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ABSTRACT Real-time traffic processes, such as video, exhibit multiple
time scale characteristics, as well as subexponential first and second order
statistics. We present recent results on evaluating the asymptotic behavior
of a network multiplexer that is loaded with such processes.

1 Introduction

One of the key features in Asynchronous Transfer Mode (ATM) based
broadband networks is statistical multiplexing (SMUX). Most of the mul-
tiplexed entities are calls originating from various sources. In order to op-
erate properly, each of these calls has to satisfy some quality of service re-
quirements (QOS). QOS requirements are usually bounds on performance
measures characterizing the dynamic behavior of the multiplexed traffic.
The most basic model of a SMUX is an infinite buffer single server queue
with a work conserving scheduler. The fundamental performance measure
is the queue length distribution (P[Q > x]). Therefore, it is of utmost im-
portance to have feasible procedures for calculating this distribution under
reasonable assumptions on the arrival processes.
Numerous investigations have shown that the arrival processes (sources)

that arise in ATM networks (like voice and video) have a very complex
statistical structure; an especially troublesome characteristic is the high
statistical dependency (e.g., see [25, 30]). Modeling of this high depen-
dency usually leads to analytically very complex statistical characteristics,
typically making the associated evaluation of the queue length distribu-
tion intractable. However, because of the stringent QOS requirements in
ATM, only the tail of the queue length distribution in the domain of very
small probabilities is needed. This has motivated researchers to investigate
possible approximations of the asymptotic behavior of the queue length
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distribution. This is the main subject of our presentation.
More formally, given an infinite buffer single-server queue, let A = {At, t ≥

0}, C = {Ct, t ≥ 0}, be two discrete time, stationary, and ergodic processes
(on a probability space (Ω,F ,P)); At represents the amount of arrivals to
the queue at time t, and Ct is the server capacity at time t. Then, for any
initial random variable Q0, the following (Lindley’s) equation

Qt+1 = (Qt +At − Ct)
+ (1.1)

completely defines the queue length process {Qt, t ≥ 0}. Queues of this type
represent a natural model for ATM multiplexers. According to the classical
result of Loynes [31], if EAt < ECt (and {At, Ct, t ≥ 0} are stationary
and ergodic) {Qt} couples with the unique stationary solution {Qs

t} of the
recursion (1.1) for any initial condition Q0; in particular P[Qt ≥ x] →
P[Qs

0 ≥ x] as t → ∞ (for simplicity we will refer to Qs
t simply as Q).

In what follows the difference between the arrival and the service process

{Xt
def
= At − Ct, t ≥ 0} will be called the queue increment process.

Stationarity and ergodicity comprise the general framework for our cur-
rent exposition, and will be assumed in the rest of the paper. We will
see that under different assumptions on the distribution of the queue in-
crement process, the queue length asymptotics may exibit very different
behavior. Two major probabilistic categories of assumptions are the expo-
nential (Cramér) and subexponential. Informally, the exponential category
is represented with random variables whose moment generating functions
are finite in some positive neighborhood of zero, whereas the subexponen-
tial category consists of random variables whose m.g.f.s are infinite on the
positive real axis. This paper is organized according to this categorization.
In the first part of the paper (section 2) we examine the exponential

asymptotic queueing behavior in the presence of multiple time scales. We
demonstrate that in this case the dominant (or so called Equivalent Band-
with) multiplexer approximation may be very inaccurate. To try to alleviate
this problem, in section 2.1 we present an asymptotic expansion approach
for approximating all queue length probabilities for the case of structured
Markovian multiple time scale (decomposable) arrivals. In section 2.2 we
prove that for arrival processes that spend long-tailed (random) time in
their high activity states, the Equivalent Bandwith (EB) constant does not
depend on slow time scale statistics and is equal to the case when processes
stay in high activity states all of the time.
In the second part of the paper (section 3) we discuss the problem of

approximating the queue length probabilities under subexponential (non
Cramér) assumptions. We first give precise definitions and some intuition
behind the modeling of real time processes using subexponential statis-
tics. Some very recent asymptotic results for arrival processes with both
subexponential marginals and subexponetial autocorrelation function are
summarized in section 3.1. The paper is concluded in section 4.
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2 Multiple Time Scale Arrivals

