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Power law distributions have been repeatedly observed in a wide variety of socioeconomic, biological, and technological areas.
In many of the observations, e.g., city populations and sizes of living organisms, the objects of interest evolve because of the
replication of their many independent components, e.g., births and deaths of individuals and replications of cells. Furthermore,
the rates of replications are often controlled by exogenous parameters causing periods of expansion and contraction, e.g.,
baby booms and busts, economic booms and recessions, etc. In addition, the sizes of these objects often have reflective lower
boundaries, e.g., cities do not fall below a certain size, low-income individuals are subsidized by the government, companies
are protected by bankruptcy laws, etc.
Hence, it is natural to propose reflected modulated branching processes as generic models for many of the preceding

observations. Indeed, our main results show that the proposed mathematical models result in power law distributions under
quite general polynomial Gärtner-Ellis conditions, the generality of which could explain the ubiquitous nature of power law
distributions. In addition, on a logarithmic scale, we establish an asymptotic equivalence between the reflected branching
processes and the corresponding multiplicative ones. The latter, as recognized by Goldie [Goldie, C. M. 1991. Implicit renewal
theory and tails of solutions of random equations. Ann. Appl. Probab. 1(1) 126–166], is known to be dual to queueing/additive
processes. We emphasize this duality further in the generality of stationary and ergodic processes.
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1. Introduction. Power law distributions are found in a wide range of domains, ranging from socioeconomic
to biological and technological areas. Specifically, these types of distributions describe the city populations,
species area relationships, sizes of living organisms, values of companies, distributions of wealth, and, more
recently, sizes of documents on the Web, visitor access patterns on websites, etc. Hence, one would expect that
there exist universal mathematical laws that explain this ubiquitous nature of power law distributions. To this
end, we propose a class of models termed modulated branching processes with reflective lower barriers that,
under quite general polynomial Gärtner-Ellis conditions, result in power law distributions.
Empirical observations of power laws have a long history, starting from the discovery by Pareto [61] in 1896

that a plot of the logarithm of the number of incomes above a level against the logarithm of that level yields
points close to a straight line, which is essentially equivalent to saying that the income distribution follows a
power law. Hence, power law distributions are often called Pareto distributions; for more recent study on income
distributions, see Champernowne [16], Mandelbrot [56], Dagum [21], and Reed [65, 66]. In a different context,
early work by Arrhenius [4] in 1921 conjectured a power law relationship between the number of species and
the census area, which was followed by Preston’s prediction in Preston [64] that the slope on the log/log species
area plot has a canonical value equal to 0�262. For additional information and measurements on species area
relationships, see Connor and McCoy [18], Plotkin et al. [63], and Keeley [47]. Interestingly, there also exists a
power law relationship between the rank of the cities and the population of the corresponding cities, proposed by
Auerbach [8] in 1913 and later studied by Zipf [73] in 1949. This power law is also known as Zipf’s law. Ever
since, much attention on both empirical examinations and explanations of the city size distributions have been
drawn (Zipf [73], Ioannides and Overman [37], Gabaix [28], Rosen and Resnick [69], Parr [62], Allen et al. [2]).
Similar observations have been made for firm sizes (Amaral et al. [3]), language family sizes (Wichmann [72]),
and even the gene family and protein statistics (Huynen and van Nimwegen [36], Rzhetsky and Gomez [70],
Luscombe et al. [55], Brujic et al. [13]). It is perhaps even more surprising that many features of the Internet
are governed by power laws, including the distribution of pages per website (Huberman and Adamic [34]),
the page request distribution (Cunha et al. [20], Breslau et al. [12]), the file size distribution (Downey [25],
Jelenković and Momčilović [39]), Ethernet traffic (Leland et al. [50]), World Wide Web traffic (Crovella and
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Bestavros [19]), the number of visitors per website (Huberman and Adamic [35], Adamic and Huberman [1]),
the distribution of scenes in video streams (Jelenković et al. [46]), and the distribution of the in-degrees and
out-degrees in the Web graph as well as the physical network connectivity graph (Faloutsos et al. [26], Barabási
et al. [9], Kumar et al. [49], Medina et al. [57]). In socioeconomic areas, in addition to income distributions, the
fluctuations in stock prices have also been observed to be characterized by power laws (Gabaix et al. [29], Levy
and Solomon [51]). This paragraph only exemplifies various observations of power laws; for a more complete
survey, see Mitzenmacher [58].
Hence, these repeated empirical observations of power laws over a period of more than a hundred years

strongly suggest that there exist general mathematical laws that govern these phenomena. In this regard, after
carefully examining the situations that result in power laws, we discover that most of them are characterized by
the following three features. First, in the vast majority of these observations, e.g., city populations and sizes of
living organisms, the objects of interest evolve because of the replication of their many independent components,
e.g., births and deaths of individuals and replications of cells. Second, the rate of replication of the many
components is often controlled by exogenous parameters that cause periods of baby booms and busts, economic
growths and recessions, etc. Third, the sizes of these objects often have lower boundaries, e.g., cities do not
fall below a certain size, low-income individuals are subsidized by the government, companies are protected by
bankruptcy laws, etc.
To capture the preceding features, it is natural to propose modulated branching processes (MBP) with reflective

or absorbing barriers as generic models for many of the observations of power laws. Indeed, one of our main
results, presented in Theorem 3.1, shows that MBPs with reflective barriers almost invariably produce power
law distributions under quite general polynomial Gärtner-Ellis conditions. The generality of our results could
explain the ubiquitous nature of power law distributions. Furthermore, an informal interpretation of our main
results, stated in Theorems 3.1 and 3.2 of §3, suggests that alternating periods of expansions and contractions,
e.g., economic booms and recessions, are primarily responsible for the appearance of power law distributions.
Actually, Theorem 3.2 shows that the distribution of the reflected MBP decays faster than any power law if
the conditional mean values of the branching process, given the environment, are smaller than one. From a
mathematical perspective, we develop a novel sample path technique for analyzing reflected modulated branching
processes because these objects appear new and the traditional methods for investigating branching processes
(Athreya and Ney [7]) do not directly apply; furthermore, for traditional work on modulated branching processes
without reflected boundaries (also known as branching processes in random environments), see Chapter 7 in
Athreya and Ney [7]. A preliminary version of this work has appeared in the extended abstract in Jelenković
and Tan [41].
Formal description of our reflected modulated branching process (RMBP) model is given in §2. In the sin-

gular case when the number of individuals born in each state of the modulating process is constant, our model
reduces to a reflected multiplicative process. A rigorous connection (duality) between the reflected multiplica-
tive processes (RMPs) and queueing theory was established in §5 of Goldie [32]; this duality was repeatedly
observed and used later in, e.g., Sornette and Cont [71] and Gong et al. [33]. In §2.1, we further emphasize this
duality in the context of stationary and ergodic processes. We would like to point out that this duality makes a
vast literature on queueing theory directly applicable to the analysis of RMPs. As a direct consequence of this
connection, in §2.1, we translate several well-known queueing results to the context of RMPs. Informally, these
results show that the role that exponential distributions play in queueing theory (and in additive reflected random
walks in general) is represented by power law distributions in the framework of RMPs/RMBPs. Furthermore,
this relationship appears to reduce the debate on the relative importance of power law versus exponential distri-
butions/models to the analogous question of the prevalence of proportional growth versus additive phenomena.
Interestingly, the power law distribution satisfies the memoryless property in the multiplicative world, playing
an equivalent role to the memoryless exponential distribution in the additive world. Indeed, if � �M > x�= x−�,
� > 0, x ≥ 1, then, for x� y ≥ 1, we obtain � �M > xy �M > x�= � �M > y�.
Furthermore, this duality immediately implies and generalizes many of the prior results in the area of RMPs

and power laws (see Levy and Solomon [51, 52, 53] and Sornette and Cont [71]). In addition, we would like to
point out that the reflective nature of the barrier, assumed in the previous studies, is not essential for producing
power law distributions. Indeed, one only needs a positive lower barrier, e.g., a porous, absorbing or reflective
one—this is a natural condition because no physical object or socioeconomic one can approach zero arbitrarily
close without repelling from it or simply disappearing. In many areas, objects of interest may not have a strictly
reflecting barrier but rather they may have a porous one, e.g., cities may degenerate, bankruptcy protection may
sometimes fail, and a company can be liquidated. In these cases, the power law effect follows from the well-
known queueing results on the cycle maximum that we state briefly in §2.2. This observation presents a rigorous
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explanation for the previous study in Blank and Solomon [11] that argued heuristically on how multiplicative
processes with absorbing barriers can result in power laws.
Here, we would like to point out that the stochastic difference equation (Mn+1 = JnMn + Qn) with random

coefficients is closely related to RMPs and is known to produce power law distributions. It appears that the
first rigorous study of this process was done by Kesten in 1973 (Kesten [48]); for later investigations of this
model, see de Haan et al. [22], de Saporta [23], and the references therein. In addition, we refer the reader to
Equations (1.1)–(1.6) of Goldie [32, p. 126] for other related stochastic recursions of multiplicative nature that
produce power laws. For recent extensions of these results to recursions on trees, see Jelenković and Olvera-
Cravioto [40].
Next, it is easy to see that RMBPs reduce to RMPs in the special case when a constant number of individuals

