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We provide a large deviation result for a random sum
∑Nx

n=0Xn, where Nx is a renewal counting process and

�Xn�n≥0 are i.i.d. random variables, independent of Nx , with a common distribution that belongs to a class of

square root insensitive distributions. Asymptotically, the tails of these distributions are heavier than e−
√
x and have

zero relative decrease in intervals of length
√
x, hence square root insensitive. Using this result we derive the

asymptotic characterization of the busy period distribution in the stable GI/G/1 queue with square root insensitive

service times; this characterization further implies that the tail behavior of the busy period exhibits a functional

change for distributions that are lighter than e−
√
x .

Key words : large deviation; random sum; busy period; GI/G/1 queue; subexponential distribution; square root

insensitivity

MSC2000 subject classification : Primary: 60K25

OR/MS subject classification : Primary: Queues/busy period analysis

History : Received June 3, 2002; revised June 27, 2003.

1. Introduction. We study probabilities of large deviations for random sums of vari-

ables that belong to a general subclass of subexponential distributions. This question is

central to understanding many important problems of probability theory and has been exten-

sively investigated over the years, originating with the classical results of Nagaev (1969,

1977), Heyde (1967), and Nagaev (1979). Recently, in Klüppelberg and Mikosch (1997),

the authors consider large deviations of random renewal sums of variables with polynomi-

ally decaying distributions; see also Klüppelberg and Mikosch (1997) for additional refer-

ences on large deviations of heavy-tailed sums. In this paper we explore the questions of

Klüppelberg and Mikosch (1997) for random variables with tails lighter than any polynomial

but heavier than e−
√
x.

The Weibull tail e−
√
x represents a natural condition, since easy arguments show that our

large deviation results do not hold for distributions lighter than e−
√
x. The criticality of e−

√
x

has appeared in a variety of settings, starting with early large deviation results of Nagaev

(1969) and more recent analyses in Asmussen et al. (1999), Foss and Korshunov (2000),

Jelenković and Momčilović (2003), and Jelenković et al. (forthcoming). This phenomenon

arises from a requirement that a distribution has to tolerate Gaussian deviations of order√
x which we refer to as square root insensitivity; see Jelenković et al. (forthcoming).

The next section contains the definitions and main results of the paper. In §3 we use

these results to examine the tail of the busy period in the GI/G/1 queue. The busy period is

one of the primary quantities of the fundamental GI/G/1 queueing model. Its understanding

is essential in addressing a long list of queueing systems, including the processor sharing

(Jelenković and Momčilović 2003), generalized processor sharing (Borst et al. 2003), cou-

pled processors (Borst et al. 2000), static priority (Abate and Whitt 1997), and fluid (Boxma

and Dumas 1998) queues, as well as in estimating ruin probabilities (Asmussen and Teugels

1996) in insurance risk theory. Furthermore, our large deviation results can be applied to

problems discussed in Klüppelberg and Mikosch (1997). The paper is concluded with the

proof of our main result in §4.
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2. Large deviations. This section contains the main results of the paper stated in Propo-

sition 1 and Theorem 1. We consider sums of independent and identically distributed (i.i.d.)

random variables �X�Xn� n ≥ 0� and focus on the following class of subexponential dis-

tributions ��, first introduced in Nagaev (1977). Definitions of related classes � and �
∗

are given in the appendix.

Definition 1. A nonnegative random variable X (or its hazard function) belongs to

class �� (subexponential concave) if its hazard function Q
x��− log � �X > x� is even-

tually concave, such that, Q
x�/ logx→� as x→� and for x≥ x0, �x≤ u≤ x,

Q
x�−Q
u�

Q
x�
≤ �

x− u

x
�

for some fixed x0 > 0, 0<�< 1 and 0<�< 1.

It is easy to see that random variables with hazard functions 
logx�� , � > 1, and x�, 0<

�< 1, i.e., lognormal and Weibull distributions, belong to ��. We note that the assumption

Q
x�/ logx→� ensures the finiteness of all moments for X. Basic properties of random

variables in �� were derived in Lemma 3.1 of Jelenković and Momčilović (2003) which,

for convenience, we restate here.

Throughout the paper, for any two real functions f 
x� and g
x�, we use the standard

notation f 
x�∼ g
x� as x→� to denote limx→� f 
x�/g
x�= 1.