Very often, arrival processes that arise in modern communication networks
exhibit a multiple time scale structure. A typical example is Variable Bit
Rate (VBR) video traffic. This traffic consists of ATM cells, that, when
grouped together, correspond to slices; slices are the building blocks for
frames, and finally, a large number of frames form scenes [30]. Each of these
VBR video building blocks (cells, slices, frames, scenes) belong to different
time scales, and are characterized by different statistics. Furthermore, on
an even larger time scale these building blocks form calls with their own
statistics. The call statistics themselves may change according to the time
of the day. Thus, from this brief analysis, we see that there is a wide
spectrum of time scales that are involved in modeling flows in broadband
networks. The total range is from a few nanoseconds (ns) to a few hours
(1hour = 3.6 1012ns). In this section we will attempt to answer some
questions on the queue length asymptotics in the presence of multiple time
scale arrivals and Gärtner-Ellis (Cramér) assumptions.
Using the Theory of Large Deviations (see [37]), under general assump-

tions of the Gärtner-Ellis (Cramér) type, one can show that

lim
x→∞

−
logP[Q > x]

x
= θ∗, (1.2)

for some positive constant θ∗, called the asymptotic decay rate (or the
equivalent bandwidth constant) [7, 17]. Also, in some cases, like finite
Markov arrival and service processes, the following stronger result holds:
P[Q > x] ∼ αe−θ∗x as x → ∞, where α and θ∗ are positive constants; θ∗

is the same as in (1.2). For simple arrival processes (like On-Off Markov
sources) it turns out that the constant α is of the order one. This led many
authors to believe that the simple approximation P[Q > x] ≈ e−θ∗x holds;
this approximation is commonly referred to as [9] the effective bandwidth
(EB) approximation (sometimes it is also called the dominant root ap-
proximation). Following this result admission control policies based on the
concept of effective bandwidth have been developed; see [7, 16, 18, 17, 27].
However, as discussed in [9], the EB approximation may often be very in-

accurate. This is usually the case when many sources (N) are multiplexed;
under this assumption it was shown in [9] that α ≈ e−γN for some con-
stant γ. A more formal analysis of the multiplexing of a large number of
sources and an improvement of the EB approximation is given in [14, 15].
Complementing the work done in [9], in [19] we have shown that EB ap-
proximation may be very inaccurate in the presence of multiple time scale
arrivals. Similar observations of inaccuracy of the EB approximation in the
presence of multiple time scales (in the context of nearly decomposable
Markov-modulated arrivals) were independently obtained in [35].
From a mathematical point of view, the inaccuracy of the EB approxi-

mation is due to fact that two processes that are “close” in the distribution
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sense may be far apart in the cumulant sense. Recall that a family of pro-
cesses is said to converge in distribution if all finite dimensional distribu-
tions of these processes converge in distribution. On the other hand, the
asymptotic decay rate constant θ∗ is completely determined by the cumu-
lant function ϕ(θ) which is a functional of the whole (infinite dimensional)
arrival process. Therefore, convergence in distribution of a family of pro-
cesses does not necessarily imply convergence of their cumulant functions.
A simple numerical example with two state Markov-modulated arrivals

that illustrate the preceding comments (on the disagreement of the two
convergence concepts) is given in [19]. The structure of the example is as
follows. The modulating chain is assumed to have two states (say {1, 2})
with transition probabilities p21 = ǫ, p12 = o(ǫ); when in state i = 1, 2 the
source is producing i.i.d. arrivals Y (j) such that in state 1 the source is
producing stochastically smaller arrivals than in state 2. Since, p12 = o(ǫ)
it is easy to see that the arrival process converges in distribution to the
stochastically smaller process Y (1), as ǫ → 0. However, its cumulant func-
tion converges to the cumulant function of the stochastically larger process
Y (2) (a formal argument that justifies this can be found in the proof of
Theorem 2.1). For different values of the paramenter ǫ queue probabilities
are presented in Figure 1 (solid lines). We can see that as ǫ → 0 the queue
distribution converges to the queue distribution when A ≡ Y (1) (repre-
sented by the common steep decline of the three solid lines on Figure 1),
but the tail always decays as if the arrival process is the stochastically
larger process A ≡ Y (2) (parallel lines). Also note that the EB approxi-
mation (dashed line on the same figure) is off by orders of magnitude from
the true probabilities. (For more details and more examples see [19].)
This idea was exploited in greater generality in [19], where, for a family