are born in each state of the modulating process. However, our main result, Theorem 3.1, reveals a general
asymptotic equivalence between the power law exponent of an RMBP and the corresponding RMP. In other
words, Theorem 3.1 discovers the asymptotic insensitivity of the power law exponent on the conditional distri-
butions of the reflected branching process beyond their conditional mean values. Furthermore, for the special
case when the modulating process is independent and identically distributed (i.i.d.), we sharpen the result on the
logarithmic asymptotics of Theorem 3.1 to the exact one in Theorem 4.3 by using the implicit renewal theory
of Goldie [32].
In some domains, e.g., the growth of living organisms, the objects always grow (never shrink) up until a certain

random time. Huberman and Adamic [34] also propose this model as an explanation of the growth dynamics of
the World Wide Web by arguing that the observation time is an exponential random variable. This notion has
been revisited in Reed [65] and generalized to a larger family of random processes observed at an exponential
random time (Reed and Hughes [67]). In this regard, in §5.1.2, we study randomly stopped modulated branching
processes and show, under more general conditions than the preceding studies, that the resulting variables follow
power laws.
In regard to the previously mentioned situations with absorbing barriers, we discuss MBP with an absorbing

barrier in §5.2 and argue that it leads to power law distributions as well. We conjecture that these types of
models can be natural candidates for describing the bursts of requests at popular Internet websites, often referred
to as hot spots.
Based on our new model, we discuss two related phenomena: truncated power laws and double Pareto distri-

butions. We argue that one can obtain a truncated power law distribution by adding an upper barrier to RMBP,
similar to the way truncated geometric distributions appear in queueing theory, e.g., the finite buffer M/M/1
queue. Furthermore, by the duality of RMBP and queueing theory, we give two new natural explanations of the
origins of double Pareto distributions that have been observed in practice. In the queueing context, it has been
shown that the tail of the queue-length distribution exhibits different decay rates in the heavy traffic and large
deviation regime, respectively (Olvera-Cravioto et al. [60]); similar behavior of the queue-length distribution
was attributed to the multiple time-scale arrivals in Jelenković and Lazar [38]. We claim that the preceding
two mechanisms, when translated to the proportional growth context, provide natural explanations of the double
Pareto distributions.
Finally, we would like to mention that there might be other nonmultiplicative mechanisms that result in

power law distributions, e.g., the random typing model used to explain the power law distribution of frequencies
of words in natural languages (Mitzenmacher [58]) as well as highly optimized tolerance studied in Carlson
and Doyle [15]. Very recently, the new power law phenomenon in situations where jobs have to restart from
the beginning after a failure was discovered in Fiorini et al. [27] and further studied in Asmussen et al. [6];
equivalently, in the communication context, retransmission-based protocols in data networks were shown to
almost invariably lead to power laws and, in general, heavy tails in Jelenković and Tan [42, 43, 44]. For a recent
survey on various mechanisms that result in power laws, see Mitzenmacher [58].
The rest of the paper is organized as follows. After introducing the modulated branching processes in §2,

we study the duality between the queueing theory and the multiplicative processes with reflected barriers in
§2.1 and absorbing barriers in §2.2, respectively. Then, we present our main results in §3 on the logarithmic
asymptotics of the stationary distribution of the reflected modulated branching process and the corresponding
multiplicative one. This is followed by the study of the exact asymptotics under the more restrictive conditions
in §4. As further extensions, we discuss three related models in §5, i.e., randomly stopped processes in §5.1,
modulated branching processes with absorbing barriers in §5.2, and truncated power laws in §5.3. Section 6
presents the majority of the technical proofs that have been deferred from the preceding sections for increased
readability.
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2. Reflected modulated branching processes. In this section, we formally describe our model. Let
�Jn�n>−� be a stationary and ergodic modulating process that takes values in the positive integers. Define a family
of independent, nonnegative, integer-valued random variables �Bi

n�j��i� j≥1�−�< n <�, which are independent
of the modulating process �Jn�. In addition, for fixed j , variables �B�j��Bi

n�j�� are identically distributed with
0< ��j�� Ɛ�B�j�� <�.

Definition 2.1. A modulated branching process (MBP) �Zn��n=0 is recursively defined by

Zn+1 �
Zn∑
i=1

Bi
n�Jn�� (1)

where the initial value Z0 < � is an integer-valued random variable. For increased clarity, we may explicitly
write �Zl

n� when Z0 = l.
Definition 2.2. For any l ∈� and an integer-valued �0, a reflected modulated branching process (RMBP)

��n��n=0 is recursively defined as

�n+1 �max
( �n∑

i=1
Bi

n�Jn�� l

)
� (2)

Remark 2.1. These types of modulated branching processes with a reflecting barrier appear to be new and
thus the traditional methods for the analysis of branching processes (Athreya and Ney [7]) do not seem to
directly apply. For traditional work on modulated branching processes without the reflected boundaries (also
known as branching processes in random environments), see Chapter 7 in Athreya and Ney [7].

Remark 2.2. A more general framework would be to define

Zn+1 =
∫ Zn

0
Bt

n�Jn�t��d��t� (3)

for any real measure � and similarly

�n+1 =max
(∫ �n

0
Bt

n�Jn�t��d��t�� l

)
� (4)

where l > 0 and Bt
n�Jn�t�� is �-measurable. We refrain from this generalization because it introduces additional

technical difficulties without much new insight.
Now, we present the basic limiting results on the convergence to stationarity of Zn and �n.

Lemma 2.1. If Ɛ log��J0� < 0, then almost surely (a.s.) we have

lim
n→�Zn = 0�

Proof. For all n ≥ 1, let Wn = Zn/�0
n−1, where �0

n =
∏n

i=0��Ji�. It is easy to check that Wn is a positive
martingale with respect to the filtration �n = ��Ji�Zi�0 ≤ i ≤ n − 1�. Hence, by the martingale convergence
theorem (see Theorem 35.5. of Billingsley [10]) a.s. as n→�,

Wn →W <�� (5)

Next, because �Jn� is stationary and ergodic, so is ���Jn�� and therefore a.s.

log�0
n−1

n
= 1

n

n−1∑
i=0
log��Ji�→ Ɛ log��J0� < 0 as n→��

Thus, �0
n−1→ 0 as n→� a.s. This, recalling (5) and Zn =Wn�0

n−1, finishes the proof. �

Next, let Z−n be the number of individuals at time zero in an unrestricted branching process that starts at
time −n with l individuals defined on the same sequence �Bi

n�Jn��i≥1, −� < n < �; when needed for clarity,
we will use the notation Zl

−n to explicitly indicate the initial state l.

Lemma 2.2. Assume Ɛ log��J0� < 0, then, for any a.s. finite initial condition �0, �n converges in dis-
tribution to

�
d=max

n≥0
Z−n�

where
d= stands for equality in distribution.
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Proof. First, assuming �0 = l, we observe that by stationarity of �Jn�,

�1 =max
( l∑

i=1
Bi
1�J1�� l

)
d=max�Z−1�Z0��

Then, by induction and stationarity, it is easy to show

�n

d=max�Z−n�Z−�n−1��    �Z−1�Z0�� (6)

where Z−n�    �Z0 are defined on the same sequence �Bi
k�Jk��i≥1, −n≤ k ≤ 0. Hence, by monotonicity, we

obtain
� ��n > x�→ � �� > x� as n→��

Now, if ��0
n is a process defined on the same sequence �Bi

n�Jn�� with the initial condition �0 ≥ l, then it is
easy to see that

��0
n ≥�n ≥ l for all n�

implying
� ���0

n > x�≥ � ��n > x�� (7)

Next, if we define the stopping time " to be the first time when ��0
n hits the boundary l, then the preceding

monotonicity implies that �n =��0
n for all n≥ " . Using this observation, we obtain

� ���0
n > x� = � ���0

n > x� " > n�+� ���0
n > x� " ≤ n�

= � ���0
n > x� " > n�+� ��n > x� " ≤ n�

≤ � �" > n�+� ��n > x�� (8)

Next, by Lemma 2.1, " is a.s. finite and thus by (7) and (8), we conclude

lim
n→�� ���0

n > x�= lim
n→�� ��n > x�= � �� > x�� �

2.1. Reflected multiplicative processes and queueing duality. Note that in the special case Bi
n�Jn� ≡ Jn,

reflected modulated branching processes reduce to reflected multiplicative processes with Jn being integer valued.
In general, using the definition in (3), Jn can be relaxed to take any positive real values. Hence, in this subsection,
we assume that �Jn�−�<n<� is a positive, stationary, and ergodic real-valued process.

Definition 2.3. For l > 0 and M �
0 <�, define a reflected multiplicative process (RMP) as

M �
n+1 =max�M �

n · Jn� l�� n≥ 0� (9)

The preceding RMP model was studied by Goldie in 1991 (Goldie [32]); for later considerations of this
model, see Sornette and Cont [71], Levy and Solomon [52, 53], Gabaix [28], Gong et al. [33], Downey [25].
Goldie [32] also shows a direct connection (duality) between RMP and queueing theory in §5 of Goldie [32]
for the case when �Jn� is an i.i.d. sequence. Here, we study this duality further in the generality of stationary
and ergodic processes.
Without loss of generality, we can assume l = 1 because we can always divide (9) by l and define M �1

n =M �
n/l.