Lemma 1. Let X ∈�� and Q be its hazard function; then

(i) Q
x�≤Q
u�
x/u�� for all x0 ≤ u≤ x;

(ii) � �X > x− x��∼ � �X > x� as x→� for any 0≤ �< 1−�;

(iii) X ∈�
∗ ⊆� ;

(iv) for any 0< � < 1 there is �> 0 such that for some �> 0 and sufficiently large x,

Q

�− ��x�+Q

1− ��x�≥ 
1+ ��Q
x��

Clearly, for �< 1/2, part (ii) of the preceding lemma implies � �X > x−√
x�∼ � �X > x�

as x→�; this was termed square root insensitivity in Jelenković et al. (forthcoming). Next,

let �A� Ai� i≥ 1� be a sequence of nonnegative i.i.d. random variables independent of �Xn�

with ƐA= �−1, ƐA2 <� and define Nx to be a counting process

(1) Nx =max

{

n�
n
∑

i=1
Ai < x

}

�

At this point we arrive at our main result, which will be used in §3 for deriving the

asymptotics of the busy period. The operators ∨ and ∧ denote maximum and minimum,

respectively.

Proposition 1. If ƐA2 <� and X ∈�� with �< 1/2, then, for any 0< �< 1/2−�

and � > 0, as x→�,

�

[ Nx
∑

n=0
Xn −�xƐX > �x�

Nx
∨

n=0
Xn ≤ �x− x1/2+�

]

= o
� �X > �x���

Proof. Presented in §4. �

Using the preceding proposition, the next large deviation theorem follows.

Theorem 1. If ƐA2 <� and X ∈�� with �< 1/2, then for � > 0, as x→�,

�

[ Nx
∑

n=0
Xn −�xƐX > �x

]

∼ �x� �X > �x��
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Remark 1. (i) Straightforward examination of the proof shows that the result holds

assuming that the first renewal interval is almost surely finite, A1 <�, while the remaining

intervals �Ai� i≥ 2� are i.i.d. with ƐA2
2 <�, and independent of A1.

(ii) Nx does not have to be a renewal as long as its right tail is exponentially bounded,

i.e., it is necessary that Nx satisfies the bound of Lemma 2 in §4.

(iii) Using the same arguments as in the following proof of the lower bound, one can

show that this result fails to hold for distributions with tails lighter than e−
√
x, i.e., the

distributions that are not square root insensitive.

Proof. The upper bound is a direct consequence of Proposition 1 and square root

insensitivity, i.e., Lemma 1(ii). In particular, for 0<�< 1/2−�,

�

[ Nx
∑

n=0
Xn −�xƐX > �x

]

≤ �

[ Nx
∨

n=0
Xn > �x− x1/2+�

]

+ �

[ Nx
∑

n=0
Xn −�xƐX > �x�

Nx
∨

n=0
Xn ≤ �x− x1/2+�

]

≤ 
ƐNx + 1�� �X > �x− x1/2+��+ o
� �X > �x���

as x →�; in the last inequality we used the union bound as well. In proving the lower

bound, for ! > 0 and x! � �x+ 2!ƐX
√
x we derive

�

[ Nx
∑

n=0
Xn −�xƐX > �x

]

≥ � �Nx ≥ ��x−!
√
x���

[ ��x−!
√
x�

∑

n=0
Xn −�xƐX > �x

]

(2)

≥ � �Nx ≥ ��x−!
√
x��
�x−!

√
x�� �X > x!�

· �
[ ��x−!

√
x�

∑

n=1
Xn −�xƐX > �x− x!�

��x−!
√
x�

∨

n=1
Xn ≤ x!

]

�

Since ƐX2 <�, by Markov’s inequality one has

�

[ ��x−!
√
x�

∨

n=1
Xn ≤ x!

]

= 
1− � �X > x!��
��x−!

√
x�

≥
(

1− ƐX2

x2!

)��x−!
√
x�

−→ 1�

as x→�. Taking lim as x→� in (2), using Lemma 1(ii), the Central Limit Theorem, the

preceding limit, and passing !→� yields the lower bound. �

3. Busy period of the GI/G/1 queue. Investigation of the busy period of the M/G/1

queue with exponentially bounded service distributions has a long history; for recent results

see Abate and Whitt (1997) and the references therein. The first analysis involving the

heavy-tailed regularly varying service times has appeared in de Meyer and Teugels (1980).

The derivation in de Meyer and Teugels (1980) made use of Karamata Tauberian Theory

(Bingham et al. 1987) and the Poisson arrival structure. In Zwart (2001) this result was

generalized for the GI/G/1 queue by developing a sample path technique that exploits the

relationship between the busy period and cycle maxima. Furthermore, it was shown in

Asmussen et al. (1999) that results obtained in de Meyer and Teugels (1980) and Zwart

(2001) do not hold for distributions lighter than e−
√
x.

Here we resolve the question that was left open in Zwart (2001) and Asmussen et al.

(1999) by deriving the tail of the busy period distribution for a class of subexponential
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service times with tails heavier than e−
√
x but lighter than any polynomial. In addition, our

result, in conjunction with Asmussen et al. (1999), shows that the asymptotic behavior of

the busy period exhibits a transition in its qualitative behavior depending on the relationship

of the service distribution to the Weibull tail e−
√
x.