of arrival processes Aǫ, ǫ > 0, we give sufficient conditions under which the
queue length distribution satisfies the following extension of the logarithmic
asymptotic relation (1.2)

lim
ǫ→0

limx→∞

− logP[Qǫ ≥ x]

x
= θ∗,

for some θ∗ > 0; symbol lim denotes that either lim sup or lim inf is taken.
Using this result we have shown, under strict stability conditions, that the
asymptotic decay rate of an ATM multiplexer does not depend on the slow
time scale statistics (larger time units). However, the rate at which the
queue length distribution decreases for small buffer sizes could be much
larger than the asymptotic decay rate. This implies that an equivalent
bandwidth admission control policy (based only on θ∗) may significantly
underutilize the system resources, and that the slower timescales can be
very important here.
In the same paper it was experimentally confirmed that the histogram of

the queue distribution obtained by statistical multiplexing of 6 parts of the
Star Wars video sequence has a “polygonal shape” (multiple decay rates),
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typical for multiple time scale models, see Figure 2.
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FIGURE 2. Queue length distribution for multiplexing 6 parts of the Star Wars
video sequence on the slice level. The total length of the multiplexed sequence is
1,000,000 slices (≈ 23 min).

2.1 Queueing Analysis

Overall, as shown in [19], the EB approximation may give very inaccurate
results. Also, as pointed out in [9], the exact asymptotic single exponen-
tial approximation may be poor (the authors suggested a procedure for
approximating the queue length distribution with three exponentials). For
that reason we have investigated a perturbation theory based approach for
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approximating all queue probabilities in the presence of multiple time scale
(nearly decomposable) [20] arrival processes (a comprehensive treatment
of a discrete time queue with multiple time scale arrivals can be found in
[21]).
In that work we developed a recursive asymptotic expansion method for

approximating the queue length distribution and investigated the radius of
convergence of the queue asymptotic expansion series. The analysis focused
on “small” to “moderate” buffer sizes under the conditions of strictly stable
multiple time scale arrivals. For a class of examples we analytically deter-
mined the radius of convergence using methods of linear operator theory.
We also gave general sufficient conditions under which the radius converges
to zero; this showed roughly what situations have to be avoided for the
proposed method to work (well). We combined the asymptotic expansion
method with the EB approximation, and gave an approximation proce-
dure for the buffer probabilities for all buffer ranges. The procedure was
tested on extensive numerical examples. We illustrate this procedure in the
following numerical example.
The asymptotic expansion approximation with k = 0, 3 expansion terms

for multiplexing 8 heterogeneous On-Off sources is displayed in Figure 3
(capacity of the server was taken to be Ct ≡ 1). The combination of asymp-
totic expansion and EB approximation is plotted in Figure 4. We see that
the transition between the two approximations is smooth. Therefore, al-
though we have no error estimate in the EB domain, from the smoothness
of transition, we can expect that the approximation is excellent in the EB
domain as well. This smoothness of fit can be used as a heuristic criterion
for the overall accurateness of the approximation.
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FIGURE 3. Approximate “probabilities” obtained by using k expansion terms.

Let us now compare this approximative method with the classical exact
z-transform inversion. In order to obtain the exact solution, one must find
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the inverse of 64X64 z-transform matrix, then find 63 roots of the char-
acteristic polynomial in the unit circle; use these roots to obtain bound-
ary probabilities, and, at last, find the inverse z-transform of the queue
z-transform. We were not able to complete even the first step, i.e., find-
ing the z-transform matrix inverse after 24 hours, after which we stopped
the program. (Computation was attempted with Mathematica 2.2 on a
(150MHz, 64M RAM, 100M virtual memory)) SGI machine. However, us-
ing the same environment Mathematica + SGI, we obtained a three term
expansion approximation in less than an hour. This clearly shows the effi-
cacy of the asymptotic expansion method.
As all of the calculations were done with Mathematica 2.2, which is

known to be slow for intensive numerical problems, we expect that the
asymptotic expansion method when implemented in C will produce much
faster results. Therefore, we predict that this method will be very useful
for large practical problems that often appear in the fine tuning of ATM
admission controllers.
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FIGURE 4. Total queue distribution approximation, obtained by combination of
the asymptotic expansion method and EB approximation.