Now, let Xn = log Jn and Qn = logM �
n with the standard conventions log0=−� and e−� = 0. Then, for l = 1,

Equation (9) is equivalent to
Qn+1 =max�Qn +Xn�0�� (10)

which is the workload (waiting time) recursion in a single-server first-in-first-out (FIFO) queue.

Lemma 2.3. If Ɛ log Jn < 0, then M �
n converges in distribution to an a.s. finite random variable M � that

satisfies

M � d= sup
n≥0

��
n� (11)

where ��
0 = 1, ��

n =
∏−1

i=−n Ji, n≥ 1.



Jelenković and Tan: Modulated Branching Processes, Origins of Power Laws, and Queueing Duality
812 Mathematics of Operations Research 35(4), pp. 807–829, © 2010 INFORMS

Proof. By the classical result of Loynes [54], Qn, defined by (10), converges in distribution to an a.s. finite
stationary limit Q if ƐXn = Ɛ log Jn < 0. Furthermore,

Q
d= sup

n≥0
Sn�

where S0 = 0 and Sn =
∑−1

i=−n Xi. This implies the convergence in distribution of Mn to

M � d= esupn≥0 Sn = sup
n≥0

eSn = sup
n≥0

��
n� �

The following theorem is a direct corollary of Theorem 1 in Glynn and Whitt [31]; see also Theorem 3.8 in
Chang [17]. For a more recent presentation, we refer the reader to Ganesh et al. [30].

Theorem 2.1. Let �Jn�n>−� be a stationary and ergodic sequence of positive random variables. If there
exists a function & and positive constants �∗ and '∗ such that
(1) n−1 logƐ����

n���→&��� as n→� for ��−�∗�< '∗,
(2) & is finite and differentiable in a neighborhood of �∗ with &��∗�= 0, & ′��∗� > 0, and
(3) Ɛ����

n��∗+'� <� for n≥ 1 and some ' > 0,
then

lim
x→�

log� �M � > x�

logx
=−�∗� (12)

Remark 2.3. We refer to conditions (1)–(3) as the polynomial Gärtner-Ellis conditions for the process �Jn�.
Note that condition (2) can be relaxed such that & is only differentiable at �∗ and condition (3) can be weakened
to ' = 0 (Glynn and Whitt [31]). Because conditions (2) and (3) are used for Theorem 3.1 in §3, we keep the
current form to provide a unified framework. Also, it is worth noting that the multiplicative process ��

n without
the reflective boundary would essentially follow the lognormal distribution as was recently observed in Gong
et al. [33] (this is similar to the fact that the unrestricted additive random walk is approximated well by normal
distribution). However, we would like to reemphasize that the lower boundary l is not just a mathematical artifact
but is a very natural condition because no physical object can approach zero arbitrarily close without either
repelling (reflecting) from it or vanishing (absorbing); the absorbing boundary will be discussed in §2.2.
Here, we illustrate Theorem 2.1 by the following examples. Assume that �An�� �Cn� are two mutually inde-

pendent sequences, and let Jn = eAn−Cn . Then, the quantity Qn � logM �
n , where M �

n is defined in (9), satisfies

Qn+1 = �Qn +An −Cn�+� (13)

The first two examples assume that �An�� �Cn� are two i.i.d. sequences; the third example takes �Jn� to be a
Markov chain; and, in the last example, �Jn� is modulated by a Markov chain �Xn�.

Example 2.1. If �An�� �Cn� follow exponential distributions, � �Cn > x� = e−�x, � �An > x� = e−*x, and
* < �, then Qn represents the waiting time in the M/M/1 queue. By Theorem 9.1 of Asmussen [5], the
stationary waiting time in the M/M/1 queue is distributed as

� �Q > x�= *

�
e−��−*�x� x ≥ 0�

which equivalently yields a power law distribution for M �,

� �M � > x�= � �Q > logx�= *

�x�−*
� x ≥ 1

with power exponent �=�−*.
Example 2.2. If �An���Cn� are two i.i.d Bernoulli processes with � �An=1�=1−� �An=0�=p, � �Cn=1�=

1−� �Cn=0�=q, p<q. Then, the elementary queueing/Markov chain theory shows that the stationary distribu-
tion of Qn, as defined in (13), is geometric � �Q ≥ j� = �1− -�-j� j ≥ 0, where - = p�1− q�/�q�1− p�� < 1.
Therefore,

� �M � ≥ x�= � �Q ≥ logx�= -�logx�� x ≥ 1�
Because logx− 1< �logx� ≤ logx, it is easy to conclude that

1
xlog�1/-�

≤ � �M � ≥ x� <
1

-xlog�1/-�
�
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Example 2.3. If �Jn� is a Markov chain taking values in a finite set . of positive reals and possessing an
irreducible transition matrix Q = �q�i� j��i� j∈., then the function & defined in Theorem 2.1 can be explicitly
computed. To this end, define matrix Q� with elements

q��i� j�= q�i� j�j�� i� j ∈.�

By Theorem 3.1.2 of Dembo and Zeitouni [24], we have as n→�
n−1 logƐ����

n���→ log�dev�Q����

where dev�Q�� is the Perron-Frobenius eigenvalue of matrix Q�. To illustrate this result, we take . = �u�d�
where u = 1/d > 1, and q�d�u� = q, q�d�d� = 1− q, q�u�d� = p, q�u�u� = 1− p where p > q. It is easy to
compute

Q� =
(

�1−p�u� pd�

qu� �1− q�d�

)
�

and, letting log�dev�Q���= 0, we obtain

�∗ = log�1− q�− log�1−p�

logu
�

Example 2.4 (Double Pareto). If �Jn ≡ J �Xn�� is modulated by a Markov chain Xn, we argue that
� �M � > x� can have different asymptotic decay rates over multiple time scales. This phenomenon was investi-
gated in Jelenković and Lazar [38] in the queueing context and formulated as Theorem 3 therein. To visualize
this phenomenon, we study the following example. Consider a Markov process Xn of two states (say �1�2�) with
transition probabilities p12 = 1/5000, p21 = 1/10, and � �J �1�= 1�2�= 1−� �J �1�= 0�6�= 0�5, � �J �2�= 1�7�=
1− � �J �2�= 0�25� = 0�6. The corresponding simulation result for 5× 107 trials is presented in Figure 1. We
observe from this figure a double Pareto distribution for M �, which provides a new explanation to the origins
of double Pareto distributions as compared to the one in Reed and Jorgensen [68].

Remark 2.4. For reasons of simplicity, we have chosen �Jn� in all of the preceding examples to be
Markovian. However, Theorem 2.1 extends beyond the Markovian framework, e.g., �Jn� can be a semi-Markov
process where the periods of (sojourn) time that the process spends in a state are asymptotically exponential but
not necessarily memoryless.

2.2. Multiplicative processes with absorbing barriers and cycle maximum. As briefly discussed in §1,
we explained that the reflective nature of the barrier is not essential for producing power law distributions.
Indeed, one only needs a positive lower barrier, e.g., porous, absorbing, or reflective, which is a natural condition
because no physical objects or socioeconomic ones can approach zero arbitrarily close without repelling from it
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Figure 1. Illustration for Example 2.4 of the double Pareto distribution.
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or simply disappearing. To illustrate the situations when the objects can vanish, we name a few examples, e.g.,
cities may degenerate, bankruptcy protection may sometimes fail, and a company can be liquidated. In these
cases, the power law effect follows from the well-known queueing result on the cycle maximum that is stated
in Theorem 2.2 (next). We also discuss in §5.2 a more complicated situation when newly generated objects in
the system can arrive/appear or leave/disappear.
For a sequence of positive i.i.d. random variables �J � Jn�n≥1, define the stopping time " � inf�n0

∏n
i=1 Ji ≤ 1�

n≥ 1� with the corresponding cycle maximum M �
" � sup�

∏n
i=1 Ji0 1≤ n≤ "�.

Theorem 2.2. If the sequence �log Jn�n≥1 is nonlattice, satisfying Ɛ�J �∗
� = 1 for some �∗ > 0 and

�Ɛ�J ���′��=�∗ <�, then

lim
x→�x�∗

� �M �
" > x�= c > 0�

Proof. This result follows from Corollary 5.9 in Asmussen [5, p. 368]. �

3. Main results. This section presents our main results in Theorems 3.1 and 3.2. To avoid technical dif-
ficulties, we assume � � inf j ��j� > 0. Recall that the process �Jn� on positive integers is assumed to be
stationary and ergodic, and define �n =

∏−1
i=−n ��Ji�� n ≥ 1��0 = l, and M = supn≥0�n. In this paper, we use

the following standard notation. For any two real functions a�t� and b�t�, we use a�t�= o�b�t�� to denote that
limt→��a�t�/b�t�� = 0, and a�t� = O�b�t�� to denote that limt→��a�t�/b�t�� < �; when needed for increased
clarity, we may explicitly write a�t�= o�b�t�� as t →�.

Theorem 3.1. Assume that the process ���Jn��n>−� satisfies the polynomial Gärtner-Ellis conditions (con-
ditions (1)–(3) of Theorem 2.1 with respect to ��n�n≥1), and supj Ɛ�e6�B�j�−��j��� <� for some 6 > 0. Then,

lim
x→�

log� �� > x�

logx
= lim

x→�
log� �M > x�

logx
=−�∗� (14)

Remark 3.1. Note that conditions (1) and (2) of Theorem 2.1 imply that there exists j such that ��j� > 1,
because otherwise we have sup� &��� ≤ 0, which would contradict &��∗� = 0 and & ′��∗� > 0 in condi-
tion (2). The following theorem covers the opposite situation when the previous condition is not satisfied, i.e.,
supj ��j� < 1.

