elementary properties of determinants, which also give us

det(I − Q̂(i; k)( j; l)) = q(i; k) det(I − P̃
∗i
) + q( j; l) det(I − P̃∗j

)

−q(i; k)q( j; l)(det(I − P̃∗i
) + det(I − P̃∗j

)− det(I − P̃∗ij
)): (19)

Next, let DP be a determinant obtained by replacing one column in (I − P̃) with e (the value of DP is
independent of the column replaced). It is easy to show that

�i =
det(I − P̃∗i

)
DP

: (20)

Thus, after dividing (19) by DP , and applying Lemma 1 and (20), we arrive at

det(I − Q̂(i; k)( j; l))
DP

= q(i; k)�i + q( j; l)�j − q(i; k)q( j; l)(�i + �j − �i�j(mij + mji)): (21)

Finally, divide the numerator and denominator in (18) by DP and substitute (20) and (21) to obtain

C(i; k)(I − Q̂(i; k)( j; l))−1Q( j; l)e =
�i�jq(i; k)q( j; l)

�iq(i; k) + �jq( j; l) − �i�jq(i; k)q( j; l)(1=�i + 1=�j − mij − mji)
which, when summed over i; j; k; l yields the second sum in (17).

3. Examples and discussion

As we have noted, in many applications, a state of the modulating process J determines that mode or context,
of perhaps many, in which a list is being accessed. As a symmetric example for K = 2 possible accessing
modes, consider a modulated Zipf’s law. In mode 1, the request frequencies are q1r=1=(rHN ); 16r6N , with
HN =

∑N
i=1 1=r. For maximum contrast in mode 2, we reverse the ordering of L by request frequency, i.e., we

take the complementary probabilities q2r =1=(N − r+1)× 1=HN ; 16r6N . The two-state Markov chain J is
de�ned by the transition probabilities p12 = p21 = (1− w)=2, where w is a ‘memory’ parameter with |w|61.
As w decreases to −1, R increases its tendency to jump from one mode to the other, whereas it resides for
long periods in a mode when w is close to 1. The stationary distribution of J is given by �1 = �2 = 1=2, and
the unconditional request probabilities are qr = �1q1r + �2q2r = (q1r + q2r)=2. Note that w=0 is the i.i.d. case
with probabilities qr .
Fig. 1 plots the expected search cost (8) for N = 50; 100 as a function of w, and compares it to two i.i.d.

models. The dashed line labeled ‘MTF i.i.d.’ refers to the MTF performance under independent requests each
drawn from {qr}. If the request frequencies are known in advance, and if requests are independent, then it is
optimal to order L by decreasing request frequency and to keep this ordering �xed. This gives the ‘optimal
static i.i.d.’ dashed line in the �gure. As can be seen, for negative memory (w), MTF performs nearly as it
would were requests i.i.d. . And for positive memory, the MTF expected search cost experiences a steep drop,
especially as w nears 1. Indeed, for w su�ciently close to 1, MTF does even better than in the optimal static
i.i.d. case. In this regime, MTF normally spends very long periods of time in making i.i.d. requests according
to {q1r} or {q2r} before switching from one mode to the other; relatively little time is spent in making the
major list restructuring that accompanies changes in mode. And as implied by the �gure, when w is close to
1, MTF operating in either mode is better than the optimal static algorithm in the single ‘combined’ mode
with independent requests drawn form {qr}; qr = (q1r + q2r)=2.
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Fig. 1. Illustration for the Markov-modulated Zipf ’s law.

Fig. 2. Illustration for Markov-modulated geometric request sequences.

Next, consider a similar experiment with Markov modulated geometric request sequences. The probabilities
are

q1r = �(r−1)=cN ; q2r = �(N−r)=cN ; 16r6N;

with the normalization constant cN =
∑N−1

r=0 �
r .

For N =100, and �=0:95 the two distributions Q1 and Q2 are pictured on the left-hand side of Fig. 2. On
the right-hand side, we have displayed the dependence of the expected search cost on the memory parameter
w. It is interesting to observe once again that for w close to one both ‘MTF i.i.d.’ and ‘optimal static i.i.d.’
are quite pessimistic in comparison with the values of the MTF algorithm in which locality of reference is
modeled explicitly.
All of the observations made to this point apply also to our third and �nal example in which we assume

that the list is partitioned into two equal-size blocks; Markov modulated Poisson request sequences are drawn
alternately from the two blocks. Speci�cally, we choose K = 2; N1 = N2 = N=2 = 20, and take

q(1; k) = q(2; k) = �(k−1)=(cN (k − 1)!); 16k6N=2;
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Fig. 3. Illustration for Markov-modulated Poisson request sequences.

with the normalization constant cN =
∑N=2−1

r=0 �k=k!. Here, we use formula (17) with

m12 + m21 =
1
p12

+
1
p21

=
4

1− w
to compute the expected search cost. For �= 10, this computation is shown in Fig. 3.

4. Final remarks

The stationary distribution of search cost is of obvious interest, especially in studies of LRU caching
where tail probabilities (fault rates) are needed. To obtain a formal solution to this problem, assume that
both the MMR process and the search-cost process {Ct} are stationary (initial states are samples from the
stationary distributions). The derivation below follows closely that in [3], so we will be brief. For k¿1, let
Xk ={R̃1; : : : ; R̃k} be the set of distinct elements in the �rst k requests and |Xk | be the cardinality of Xk . Then

P[R0 = r; C0 = n] =
∞∑
k=0

P[R̃0 = r; r =∈ Xr; |Xk |= n− 1; R̃k+1 = r]

=
∞∑
k=0

∑
{B:|B|=n−1; r =∈B}

P[R̃0 = r; Xk = B; R̃k+1 = r]: (22)

By the inclusion–exclusion formula,

P[R̃0 = r; Xk = B; R̃k+1 = r] =
∑

{A : A⊆ B}
(−1)|B−A|P[R̃0 = r; Xk ⊆A; R̃k+1 = r]

=
∑

{A : A⊆ B}
(−1)|B−A|CrQk(A)Qre: (23)
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Substituting (23) into (22) gives

P[R0 = r; C0 = n] =
∑

{B:|B|=n−1; r =∈B}

∑
{A : A⊆ B}

(−1)|B−A|Cr(I − Q(A))−1Qre

=
∑

{A:|A|6n−1; r =∈A}

∑
{B:B⊇ A;|B|=n−1; r =∈B}

(−1)|B−A|Cr(I − Q(A))−1Qre:

The number of sets in {B: B⊇A; |B|= n− 1; |A|= a; r =∈ B} is
(
N−1−a
n−1−a

)
, so after simplifying and summing

over r, we obtain the following result, which reduces easily to the result in [3] when requests are i.i.d.

Theorem 4.

P[C0 = n] =
N∑
r=1

n−1∑
a=0

(−1)n−a−1
(
N − 1− a
n− 1− a

) ∑
{A:|A|=a; r =∈A}

Cr(I − Q(A))−1Qre:

Unfortunately, Theorem 4 does not give us a feasible computation for interesting values of N (e.g., for N
in the thousands, at least). We leave as an interesting open question the problem of estimating search-cost
probabilities.
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