We next present a class of arrivals that also cannot be well approximated
with an EB approximation. Unlike the case of nearly decomposable Markov
arrivals, for which the asymptotic expansion method for approximating
queue probabilities is available, approximating the queue probabilities for
this type of arrivals remains an open problem.

2.2 Arrivals with Long-tailed High Activity Periods

In this section we will examine arrival processes that stay in their high
activity states for a long-tailed (random) period of time. For these arrivals
we prove that the EB constant does not depend on the modulating process
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statistics, and is the same as in the worst case when arrival processes are
in their high activity states all the time. As a device for modeling time
scales, we will consider modulating arrivals of the form At = Yt(Bt), where
intuitively Yt can be thought of as representing the fast time scale changes
in the arrival process, and Bt as representing the slow time scale changes.
More formally, let there be N traffic sources all modeled as stationary,

ergodic, discrete time stochastic processes {Ai
t, t ≥ 0, 1 ≤ i ≤ N}. For each

i, 1 ≤ i ≤ N , we define

Ai
t

def
= Y i

t (B
i
t),

where {Y i(1), . . . , Y i(Ki)},Ki ≥ 1 are stationary ergodic processes that
are stochastically ordered such that Y i(j) ≤st Y i(Ki), 1 ≤ j < Ki (for
stochastic ordering see [34], or [4], chapter 4). Further, the processes Bi =
{Bi

t, t ≥ 0} are stationary, ergodic, discrete time process with a finite state
space Si = {1, . . . ,Ki}. All processes Y

i(j), and Bi are assumed indepen-
dent of each other.
We assume that each modulating process Bi, once in its largest state

Ki, stays there for a random amount of time with a long-tailed distribu-
tion (see Definition 1.8 in the following section). Examples of long-tailed
distributions are Pareto, some Weibull, and lognormal; for more examples
see the following section. Note that long-tailed distributions decay more
slowly than any exponential; in particular, the moment generating func-
tion of a long-tailed distribution is infinite on the positive real axis.
In order to state our result we need the following Large Deviations The-

ory definitions. For θ ∈ R
+ let us define the cumulant function

ϕn(θ) ≡ ϕA
n (θ)

def
=

1

n
logE{exp[θ

n
∑

t=1

At]}, (1.3)

where n ≥ 1, and let

ϕ(θ)
def
= lim

n→∞

ϕn(θ). (1.4)

Furthermore, let us define

D
def
= {θ ≥ 0 : ϕ(θ) < ∞},

and make usual Large Deviation Assumptions:

A1 ϕ(θ) is strictly convex on D,

A2 ϕ(θ) is differentiable for all θ ∈ D.

For the sake of simplicity, in this section we will assume that the server
capacity process Ct ≡ c ∈ R

+. This is frequently the case in communication
networks.
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Theorem 2.1 Assume that for each i and θ ∈ R
+, ϕY i(Ki)(θ) exist, and

satisfies conditionsA1 andA2 with
∑N

i=1(ϕ
Y i(Ki))′(0) < c. Also, let πKi

=
P[Bi

t = Ki] > 0 for all i, and assume that the residual time of staying in
the high activity state Ki is long-tailed. Then

lim
x→∞

−
logP[Q > x]

x
= θ∗N , (1.5)

where θ∗N is the equivalent bandwidth constant. This constant, if it exists,

is the positive solution of the equation
∑N

i=1 ϕ
Y i(Ki)(θ) = θc; if the positive

solution of this equation does not exists, we set θ∗N = ∞.

Proof. Let TKi
be the residual time of staying in state Ki; From the as-

sumption that TKi
is long-tailed and Lemma 3.4 it follows that

lim
n→∞

logP[TKi
> n]

n
= 0. (1.6)

Now the theorem will follow from Theorem 3.9 in [7] if we prove that the
cumulant function of the arrival process i is equal to the cumulant function
of the process Y i(Ki), i.e., when the arrival process is in its highest activity
period Ki all the time.
First, from the stochastic ordering of Y i(k), 1 ≤ k ≤ Ki, and Strassen’s

theorem (see section 4.2.3 [4]) it follows that Y i(k) can be constructed on
the same probability space, such that Y i(j) ≤ Y i(Ki), 1 ≤ j < Ki, holds
along each sample path. From this, it follows that