Theorem 3.2. If supj ��j� < 1 and supj Ɛ�e6�B�j�−��j��� <� for some 6 > 0, then,

lim
x→�

log� �� > x�

logx
=−�� (15)

Remark 3.2. Informally speaking, Theorems 3.1 and 3.2 show that the alternating periods of contractions
and expansions, e.g., economic booms and recessions, are primarily responsible for the appearance of power
law distributions. In other words, if there are no periods of expansions, i.e., the condition supj ��j� < 1 of
Theorem 3.2 is satisfied, then � has a tail that is lighter than any power law distribution. Furthermore, the
first equality in (14) of Theorem 3.1 reveals a general asymptotic equivalence between the reflected modulated
branching process and the corresponding reflected multiplicative process, showing that the power law exponent
�∗ is insensitive to the higher order distributional properties of B�j� beyond the conditional mean ��j�.

Remark 3.3. A careful examination of the proofs reveals that the existence of a uniform upper bound
of the exponential moments for �B�j� − ��j�� could possibly be relaxed to supj Ɛ��B�j� − ��j���� < � for
� > �∗. However, such an extension would considerably complicate the proofs. Furthermore, in most practical
applications, the distributions of �B�j�� are typically very concentrated. For the preceding reasons, we do not
consider such extensions.
We present the proofs of Theorems 3.1 and 3.2 in §6.1.

4. Exact asymptotics. This section presents the exact asymptotics of the RMPs and RMBPs in the following
two subsections, respectively.
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4.1. Exact asymptotics of RMPs and the double Pareto phenomenon. The following two theorems essen-
tially provide a new general explanation of the measured double Pareto phenomenon (e.g., see Mitzenmacher [59]
and Reed and Jorgensen [68]) because they rely on two universal statistical laws, the first based on the large
deviation theory and the second implied by the central limit theorem.
The theorems are direct translations from the corresponding queueing theory results. Theorem 4.1 is based on

the large deviation result that studies the situation when M � is large, and Theorem 4.2 is derived from the heavy
traffic approximation of the GI/GI/1 queue where we study the limiting behavior of a sequence of multiplicative
processes with the multiplicative drift tending to one. Theorems 4.1 and 4.2 are corollaries of Theorem 5.2 in
Chapter XIII and Theorem 7.1 in Chapter X of Asmussen [5], respectively.
For a sequence of positive i.i.d. random variables �J � Jn�n>−�, let �Sn =

∑n
i=1 log Ji�n≥1 and "+ = inf�n ≥ 10

Sn > 0�, and define G+ to be the ladder height distribution G+�x� = � �S"+ ≤ x� "+ < ��, x > 0, with �G+� =
� �"+ < �� = � �Sn > 0 for some n ≥ 1�. Similarly, as in §2.1, we assume without loss of generality that the
absorbing barrier is equal to one.

Theorem 4.1. If the sequence �log Jn�n>−� is nonlattice, satisfying Ɛ�J �∗
� = 1 for some �∗ > 0 and

�Ɛ�J ���′��=�∗ <�, then

lim
x→�x�∗

� �M � > x�= 1−�G+�
�∗ ∫ �

0 ue�∗uG+ �du�
�

Proof. The result is a direct consequence of Theorem 5.3 in Chapter XIII of Asmussen [5]. �

Remark 4.1. For the case when Sn is lattice valued, see Remark 5.4 of Chapter XIII on p. 366 of
Asmussen [5].
Now, we study a sequence of multiplicative processes indexed by an integer k, where J �k�

n , S
�k�
n , and M�k� are

properly defined for all k ≥ 1, in the limit as k goes to infinity.

Theorem 4.2. If �J �k�� J �k�
n �n≥1 are positive and i.i.d. for each fixed k with mk � Ɛ�log J �k��, �2k �

Var�log J �k��, the random walks �S�k�
n =∑n

i=1 log J
�k�
i �n≥1 satisfy mk < 0, limk→� mk = 0, limk→��2k > 0, and the

family of random variables �log J �k��2 is uniformly integrable, then, for y ≥ 1,
lim
k→�

�
[
�M�k��−mk/�2k > y

]= 1/y2�

where M�k� = supn≥0
∏n

i=1 J
�k�
i with the convention

∏0
i=1 J

�k�
i = 1.

Proof. Observing that logM�k� = supn≥0 S�k�
n with S

�k�
0 ≡ 0 and using Theorem 7.1 in Chapter X in

Asmussen [5, p. 287], we obtain, for z≥ 0,

lim
k→�

�

[
− mk

�2k
logM�k� > z

]
= e−2z�

which, letting z= logy, finishes the proof of Theorem 4.2. �

4.2. Exact asymptotics of reflected branching processes. In this subsection, assuming that �J � Jn�n≥1
are i.i.d. and �log��J �� is nonlattice, we will give exact asymptotics for RMBPs using the implicit renewal
theorem of Goldie (1991); see Theorem 2.3 and Corollary 2.4 in Goldie [32]. To this end, let �B�j��Bi�j��i� j

be independent random variables that are independent of �J � Jn� and satisfy Bi�j�
d= B�j�.

Theorem 4.3. If supj Ɛ�e6�B�j�−��j��� < � for some 6 > 0, Ɛ���J ��∗
� = 1 for some �∗ > 0 and

Ɛ���J ��∗+:� <� for some : > 0, then,

lim
x→�x�∗

� �� > x�= Ɛ���∗��∗ − ���J ����∗
�

�∗ Ɛ���J ��∗ log��J ��
� (16)

where �∗ �max�
∑�

i=1Bi�J �� l� and � is independent of J and �Bi�j��i� j .

The proof of Theorem 4.3 is presented in §6.2.
Remark 4.2. The preceding result is implicit because the constant on the right-hand side of Equation (16)

depends on �, which is what we are trying to compute. In principle, to derive the explicit exact asymptotics for
RMBPs is a difficult problem because the asymptotic constant depends on the behavior around the boundary l.
However, in the scaling region where the boundary l grows as well (albeit slowly), one can derive an explicit
asymptotic characterization; see the extended Internet version of this paper (Jelenković and Tan [45]).
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5. Discussion of related models. Based on the study of reflected modulated branching processes, we address
three related models: randomly stopped processes, modulated branching processes with absorbing barriers, and
truncated power laws.

5.1. Randomly stopped processes. In this subsection, we discuss randomly stopped multiplicative and
branching processes, respectively.

5.1.1. Randomly stopped multiplicative processes. The following two theorems show that randomly
stopped multiplicative processes and reflected multiplicative processes are closely related and are, to a certain
extent, equivalent under more restrictive conditions. Following the approach of Chapter VIII of Asmussen [5],
we study the ladder heights of a multiplicative process. For any RMP with i.i.d positive multiplicative incre-
ments, the random variable M �, as defined in Lemma 2.3, can be represented in terms of the ladder heights. To
this end, define ��0

n �
∏n

i=1 Ji� n≥ 1, ��0
0 = 1 and let �Hi�i≥1 be the i.i.d. ascending ladder height process of the

random walk �Sn =
∑n

i=1 log Ji�n≥1 with � �Hi ≤ x� = G+�x�/�G+�� x ≥ 0, �G+� = G+��� < 1, and G+�x� is
the same as defined in front of Theorem 4.1; let He

i � eHi .

Theorem 5.1. Suppose that �J � Jn�n>−� is a positive i.i.d. sequence with Ɛ�log J � < 0. Then,

M � d=
N∏

i=1
He

i (17)

with
∏0

i=1He
i = 1, where N is independent of �He

i �i≥1 and satisfies � �N ≥ n�= �G+�n.

Proof. Based on the well-known ladder height representation (see Chapter VIII of Asmussen [5])

logM � d=
N∑

i=1
Hi

with
∑0

i=1Hi = 0, where N is independent of �Hi� with � �N ≥ n�= �G+�n, it immediately follows that

� �M � > x�= �
[
e
∑N

i=1Hi > x
]= �

[ N∏
i=1

He
i > x

]
� �

Conversely, we can prove that if the observation time N has an exponential tail, the stopped process ��0
N has a

power law tail under quite general conditions as shown in Theorem 5.2 (next). Note that here we do not require
�Jn� to be an i.i.d. sequence.