ϕAi

(θ) ≤ ϕY i(Ki)(θ). (1.7)

The lower bound follows from

lim inf
T→∞

1

T
logE

[

eθ
∑

T

t=1
Ai

t

]

≥ lim inf
T→∞

1

T
log

(

πi
Ki

P[TKi
> T ]E

[

eθ
∑

T

t=1
Y i
t (Ki)

])

= lim inf
T→∞

log P[TKi
> T ]

T
+ ϕY i(Ki)(θ) = ϕY i(Ki)(θ),

where the last equality follows from (1.6). This proves that ϕAi

(θ) =

ϕY i(Ki)(θ), and the assertion of the theorem follows.2

This theorem is illustrated in the following numerical example.

Example 2.2 General on-off source. Let (the modulating process) Bt be
a {0, 1} valued process whose dynamics are described as follows. When in
state zero (off), Bt stays there for a geometrically distributed random time
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P[Q = x] from Example 1 for different values of Toff

period parameter p.

Toff , P[Toff = k] = (1−p)k−1p, k ∈ N. When in state one (on) the process
stays there for a generally distributed random time Ton (independent of
Toff). When in state zero the source is not producing anything (Y (0) ≡ 0),
and while in state one the source is producing i.i.d. arrivals with distribution
P[Y (1) = 2] = 1 − P[Y (1) = 0] = a. Assume that the capacity of the
server is c = 1. (Due to slightly simpler boundary conditions, all numerical
examples in this paper were done for the recursion Qt+1 = (Qt − 1)+ +At;
this recursion is asymptotically equivalent to (1.1).) From Theorem 2.1 it
follows that as long as Ton is long-tailed the equivalent bandwidth constant
is independent of the distribution of Ton and Toff (p). This is numerically
illustrated for different values of p in Figure 5; other parameters are taken
to be a = 2/5, P[Ton ≥ k] = k−3, 1 ≤ k ≤ 80, P[Ton ≥ k] = 0, k > 80.
From the figure we can observe that the queue length probabilities are
decreasing as p decreases. This is intuitively obvious since off periods are
getting larger. Also all the graphs eventually become parallel, as predicted
by the previous theorem.
Although this example (as well as all the other examples in this paper)

shows that the EB approximation is (too) conservative, it does not have to
be so in general. In the context of the on-off source model we have observed
that the EB approximation is too optimistic when the distribution of the
on period decays faster than an exponential. Although we were not able
to theoretically formulate this observation in greater generality, we believe
it to be equally important. We illustrate this insight numerically. Take
P[Ton ≥ k] = e−(k−1)2 , k = 1, 2, 3, 4, 5, P[Ton ≥ k] = 0, k > 5. Queue
probabilities for p = 1/10, a = 4/5 are presented in Figure 6. We see that
EB approximation is too optimistic. For more examples and details see
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[21]. Informally, if the input process “doesn’t look exponential” the queue
output is not exponential either.
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FIGURE 6. Comparison between the equivalent bandwidth approximation and
the true probabilities for the case when the distribution of the on period decreases
faster than an exponential.

3 Subexponential Arrivals

In this section our goal is to examine the asymptotics of the queue length
distribution when the Cramér type conditions are replaced by subexponen-
tial assumptions. The two largest non Cramér families of distributions are
long-tailed and subexponential distributions.

Definition 3.1 A distribution function F on [0,∞) is called long-tailed
(F ∈ L) if

lim
x→∞

1− F (x− y)

1− F (x)
= 1, y ∈ R. (1.8)

Definition 3.2 A distribution function F on [0,∞) is called subexponen-
tial (F ∈ S) if

lim
x→∞

1− F ∗2(x)

1− F (x)
= 2, (1.9)

where F ∗2 denotes the 2-nd convolution of F with itself, i.e., F ∗2(x) =
∫

[0,∞)
F (x− y)F (dy).
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The class of subexponential distributions was first introduced by Chis-
takov [8]. The definition is motivated by the simplification of the asymptotic
analysis of the convolution tails. Some examples of distribution functions
in S are:

(I) the Pareto family

F (x) = 1− (x− β + 1)−α,

x > β > 0, α > 0.

(II) the lognormal distribution

F (x) = Φ

(

log x− µ

σ

)

, µ ∈ R, σ > 0,

where Φ is the standard normal distribution.