Theorem 5.2. Let N be an integer random variable independent of �Jn� with

lim
x→�

log� �N > x�

x
=−* < 0�

For a positive ergodic and stationary process �Jn�n≥0, if n−1 logƐ����0
n ��� → &��� < � as n →� in a neigh-

borhood of �∗ > 0, &��� is differentiable at �∗ with &��∗� = *, & ′��∗� > 0, and Ɛ����0
n ��∗

� < � for n ≥ 1,
then

lim
x→�

log� ���0
N > x�

logx
=−�∗� (18)

Remark 5.1. Theorem 5.2 generalizes the previous results from Huberman and Adamic [34], Reed [65],
and Reed and Hughes [67] where only i.i.d. multiplicative increments are considered.
Theorem 5.3 (next) shows that randomly stopped multiplicative processes and reflected multiplicative pro-

cesses are basically equivalent under more restrictive conditions. This equivalence is established using classical
results on the M/GI/1 queue. In this regard, we assume that �Jn�n>−� is an i.i.d. process, ��0

n is the correspond-
ing multiplicative process, N is a geometric random variable that is independent of ��0

n with � �N ≥ n� = -n,
0< - < 1, and �G�t�, t ≥ 0 is a complementary distribution function (i.e., there exists a random variable S ≥ 0
such that �G�t�= � �S ≥ t�).
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Theorem 5.3. If a random variable N with � �N ≥ n� = -n, n ≥ 0, 0< - < 1 is independent of �Jn�, where
J1 satisfies

� �log J1 ≤ x�=
∫ x

0

�G�y�dy

/∫ �

0

�G�y�dy� x ≥ 0

for some complementary distribution function �G� · �. Then, we can always construct a stationary RMP such that

��0
N

d= M �. In addition, if �G� · � is nonlattice and
∫ �
0 e�∗y �G�y�dy = -−1 ∫ �

0
�G�y�dy,

∫ �
0 ye�∗y �G�y�dy < � for

�∗ > 0, then

lim
x→�x�∗

� �M � > x�= lim
x→�x�∗

� ���0
N > x�= �1−-�

∫ �
0

�G�y�dy

�∗-
∫ �
0 ye�∗y �G�y�dy

�

The proofs of Theorems 5.2 and 5.3 are presented in §6.3.

5.1.2. Randomly stopped branching processes. In the following theorem, we extend Theorem 5.2 of §5.1.1
to the context of randomly stopped branching processes. Recall �0

n �
∏n

i=0��Ji�.

Theorem 5.4. Suppose that N is independent of Bi
n�j� ≥ 1 for all n� i� j . Then, under the same conditions

as in Theorem 5.2 (replacing ��
n by �0

n therein) with Ɛ���0
n��∗

� < � for n ≥ 1 and &��� being differentiable
in a neighborhood of �∗ > 0, we obtain, for �Zn�n≥0 defined in (1) with a bounded initial value Z0 < z0 <�,

lim
x→�

log� �ZN > x�

logx
= lim

x→�
log� ��0

N > x�

logx
=−�∗�

The proof of Theorem 5.4 is based on arguments similar to the proof of Theorem 3.1, presented in §6.3.

5.2. Branching processes with absorbing barriers. For many dynamic processes (e.g., city sizes), quite
often when the sizes of the objects fall below a threshold, the whole object disappears (e.g., urban decay).
Therefore, it is natural to study branching processes with absorbing barriers. As discussed in §2.2, we know
that a single object with an absorbing barrier can result in power law distributions based on the duality with
the queueing cycle maximum. In this context, we can also study a more complicated situation where the newly
generated objects can join the system and evolve together. This naturally models the arrivals to popular websites
(hot spots) because information (news) is distributed according to a branching process, e.g., user A passes the
information to B and C. Furthermore, B may inform D, etc. Empirical examination shows that Web requests
follow power law distributions (see Huberman and Adamic [35] and Adamic and Huberman [1]). For a complete
discussion of this model, please refer to the longer Internet version of this paper (Jelenković and Tan [45]).

5.3. Truncated power laws. Truncated power laws have been observed empirically in many practical sit-
uations where the studied objects have natural upper boundaries. Here, we want to point out that by using the
duality between the modulated branching processes and the queueing theory, one easily obtains truncated power
laws when both a lower and an upper barrier are added to the modulated branching process. To illustrate this
point, recall that the M/M/1/b queue with a finite buffer b results in a truncated geometric distribution for the
number of customers in the queue. By the duality, it essentially follows that, in a proportional growth world
with both a lower and an upper barrier, truncated power laws can naturally arise and play a similar role as that
of truncated exponential/geometric distributions in an additive world. Prior related work on this subject can be
found in Sornette and Cont [71].

6. Proofs.

6.1. Proofs of Theorems 3.1 and 3.2. The proof of Theorem 3.1, composed of the upper bound and the
lower bound, and the proof of Theorem 3.2 are presented in the following three subsections, respectively.

6.1.1. Proof of Theorem 3.1: Upper bound. Because the proof is based on the change (increase) of
boundary l, we denote this dependence explicitly as �l ≡�. According to Lemma 2.2, the initial value of ��n�
has no impact on �; therefore, in this subsection, we simply assume that �l

0 = l. Before stating the proof of the
upper bound, we establish preliminary Lemmas 6.1, 6.2, 6.3, and 6.4.
The first lemma shows that, most likely, the supremum of Zn occurs for an index n≤ x.
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Lemma 6.1. For any ? > 0, the branching process Zl
n defined in (1) satisfies

�∑
n>x

� �Zl
n > x�=O

(
1
x?

)
as x →��

Proof. Similarly, as in the proof of Lemma 2.1, note that for �0
n−1 =

∏n−1
i=0 ��Ji�, the stochastic process

Wn = Zl
n/�0

n−1� n ≥ 1 is a martingale with respect to the filtration �n = ��Ji�Zi�0 ≤ i ≤ n − 1� that satisfies
Ɛ�W1�= l. Therefore, recalling �n =

∏−1
i=−n ��Ji�, we obtain, for any ' > 0,

� �Zl
n > x� = � �Wn�0

n−1 > x�= � ��Wne−'n���0
n−1e

'n� > x�

≤ � �Wne−'n > 1�+� ��ne'n > x�

≤ Ɛ�Wne−'n�+� ��ne'n > x�� (19)

Next, using the martingale property Ɛ�Wn�= Ɛ�W1�= l, we derive

�∑
n>x

Ɛ�Wne−'n�= l
�∑

n>x

e−'n ≤ le−'x

1− e−'
=O

(
1
x?

)
as x →�� (20)

Then, recalling conditions (1) and (2) of Theorem 3.1 (or Theorem 2.1), we can choose :�' > 0 small enough
and n0 large enough such that &��∗−:�+2'��∗−:�=−@ < 0 and n−1 logƐ����∗−:�

n � < &��∗−:�+'��∗−:�
for n > n0, which implies, for x > n0,

�∑
n>x

� ��ne'n > x� ≤
�∑

n>x

Ɛ����∗−:�
n �e'��∗−:�n

x��∗−:�
≤

�∑
n>x

e−@n

x�∗−:

≤ e−@x

�1− e−@ �x�∗−:
=O

(
1
x?

)
as x →�� (21)

Finally, using (19), (20), and (21), we complete the proof. �

The following lemma relates �n to the corresponding multiplicative process.

Lemma 6.2. Let ' > 0 and �l
n be the reflected branching process as defined in (2). Then, for x ≥ l,

� ��l
n > x�≤ �

[
max
1≤j≤n

�j�1+ '�j > x/l

]
+ n� ��l� '

0 ��

where �j =
∏−1

i=−j ��Ji� and �l� '
n =⋃j≥l�

∑j
i=1Bi

n�Jn� > j��Jn��1+ '�� for any integer n.

Proof. From (6), we have
�l

n

d=max�Zl
−n�Zl

−�n−1��    �Zl
−1�Zl

0�� (22)

Next, let Zl
−n�k� be the branching process that starts at time −n with l objects and is observed at time k ≥−n.

Note that Zl
−i�−i�= l, Zl

−i�0�≡Zl
−i and

Zl
−j =

Zl−j �−1�∑
i=1

Bi
−1�J−1�

for j ≥ 1. Now, using the preceding observation, (22), and Zl
0 = l, we derive, for x ≥ l,

� ��l
n >x� ≤ � �max�Zl

−n�Zl
−�n−1��   �Zl

−1�l�>x���l�'
−1�

��+� ��l�'
−1�

≤ � �max�Zl
−n�−1��1+'���J−1��   �Zl

−2�−1��1+'���J−1��l�1+'���J−1��>x���l�'
−1�

��+� ��l�'
−1�

≤ �
[{

�1+'���J−1�max
2≤i≤n

�Zl
−i�−1��>x

}
∪���J−1��1+'�>x/l�

]
+� ��l�'

−1��

where �� denotes the complement of � .
Then, intersecting with event �l� '

−2 and using

Zl
−j �−1�=

Zl−j �−2�∑
i=1

Bi
−2�J−2�
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for j ≥ 2, one easily obtains

� ��l
n > x� ≤ �

[{
�1+ '�2��J−2���J−1�max

3≤i≤n
�Zl

−i�−2�� > x
}

∪ �max���J−2���J−1��1+ '�2���J−1��1+ '�� > x/l�
]

+� ��l� '
−2 �+� ��l� '

−1 ��

which, continuing the induction and using � ��l� '
i �= � ��l� '

0 � for all i, finishes the proof. �

Now, we show that the “error” event �l� '
0 in Lemma 6.2 has a negligible probability for large l relative to

any power law distribution.

Lemma 6.3. If supj Ɛ�e6�B�j�−��j��� < �, 6 > 0 and � = inf j ��j� > 0, then, setting lx = �x:�, : > 0 in the
definition of �lx�'

0 in Lemma 6.2, we obtain, for any ? > 0,

� ��lx� '
0 �=O

(
1
x?