(III) Weibull distribution

F (x) = 1− e−xβ

,

for 0 < β < 1.

(IV)

F (x) = e−x(logx)−a

,

for a > 0. This class was proven to be subexponential in [33].

(V) Benktander Type I distribution [28]

F (x) = 1− cx−a−1x−b log x(a+ 2b logx),

a > 0, b > 0, and c appropriately chosen.

(V) Benktander Type II distribution [28]

F (x) = 1− cax−(1−b) exp{−(a/b)xb},

a > 0, 0 < b < 1, and c appropriately chosen.

The general relation between S and L is the following.

Lemma 3.3 (Athrey and Ney, [3]) S ⊂ L.

The following lemma [8] clearly shows that for long-tailed distributions
Cramér type conditions are not satisfied.

Lemma 3.4 If F ∈ L then (1− F (x))eαx → ∞ as x → ∞, for all α > 0.
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An extensive treatment of subexponential distributions (and further ref-
erences) can be found in Cline [11, 12].
Before we proceed any further, let us try to understand some of the basic

properties of the sequence {Xn, n ≥ 1} of subexponentially distributed
i.i.d. random variables. One of the main sample path characteristics of
subexponential distributions follows from its definition [8], and that is

P[X1 +X2 + · · ·+Xn > x] ∼ nP[X1 > x], (1.10)

as x → ∞. This means that a sum of subexponential random variables
exceeds a large value x by having one of them excede this value x; in
terms of the appearance of the sample path of a sequence of subexponential
random variables, we note that the sequence exhibits isolated peaks.
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FIGURE 7. MPEG scene length duration (top); i.i.d. sample paths generated
with the Pareto (middle) and geometric distribution (bottom).

Such a sample path behavior characterizes the scene lengths of video
streams coded using the MPEG standard. Figure 7 shows a sequence of
scene length durations (top), and for rough comparison, the sample paths
generated by i.i.d. processes with Pareto (middle) and geometric distribu-
tion (bottom). Clearly, the scene length duration process has a subexpo-
nential character, as does the Pareto process, where the large peaks tend
to be isolated in time, as suggested by (1.10). This is unlike the case of the
geometrically distributed process. (For the description of MPEG data and
the definition of scenes see [24].)
In terms of video traffic, subexponentiality can also manifest itself in

the time-dependent (autocorrelation) structure. As shown in Figure 8, the
autocorrelation function of MPEG video (17 streams multiplexed) matches
the (subexponential) Pareto function f(t) = β/tα, for α = 0.513, β = 1.195.
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In the next section, we will summarize some of the tools available for
analyzing the queue behavior with subexponential arrivals.

3.1 Queueing Analysis

Assume that the queue increment process Xt is a sequence of i.i.d. ran-
dom variables with distribution function F , and At is independent of Ct.

Further, denote the integrated tail of F as F̂ (x)
def
=

∫

∞

x
[1 − F (t)]dt, and

define by F1(x) = m−1(1 − F̂ (x)), where m = F̂ (0). Similarly, in the rest
of the paper for any d.f. G, we define its corresponding Ĝ(x) and G1(x).
Then the following result on the waiting time distribution asymptotics of
the GI/GI/1 queue holds (see Veraverbeke [36]). Let K be the d.f. of At.

Theorem 3.5 (i) F1 ∈ S ⇐⇒ K1 ∈ S and limx→∞

F̂ (x)

K̂(x)
= 1.

(ii) If K,K1 ∈ S, then

P[Qt > x] ∼
1

ECt − EAt

∫

∞

x

P[At > u]du, as x → ∞.
(1.11)

This theorem was first proved in [32]; in [36] the same result was shown
using a random walk technique. Some of the first applications of long-tailed
distributions in queueing theory were made by Cohen [13], and Borovkov [6]
for functions of regular variations [26, 5]. Recent results on long-tailed and
subexponential asymptotics of a GI/GI/1 are given in [1, 38]. (Also, in [1]
further motivation is given for the application of long-tailed distributions
to communication networks.)
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The assumption that K,K1 ∈ S in the theorem above can be replaced
by an assumption on K only. (Note that K ∈ S does not necessarily imply
that K1 ∈ S.) This has been investigated in [28].

Definition 3.6 F ∈ S∗ if
∫ x

0

F̄ (x− y)

F̄ (x)
F̄ (y)dy → 2mF < ∞, as x → ∞,

where mF =
∫

∞

0
yF (dy).

This class has the property that S∗ ⊂ S, and that F ∈ S∗ ⇒ F1 ∈ S.
Sufficient conditions for F ∈ S∗ can be found in [29], where it was explicitly
shown that lognormal, Pareto, and certain Weibull distributions are in S∗.
An extension of Theorem 3.5 was investigated in [2]. In that paper the au-

thors established the subexponential asymptotics of a Markov-modulated
M/G/1 queue. However the constant of proportionality was left in a com-
plex form. Full extension of Theorem 3.5 to Markov-modulated G/G/1
queues was given in [23] (preliminary results were reported in [22]), where
it was proved that the queue length asymptotics are invariant under Markov
modulation. A precise statement of this result follows.
Let {Jt} be a stationary irreducible aperiodic Markov chain with a finite

state space E (say with N elements) and transition matrix P , and let {Xt}
be a sequence of real valued random variables. A stationary Markov process
{(Jt, Xt)} on E × R whose transition distribution depends only on the
first coordinate is called a Markov-modulated random walk (MMRW). This
process is completely defined by its transition matrix measure Fij(B) =
P[J1 = j,X1 ∈ B|J0 = i], and F = {Fij} (note that ‖F‖ = F ((−∞,∞)) =
P ). Let {(Jr

t , X
r
t )} denote the associated reversed process. This process

is determined by the set of transition measures F r
ij(B) = P[J0 = j,X1 ∈

B|J1 = i], with F r = {F r
ij} being the corresponding transition matrix

measure.
Let (Jt, At) and (Jt, Ct) be two MMRWs such that At and Ct are condi-

tionally independent given Jt−1, Jt; {At} and {Ct} are arrival and service
processes, respectively. Let K and D be the corresponding transition mea-
sures for these MMRWs, i.e., K = {Kij} = {P[A1 ∈ B, J1 = j|J0 = i]},
and D = {Dij} = {P[C1 ∈ B, J1 = j|J0 = i]}; the reversed transition mea-
sure for the arrival process is Kr = {Kr

ij} = {P[A1 ∈ B, J0 = j|J1 = i]},

B ∈ B(R). For any (matrix) measure H , we denote H̄(x) = H(x,∞). Then
the following theorem holds [23].

Theorem 3.7 Let limx→∞ Kr(x)/H̄(x) = W , as x → ∞, W = {Wij},Wij ∈
[0,∞), H(x) ∈ L, H1(x) ∈ S (or H ∈ S∗), with at least one Wij > 0. If
ECt > EAt, and P (= ‖K‖ = ‖D‖) is irreducible and aperiodic, then,

1

Ĥ(x)
Q̄(x) →

1

ECt − EAt

eπWe, as x → ∞, (1.12)
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where Q̄(x) is a column vector with its ith component equal to P[Qt >
x|Jt = i]. In particular,

P[Qt > x] ∼
1

ECt − EAt

∫

∞

x

P[At > u]du, as x → ∞.
(1.13)
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FIGURE 9. Graph of log10 P[Q = i] versus buffer size i from Example 2; the
solid line represents the true probabilities, and the dashed line represents the
approximation 2.603/i−4 .

An illustration of the preceding theorem is given in the following numer-
ical example.

Example 3.8 Consider a constant server queue with Ct = 1 and two state
(e.g. {0, 1}) Markov-modulated arrivals (source). The transition probabil-
ities for the modulating Markov chain are p01 = 1/3, p10 = 3/4. When
in state 0, the source is producing zero arrivals, and when in state 1,
the source is producing (independently of the previous state) arrivals ac-
cording to the distribution P[At = 0|Jt = 1] = 0.327144,P[At = 1|Jt =
1] = 0, and P[At = i|Jt = 1] = w/i5, w = 18.220859, 2 ≤ i ≤ 350;
ρ1 = E[At|Jt = 1] = 3/2. (Note that these are bounded arrivals.) Thus,
according to the previous theorem, the queue length distribution is propor-
tional to 1/i4, and the constant of proportionality is easily calculated to be
c = wπ1/(4(1 − ρ1π1)) = w/7 = 2.603. The comparison between the true
probabilities and the approximation c/i4 is shown in Figure 9.