)
as x →��

Proof. First, we derive

P�n� � �

[ n∑
i=1

Bi
0�J0� > ��J0��1+ '�n

]

≤ �

[ n∑
i=1

�Bi
0�J0�−��J0�� > '�n

]

≤ Ɛ
[(
Ɛ
[
e@�B�J �−��J �� � J ])n]e−@'�n� @ > 0�

which, using the elementary inequality et ≤ 1+ t + t2e�t�/2, t ∈� and setting t = B�J �−��J �, yields

P�n� ≤ Ɛ

[(
1+ @2

2
Ɛ��B�J �−��J ��2e@ �B�J �−��J ���J �

)n]
e−@'�n�

For any B > 0 and large enough n such that @ = B logn/�'�n� < 6, the assumption supj Ɛ�e6�B�j�−��j��� < �
implies

Ɛ��B�J �−��J ��2e@ �B�J �−��J ���J � < C <��

which yields

P�n� ≤
(
1+ C�B logn�2

2�'�n�2

)n

n−B =O

(
1
nB

)
� (23)

Therefore, choosing B = 1+?/: in (23), we obtain, for lx = �x:�� : > 0 and any ? > 0, as x →�,

� ��lx� '
0 �≤

�∑
i=lx

P�n�≤O

( �∑
n=�x:�

1
nB

)
=O

(
1
x?

)
� �

The following lemma allows us to increase the lower barrier in order to prove the upper bound.

Lemma 6.4. Assume that �l1
n and �l2

n are defined on the same sequence �Bj
n�Jn�� with initial conditions l1

and l2, respectively. If l1 ≥ l2, then, for all n≥ 0,
�l1

n ≥�l2
n �

Proof. The result holds trivially for n= 0. Now, we prove the result using induction. Suppose that it is true
for all 0≤ k ≤ n, and for k = n+ 1,

�
l1
n+1 =max

( �
l1
n∑

i=1
Bi

n�Jn�� l1

)
≥max

( �
l2
n∑

i=1
Bi

n�Jn�� l2

)
=�

l2
n+1�

which implies that Lemma 6.4 is true for all n≥ 0. �
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Now, we are ready to complete the proof of the upper bound.
Proof of the Upper Bound of Theorem 3.1. Choosing lx = �x'� ≥ l�0 < ' < 1, using Lemma 6.4 and

then Lemma 6.2, we derive

� ��l > x� = �

[
sup
j≥1

Zl
−j > x

]
≤ � ��l

�x� > x�+�

[
sup
j>x

Zl
−j > x

]

≤ � ��
lx
�x� > x�+∑

j>x

� �Zl
j > x�

≤ �

[
sup
j≥1

�j�1+ '�j > x1−'

]
+ x� ��lx� '

0 �+∑
j>x

� �Zl
j > x�

� I1�x�+ I2�x�+ I3�x�� (24)

Now, define a new process ��'�Jn�=��Jn��1+'��n≥1 and �'
n =

∏−1
i=−n �'�Ji�. Then, for ' small enough, we

have
(1) n−1 logƐ��'

n�� →& '���=&���+� log�1+ '� as n→� for ��−�∗�< '∗,
(2) & ' is finite in a neighborhood of �∗

', �∗
' < �∗, and differentiable at �∗

' with &��∗
'�+�∗

' log�1+ '� = 0,
& ′��∗

'� > 0, and
(3) Ɛ���'

n��∗
' � <� for n≥ 1.

Therefore, by Theorem 2.1, we obtain

lim
x→�

log� �supi≥1�i�1+ '�i > x1−'�

logx
=−�1− '��∗

'� (25)

which, in conjunction with Lemmas 6.1 and 6.3, yields

I2�x�+ I3�x�= o�I1�x��� (26)

Then, combining (24), (25), and (26) yields

log� ��l > x�

logx
≤ log��1+ o�1��I1�x��

logx
−→−�1− '��∗

' as x →��

Because & '��� is continuous in a neighborhood of �∗ in both � and ', we derive

lim
'→0

�∗
' = �∗�

implying

lim
x→�

log� �� > x�

logx
≤−�∗� � (27)

6.1.2. Proof of Theorem 3.1: Lower bound. In order to prove the lower bound, we need to establish the
following three lemmas. Specifically, Corollary 6.1 allows us to obtain a lower bound for � while, perhaps
somewhat counterintuitively, increasing the lower barrier l.

Lemma 6.5. Let ��y1
n � and ��y2

n � be defined on the same modulating sequence �Jn�n≥0 and independent
random variables �Bi�1

n �j��Bi�2
n �j��, respectively, with Bi�k

n �j� identically distributed for fixed j . Then,

�y1+y2
n

d≤�y1
n +�y2

n �

where �y1
n and �y2

n are conditionally independent given �Jn�n≥0, and
d≤ stands for inequality in distribution.

Proof. We use induction to prove Lemma 6.5. Starting with n= 1, we obtain

�
y1+y2
1 = max

( y1+y2∑
i=1

Bi
0�J0�� y1+ y2

)
d=max

( y1∑
i=1

Bi�1
0 �J0�+

y2∑
i=1

Bi�2
0 �J0�� y1+ y2

)

≤ max
( y1∑

i=1
Bi�1
0 �J0�� y1

)
+max

( y2∑
i=1

Bi�2
0 �J0�� y2

)
d= �

y1
1 +�

y2
1
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because, for any x1� x2� y1� y2,

max�x1+ x2� y1+ y2�≤max�x1� y1�+max�x2� y2��

The proof is completed by induction in n:

�
y1+y2
n+1 =max

(�
y1+y2
n∑
i=1

Bi
1�Jn�� y1+ y2

)
d≤ max

(�
y1
n +�

y2
n∑

i=1
Bi
1�Jn�� y1+ y2

)
d≤ �

y1
n+1+�

y2
n+1� �

Next, a straightforward application of Lemma 6.5 yields the following corollary.

Corollary 6.1. If ��1n� j�1≤j≤y are conditionally i.i.d. copies of �1n given �Ji�1≤i≤n, then

�y
n

d≤
y∑

j=1
�1n� j �

Now, we show that the supremum of �i occurs most likely for small indexes i ≤O�logx�.

Lemma 6.6. Assume that condition (1) of Theorem 3.1 is satisfied, then, for 0≤ ' < 1 and any ? > 0, there
exists h > 0 such that, when x →�,

�

[
sup

i>h logx

�i�1− '�i > x

]
=O

(
1
x?

)
�

Proof. Using condition (1) of Theorem 3.1, we can choose 0 < � < �∗ with n−1 logƐ���
n� → &��� < 0

and n0 large enough such that Ɛ���
n� < @n for some 0 < @ < 1 and all n > n0. Thus, for h = −?/ log @ > 0

and x > en0/h,

�

[
sup

i>h logx

�i�1− '�i > x

]
≤

�∑
i>h logx

� ��i > x�≤
�∑

i>h logx

Ɛ���
i �

x�
≤

�∑
i>h logx

@ i

x�
=O

(
1
x?

)
� �

Finally, the last lemma shows that
∑j

i=1Bi
n�Jn� cannot deviate too much from j��Jn� for large j .

Lemma 6.7. Under the assumptions of Lemma 6.3, any 0 < :, ' < 1, and �l� '
n �

⋃
j≥l�

∑j
i=1Bi

n�Jn� <
j��Jn��1− '��, we obtain, for any ? > 0,

�
[
��x:�� '
0

]=O

(
1
x?

)
�

Proof. The proof of Lemma 6.7 is basically the same as Lemma 6.3. Observe

P�n� � �

[ n∑
i=1

Bi
0�J0� < ��J0��1− '�n

]

≤ �

[ n∑
i=1

�Bi
0�J0�−��J0�� <−'��J0�n

]

≤ �

[ n∑
i=1

���J0�−Bi
0�J0�� > '�n

]
�

Then, using similar large deviation arguments as in deriving (23), we can prove, for any ? > 0,

�
[
��x:�� '
0

]=O

(
1
x?

)
� �

Next, we can complete the proof of the lower bound of Theorem 3.1.



Jelenković and Tan: Modulated Branching Processes, Origins of Power Laws, and Queueing Duality
822 Mathematics of Operations Research 35(4), pp. 807–829, © 2010 INFORMS

Proof of the Lower Bound of Theorem 3.1. First, using Corollary 6.1, we obtain, for any integer y ≥ 1,

� ��l
n > x�≥ � ��1n > x�= y � ��1n > x�

y
≥ � �

∑y
j=1�1n� j > yx�

y
≥ � ��y

n > yx�

y
� (28)

Now, using (6) similarly as in the proof of Lemma 6.2, for 0 < ' < 1 and �l� '
n defined in Lemma 6.7, we

derive

� ��y
n > yx� ≥ �

[
max
0≤i≤n

�Z
y
−i� > yx�

( −1⋃
i=−n

�y�'
i

)�]

≥ �

[
sup
1≤i≤n

�i�1− '�i > x�

( −1⋃
i=−n

�y�'
i

)�]

≥ �

[
sup
1≤i≤n

�i�1− '�i > x

]
− n� ��y�'

0 �

≥ �

[
sup
i≥1

�i�1− '�i > x

]
−�

[
sup
i>n

�i�1− '�i > x

]
− n� ��y�'

0 �

� I1�x�− I2�x�− I3�x�� (29)

Note that �Ij�x��1≤j≤3 here are different from those in (24).
Next, similarly as in the proof of the upper bound, define a new process ��'�Jn� = ��Jn��1− '��n≥1 and let

�'
n =

∏−1
i=−n �'�Ji�. Then, for ' small enough, we have

(1) n−1 logƐ��'
n�� →& '���=&���+� log�1− '� as n→� for ��−�∗�< '∗,

(2) & '��� is finite in a neighborhood of �∗
', �

∗
' > �∗ and differentiable at �∗

' with &��∗
'�+�∗

' log�1−'�= 0,
& ′��∗

'� > 0, and
(3) Ɛ���'

n��∗
' � <� for n≥ 1.