Stationary subexponentially correlated arrivals. The models that we have
seen in this section exhibit weak exponential autocorrelation structure and
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dominant subexponential marginal distributions. For modeling subexpo-
nentially correlated arrivals in [23], we introduced the following class of
processes. (These processes are a particular case of semi Markov processes
[10].)
Consider a point process T = {T0 ≤ 0, Tn, n ≥ 1} such that Tn −

Tn−1, n ≥ 1 are i.i.d. with subexponential distribution function F . Fur-
ther, let Jn, n ≥ 0 be an irreducible aperiodic Markov Chain with finite
state space {1, . . . ,K}, transition matrix {Pij}, and stationary probability
distribution πi, 1 ≤ i ≤ K. In order to make this point process stationary
(see [10], section 9.3), we choose the residual time at zero until the first
jump to be distributed as an integrated tail of F , i.e., F1(t) = P[T1 ≤ t] =
mF

−1
∫

0,t
F̄ (u)du, mF = E(Tn − Tn−1).

A(t)

T0 T1 T2 T3 T4 T5 T6 t

FIGURE 10. A possible realization of a Markov chain embedded into a renewal
process.

Now we construct the following process:

At = Jn for Tn ≤ t < Tn+1, (1.14)

called a Markov Chain Embedded in a Stationary Subexponential Renewal
Process (MCESSR). A typical sample path of this process is given in Fig-
ure 10. It is well known that under fairly general conditions, a Markov
chain converges exponentially fast to its steady state distribution. These
MCESSR processes have the characteristic that they, unlike finite state
Markov chains, approach their steady state distributions with a subexpo-
nential rate. We illustrate this in the following example.

Example 3.9 Let F be a discrete distribution function with support [1, 1000],
P[T2 − T1 = 1] = 0.186532, and P[T2 − T1 = i] = w/i5, w = 22.028625,



1. A Network Multiplexer with Multiple Time Scale and Subexponential Arrivals 18

2 ≤ i ≤ 1000; choose a two state Markov chain with transition probabil-

ities p01 = 1/3 and p10 = 3/4. Then, the functions (di,1(t)
def
= (Pi[At =

1]−π1)(F̄1(t)(δi1−π1))
−1, i = 0, 1, converge to one as t → ∞, with subex-

ponential rate. This can be clearly seen in Figure 11.

0 100 200 300 400 500

time

0.6

0.8

1

1.2

1.4

d
0
1
 a

n
d
 d

1
0

FIGURE 11. Functions di,1(t)
def
= (Pi[At = 1] − π1)(F̄1(t)(δi1 − π1))

−1, i = 0, 1.
The graph shows that di,1(t) → 1 as t → 1.

Another characteristic of these processes is that their autocorrelation
functions, R(t), are asymptotically proportional to the integrated tail of
the sojourn time Tn − Tn−1 distribution, i.e. if F, F1 ∈ S, then

R(t) ∼ F̄1(t),

as t → ∞; this was formally proved in [23]. Combining these results, with
Theorem 3.7, it was proven in the same paper that when the fluid flow
queue is fed by these processes, its queue distribution is asymptotically
proportional to its autocorrelation function, i.e.,

P[Q > t] ∼ r R(t),

as t → ∞. To the best of our knowledge, this was the first rigorous result re-
lating the queue length distribution and the arrival process autocorrelation
function.

4 Concluding Remarks

We have demonstrated that real-time traffic processes such as video traffic
exhibit multiple time scale characteristics as well as subexponential first
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and second order statistics. A network multiplexer that is loaded by these
processes may manifest a distinct asymptotic behavior. We summarize re-
cent results on evaluating the asymptotic behavior of a network multiplexer
in the presence of subexponential and multiple time scale arrivals. It is left
to identify in practice when some of the asymptotic techniques presented
here can be applied to the design of efficient admission control policies in
ATM based broadband networks.

Acknowledgments: The authors wish to thank the anonymous reviewer for
his/her detailed list of editing suggestions.
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[20] P. R. Jelenković and A. A. Lazar. Evaluating the queue length dis-
tribution of an ATM multiplexer with multiple time scale arrivals. In
Proceedings of INFOCOM’96, San Francisco, California, March 1996.
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