Therefore, by Theorem 2.1, we obtain

lim
x→�

log� �supi≥1�i�1− '�i > x�

logx
=−�∗

'� (30)

Now, setting y = �x:��0< : < 1, n= �x� in (28), (29), and using Lemmas 6.6 and 6.7, it is easy to see that
I2�x�+ I3�x�= o�I1�x���

which, by (28) and (29), yields

log� �� > x� ≥ log� ��l
n > x�

≥ log�I1�x�− I2�x�− I3�x��− : logx

= log��1− o�1��I1�x��− : logx�

From the preceding inequality and (30), we obtain

lim
x→�

log� �� > x�

logx
≥−�∗

' − :� (31)

Because & '��� is continuous in a neighborhood of �∗ in both � and ', we have lim'→0 �∗
' = �∗. Then, passing

'�:→ 0 in (31) completes the proof of the lower bound, which, in conjunction with (27), finishes the proof of
Theorem 3.1. �

6.1.3. Proof of Theorem 3.2. Using the same arguments as in deriving (24) in the proof of the upper bound
of Theorem 3.1, we obtain, for lx = �x� ≥ l and 0< ' < 1,

� �� > x� ≤ � ��l
�x� > x�+�

[
sup
j>x

Zl
−j > x

]

≤ � ��
lx
�x� > x�+∑

j>x

� �Zl
j > x�

≤ �

[
sup
j≥1

�j�1+ '�j > 1
]
+ x�

[
�lx� '
0

]+ �∑
j>x

� �Zl
j > x�

� I1�x�+ I2�x�+ I3�x�� (32)
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Recalling �j =
∏−j

i=−1��Ji� and noting supj ��j� < 1, we can choose ' > 0 such that supj ��j��1 + '� < 1,
which implies I1�x�= 0. Additionally, by Lemma 6.3, we obtain I2�x�=O�x−?� for all ? > 0.
Next, using similar arguments as in deriving (19) in the proof of Lemma 6.1, we obtain, for ' > 0 and j ≥ 1,

� �Zl
j > x�≤ Ɛ�Wje

−'j �+� ��je
'j > x��

which, recalling supj ��j� < 1 and choosing ' small enough such that � ��je
'j > x�= 0 for x > 1, yields

I3�x�≤
�∑

j>�x�
Ɛ�Wje

−'j �= l
�∑

j>�x�
e−'j =O�e−'x��

Finally, combining (32) and the bounds on I1�x�, I2�x�, and I3�x� finishes the proof. �

6.2. Proof of Theorem 4.3. In order to prove Theorem 4.3, we first derive the following lemma.

Lemma 6.8. Under the assumptions of Theorem 4.3, there exists D > 0 such that

Ɛ

[∣∣∣∣
�∑

i=1
�Bi�J �−��J ��

∣∣∣∣
�∗+D]

<��

Proof. We observe that, for x > 0,

�

[∣∣∣∣
�∑

i=1
�Bi�J �−��J ��

∣∣∣∣> x

]
= �

[ �∑
i=1

�Bi�J �−��J �� > x

]
+�

[ �∑
i=1

���J �−Bi�J �� > x

]
� I1+ I2�

We choose D and : such that 0 < D < �∗ and D < : < �∗. To evaluate I1 for 0 < ' < ��∗ − :�/2, we set
0< ?� �:+ '�/��∗ − '� < 1 and obtain

I1 ≤ � �� > x1+?�+�

[ �∑
i=1

�Bi�J �−��J �� > x��≤ x1+?

]
� (33)

which, recalling that Theorem 3.1 implies � �� > x�=O�x−��∗−'��, results in

� �� > x1+?�=O�x−��∗+:��� (34)

Now, we study the second probability on the right-hand side of (33). Using the fact that J is independent of �
and applying Chernoff bound, we obtain, for @ > 0,

�

[ �∑
i=1

�Bi�J �−��J �� > x��≤ x1+?

]
=

�x1+?�∑
n=l

� ��= n��

[ n∑
i=1

�Bi�J �−��J �� > x

]

≤
�x1+?�∑

n=l

� ��= n�Ɛ��Ɛ�e@�B�J �−��J �� � J ��n�e−@x� (35)

Then, setting t = @�B�J � − ��J �� in (35), using et ≤ 1 + t + t2e�t�/2, t ∈ �, and observing that Ɛ�B�J � −
��J ��= 0, (35) is further upper bounded by

�x1+?�∑
n=l

� ��= n�Ɛ

[(
1+ @2

2
Ɛ��B�J �−��J ��2e@ �B�J �−��J �� � J �

)n]
e−@x�

Next, supj Ɛ�e6�B�j�−��j��� < � implies Ɛ��B�J �−��J ��2e@ �B�J �−��J �� � J � < C < �, @ < 6. Hence, for x large, we
have @ = ��∗ + :� logx/x < 6, which implies that (35) is bounded by

�x1+?�∑
n=l

� ��= n�

(
1+ C���∗ + :� logx�2

2x2

)x1+?

x−��∗+:� =O�x−��∗+:�� (36)

because ? < 1. Combining (34), (35), and (36) proves

I1 =O�x−��∗+:��� (37)
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Using the same approach as in proving (37), we can also show

I2 =O�x−��∗+:���

which implies

�

[∣∣∣∣
�∑

i=1
�Bi�J �−��J ��

∣∣∣∣> x

]
=O�x−��∗+:���

Therefore, because : > D,

Ɛ

[∣∣∣∣
�∑

i=1
�Bi�J �−��J ��

∣∣∣∣
�∗+D]

=
∫ �

0
�

[∣∣∣∣
�∑

i=1
�Bi�J �−��J ��

∣∣∣∣
�∗+D

> x

]
dx

= O

(∫ �

1
x−��∗+:���∗+D� dx

)
<��

which finishes the proof of Lemma 6.8. �

Now, we proceed with proving Theorem 4.3.
Proof of Theorem 4.3. The proof is based on Corollary 2.4 in Goldie [32] for which it is sufficient to show

I � Ɛ

[∣∣∣∣
(
max

( �∑
i=1

Bi�J �� l

))�∗

− ���J ����∗
∣∣∣∣
]

<�� (38)

In order to prove the preceding inequality, we will use the following elementary inequality (see Equation (9.27)
in Goldie [32]) for x� y ≥ 0:

�x� − y�� ≤


�x− y��� 0< �≤ 1
��x− y��x�−1+ y�−1�� 1< � <��

(39)

Also, using the inequality �max�x� y�− z� ≤ y + �x− z� for x� y� z≥ 0, we know

I ≤ l�∗ + Ɛ

[∣∣∣∣
( �∑

i=1
Bi�J �

)�∗

−���J ����∗
∣∣∣∣
]
� (40)

First, we prove the case when 0< �∗ ≤ 1. By (39), (40), and Lemma 6.8, we obtain

I ≤ l�∗ + Ɛ

[∣∣∣∣
�∑

i=1
�Bi�J �−��J ��

∣∣∣∣
�∗]

<�� (41)

Next, we prove the case when �∗ > 1. Applying (39) and (40), we obtain

I ≤ l�∗ + Ɛ

[∣∣∣∣
( �∑

i=1
Bi�J ���∗ − ���J ����∗

∣∣∣∣
]

≤ l�∗ +�∗ Ɛ
[∣∣∣∣

�∑
i=1

�Bi�J �−��J ��

∣∣∣∣
∣∣∣∣

�∑
i=1

Bi�J �

∣∣∣∣
�∗−1]

+�∗ Ɛ
[∣∣∣∣

�∑
i=1

�Bi�J �−��J ��

∣∣∣∣
∣∣∣∣���J �

∣∣∣∣
�∗−1]

� l�∗ + I1+ I2� (42)

For I1, we use Hölder’s inequality to obtain, for 0< ' < 1,

I1 ≤ �∗ Ɛ
[∣∣∣∣

�∑
i=1

�Bi�J �−��J ��

∣∣∣∣
�∗/�1−'�]�1−'��∗

Ɛ

[( �∑
i=1

Bi�J �

)���∗−1��∗�/��∗+'−1�]��∗+'−1�/�∗

≤ �∗ Ɛ
[∣∣∣∣

�∑
i=1

�Bi�J �−��J ��

∣∣∣∣
�∗/�1−'�]�1−'�/�∗

Ɛ�����∗−1��∗�/��∗+'−1�
]��∗+'−1�/�∗

� (43)
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where the last inequality uses the fact that

�∑
i=1

Bi�J �≤max
( �∑

i=1
Bi�J �� l

)
d=��

Now, Theorem 3.1 implies that

Ɛ�����∗−1��∗�/��∗+'−1�
]

<��

which, using (43), choosing ' small enough, and applying Lemma 6.8, results in

I1 <�� (44)

Using the same argument as in proving (43) and noting that � and ��J � are independent from each other,
we obtain

I2 ≤ �∗ Ɛ
[∣∣∣∣

�∑
i=1

�Bi�J �−��J ��

∣∣∣∣
�∗/�1−'�]�1−'�/�∗

Ɛ�����∗−1��∗�/��∗+'−1����∗+'−1�/�∗

· Ɛ���J ����∗−1��∗�/��∗+'−1����∗+'−1��∗
<��

which, in conjunction with (44), proves (38) and finishes the proof of Theorem 4.3. �

6.3. Proofs of Theorems 5.2, 5.3, and 5.4.
Proof of Theorem 5.2. First, we prove the upper bound. For a fixed � that is in the neighborhood of �∗

and 0< ' < *, there exists n' such that Ɛ����0
n ��� < e�&���+'�n and e−�*−'�n > � �N ≥ n� > e−�*+'�n for all n≥ n'.

Because &��∗� = * and & ′��∗� > 0, we can choose :�' > 0 small enough such that &��∗ − :� − * + 2' =
−E < 0. Thus, noting that N is independent of ��0

n , we obtain

� ���0
n > x� =

�∑
n=1

� �N = n�� ���0
n > x�

≤
n'∑

n=1
� �N = n�� ���0

n > x�+
�∑

n=n'

� �N ≥ n�� ���0
n > x�

≤
n'∑

n=1
� �N = n�

Ɛ����0
n ��∗

�

x�∗ +
�∑

n=n'

e−�*−'�n Ɛ����0
n ��∗−:�

x�∗−:

≤ O

(
1

x�∗

)
+ 1

x�∗−:

�∑
n=n'

e−En�

which implies

lim
x→�

log� ���0
N > x�

logx
=−�∗ + :�

Passing :→ 0 in the preceding equality completes the proof of the upper bound.
Next, we prove the lower bound by applying the standard exponential change of measure argument. For

0< 3' < *, : > 2'/�*− 3'�, and logx > n', and recalling that e−�*−'�n > � �N ≥ n� > e−�*+'�n, we obtain, for
large x,

�

[
�1+ :� logx

& ′��∗�
≤N ≤ �1+ 2:� logx

& ′��∗�

]
≥ e−��*+'��1+:� logx�/�& ′��∗�� − e−��*−'��1+2:� logx�/�& ′��∗��

≥ �1− '�e−��*+'��1+:� logx��& ′��∗��

because �* + '��1+ :� < �* − '��1+ 2:� by our choice of :. This implies that there exists : ≤ @ ≤ 2: such
that nx = ��1+ @��logx�/& ′��∗�� satisfies

� �N = nx�≥
�1− '�& ′��∗�e−�*+'��1+:� logx/& ′��∗�

: logx
� (45)
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Therefore, using (45) and denoting log Ji by Xi, we obtain

� ���0
n > x� ≥ � �N = nx��

[ nx∑
i=1
log Ji > logx

]

≥ �1− '�& ′��∗�e−�*+'��1+:� logx/& ′��∗�

: logx
�

[ nx∑
i=1

Xi >
& ′��∗�
1+ :

nx

]
� (46)

Next, we perform an exponential change of measure for the probability on the right-hand side of (46).
Let � ∗

n be the probability measure on �n defined by the probability measure � of the stationary and ergodic
process �Xi�i≥1:

� ∗
n�dx1�    � dxn�= e�∗Sn−&n��∗� ��dx1�    � dxn��

where Sn =
∑n

i=1Xi and &n���� logƐ�e�Sn �, satisfying n−1&n���→&��� in the neighborhood of �∗. Thus,

�

[ n∑
i=1

Xi >
& ′��∗�
1+ :

n

]
= Ɛ∗

n

[
e−�∗Sn+&n��∗� 1

(
Sn >

& ′��∗�
1+ :

n

)]

≥ Ɛ∗
n

[
e−�∗Sn+&n��∗� 1

(∣∣∣∣Sn

n
−& ′��∗�

∣∣∣∣< & ′��∗�:
1+ :

)]

≥ e−�∗��1+2:�& ′��∗��/�1+:�n+&n��∗�� ∗
n

[∣∣∣∣Sn

n
−& ′��∗�

∣∣∣∣< & ′��∗�:
1+ :

]
� (47)

Then, by Claim 1 on p. 17 of Bucklew [14], we know that

� ∗
n

[∣∣∣∣Sn

n
−& ′��∗�

∣∣∣∣< & ′��∗�:
1+ :

]
→ 1 as x →��

which, using (46) and setting n= nx in (47), yields

lim
x→�

log� ���0
n > x�

logx
≥− �*+ '��1+ :�

& ′��∗�
− �∗�1+ 2:�2

1+ :
+ �1+ :�&��∗�

& ′��∗�
�

Finally, passing '�:→ 0 in the preceding equality and noting &��∗�= *, we prove the lower bound. �

Proof of Theorem 5.3. We give a constructive proof based on the connection (duality) between the
M/GI/1 queue and the geometrically stopped multiplicative process.
Consider the M/GI/1 queue with the service distribution � �S ≥ t� = �G�t�� t ≥ 0 and Poisson arrivals of

rate * = -/Ɛ�S��Ɛ�S� < �. Then, by the Pollaczeck-Khinchine formula (see, e.g., Theorem 5.7 on p. 237 of
Asmussen [5]), the stationary workload Q of this M/GI/1 queue is equal in distribution to

∑N
i=1Hi, where

N� �Hi�i≥1 are independent with � �N ≥ n�= -n�n≥ 0 and

� �Hi ≤ x�=
∫ x

0 � �S ≥ s�ds

Ɛ�S�
=
∫ x

0
�G�s�ds∫ �

0
�G�s�ds

= � �log Ji ≤ x�� x ≥ 0�

where the last equality follows from the assumption. Now, using the preceding observation, we show that there
exists an RMP such that M � = eQ satisfies

� �M � > x�= � �Q > logx�= �

[ N∑
i=1

Hi > logx

]
= �

[ N∑
i=1
log Ji > logx

]
= � ���0

N > x�� (48)

which proves the first claim of Theorem 5.3.
Next, using the additional assumptions of Theorem 5.3, it is easy to show that the Cramér-Lundberg condition

for the M/GI/1 queue Ɛ�e�∗S�*/�*+�∗� = 1 is satisfied and, thus, by applying Theorem 5.3 in Chapter XIII
and Theorem 5.7 in Chapter VIII of Asmussen [5]), we obtain

lim
x→�� �M � > x�x�∗ = �1−-�

∫ �
0

�G�y�dy

�∗-
∫ �
0 ye�∗y �G�y�dy

�

which, by (48), completes the proof. �
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Proof of Theorem 5.4. The second equality is implied by Theorem 5.2, and we only need to prove the
first one. We begin with proving the upper bound. Recalling the definition of �l� '

n in Lemma 6.2 and, for n≥ 1,
0< ', E < 1, choosing xE > z0 > Z0, we obtain

� �ZZ0
n > x� ≤ �

[
Z�xE�

n > x
]

≤ �

[
Z�xE�

n > x�
n−1⋂
i=0

���xE�� '
i ��

]
+�

[n−1⋃
i=0

��xE�� '
i

]

≤ � ��0
n�1+ '�n > x1−E�+ n� ���xE�� '

0 ��

which, by the independence of N and �Bi
n�j�� Jn�, implies

� �ZN > x�≤ �
[
�0

N �1+ '�N > x1−E
]+ Ɛ�N ��

[
��xE�� '
0

]
� (49)

Next, define a new process ��'
n =�0

n�1+ '�n�. It is easy to see that, for ' small enough, the sequence ��'
n�

satisfies n−1 logƐ���'
n���→&���+� log�1+ '�. Therefore, by Theorem 5.2, we obtain

lim
x→�

log� ��0
N �1+ '�N > x1−E�

logx
=−�1− E��∗

'� (50)

where �∗
' satisfies &��∗

'�+�∗
' log�1+ '�= 0. Combining (49), (50), and Lemma 6.3, we obtain

lim
x→�

log� �ZN > x�

logx
≤−�1− E��∗

'�

which, passing '�E → 0, completes the proof of the upper bound.
Now, we prove the lower bound. Let �Z1n� j� be i.i.d. copies of �Z1n� given the common modulating process �Jn�.

Then, noting that Zy
n

d=∑y
j=1Z1n� j for integer y and using the union bound, we derive, for 0< E < 1� n≥ 0,

� �Zn > x�≥ �xE�
xE

� �Z1n > x�≥ 1
xE

�
[
Z�xE�

n > x�xE�]�
Hence, recalling the definition of �l� '

n in Lemma 6.7, we obtain

� �Zn > x� ≥ 1
xE

�

[
Z�xE�

n > x�xE��
n−1⋂
i=0

(
��xE�� E

i

)�]

≥ 1
xE

(
� ��0

n�1− E�n > x�− n�
[
��xE�� E
0

])
�

which, by the independence of N and �Bi
n�j�� Jn�, yields

� �ZN > x� ≥ 1
xE

(
� ��0

N �1− E�N > x�− Ɛ�N ��
[
��xE��E
0

])
�

Then, by using the same approach as in the proof of the upper bound and Lemma 6.7, we can easily show that

lim
x→�

log� �ZN > x�

logx
≥−�∗�

Finally, combining the upper bound and the lower bound, we finish the proof. �
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[40] Jelenković, P. R., M. Olvera-Cravioto. 2010. Information ranking and power laws on trees. Adv. Appl. Probab. 42(4).
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