Without loss of generality we assume that the first (0th) customer arrives to the empty

queue at time t = 0. Denote by Bi the service requirement of the ith customer and by Ai the

interarrival time between the ith and 
i+1�th customers. Random sequences �A�Ai� i≥ 0�

and �B�Bi� i ≥ 0� are respectively i.i.d. and independent of each other. Let ƐA2 <� and

Nx be a counting process as defined earlier in (1).

The amount of unfinished work in the queue at time t is denoted by Vt; for the exact

definition of Vt , see, e.g., Cohen (1982). The busy period is a stopping time at which the

queue becomes empty for the first time after t = 0, i.e.,

P = inf�t > 0 � Vt = 0��

The traffic load & is equal to ƐB/ƐA < 1. Let K be the number of customers served

during the busy period. Note that, since
∑K−1

i=0 Bi = P , by Wald’s lemma, ƐK = ƐP/ƐB.

The expected number of customers served during the busy period can be also represented

as (Cohen 1982, p. 286):

ƐK = e
∑�

n=1
1/n�� �Sn>0��

where Sn =
∑n

i=1
Bi −Ai�. In the case of the M/G/1 queue ƐK = 
1−&�−1.

Theorem 2. If ƐA2 <� and B ∈�� with �< 1/2, then as x→�,

� �P > x�∼ ƐK� �B > 
1−&�x��

Remark 2. It is interesting to observe that the asymptotic behavior of the busy period

in the M/G/� queue is the same for the whole class of subexponential distributions, irre-

spective of the relationship of the service distribution to e−
√
x, as proved in Theorem 3.5 of

Jelenković and Lazar (1999).

Proof. The proof of the lower bound was given earlier in Zwart (2001). Thus, it remains

to prove the upper bound. Denote by S the cycle maximum, i.e., S = sup�Vt� 0 ≤ t ≤ P�.

Then, following the approach in Zwart (2001), for some 0<�< 1/2−�,

� �P > x� ≤ � �S > 
1−&�x− x1/2+��+ � �P > x�S ≤ 
1−&�x− x1/2+��(3)

≤ � �S > 
1−&�x− x1/2+��+ �

[ Nx
∑

i=0
Bi > x�

Nx
∨

i=0
Bi ≤ 
1−&�x− x1/2+�

]

�

where the second inequality follows from the facts that: (i) �S ≤ x� implies �Bi ≤ x� for

all 0 ≤ i ≤ NP , (ii) NP ≥ Nx on �P > x� and (iii) �P > x� implies, by work conservation,

that �
∑Nx

i=0 Bi > x�. Next, for B ∈ �
∗ the distribution of the cycle maximum S is shown

(Asmussen 1998) to satisfy (see also Asmussen et al. 2002), � �S > x�∼ ƐK� �B > x� as

x→�. Hence, using this fact and Lemma 1(ii), (iii), the first term in (3) satisfies

lim
x→�

� �S > 
1−&�x− x1/2+��

� �B > 
1−&�x�
≤ ƐK�

Thus, to complete the proof, one needs to show that the second term in (3) is

o
� �B > 
1−&�x�� as x→�. However, that is immediate from Proposition 1. �
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4. Proof of Proposition 1. The following uniform bounds play an important role in

the proof of Proposition 1. In this paper C denotes a sufficiently large positive constant,

while c represents a sufficiently small positive constant. The values of C and c may vary

in different places, i.e., C/2=C, C2 =C, C + 1=C, etc.

Theorem 3. Let Q ∈�� and � �X > x�≤Cxe−Q
x�. Then

(i) For all x and u,

�

[ u
∑

i=1
Xi − uƐX > x

]

≤C
(

e−cx2/u + ue−
1/2�Q
x�
)

�

(ii) For any positive integer k there exists 0<� < 1 such that for all 1≤ n≤Cx,

�

[ n
∑

i=1
Xi ∧�x− nƐX > x

]

≤Ce−kQ
x��

Proof. See Theorem 3.2 of Jelenković and Momčilović (2003). �

Lemma 2. Let Nx be defined by (1) with ƐA2 <�. Then, there exists � > 0 such that

for all x and 0≤ u≤ �x,

� �Nx −�x > u�≤Ce−cu2/x�

Proof. See Lemma 6 of Jelenković et al. (forthcoming). �

Lemma 3. Let Q be the hazard function of X ∈��. There exists �0 > 0 such that for

any 0<�< �0, all n�x≥ �n and u≤ 
1− ��x, the following inequality holds:

�

[ n
∑

i=1
Xi ∧ u− nƐX > x

]

≤Ce−
1+��Q
x��

Proof. In view of Theorem 3(ii), it is sufficient to consider only �x ≤ u ≤ 
1− ��x

since otherwise the statement holds. Markov’s inequality yields for s > 0,

(4) �

[ n
∑

i=1
Xi ∧ u− nƐX > x

]

≤ e−s
nƐX+x�
Ɛes
X∧u��n�

Next, for some 1< - < ��−1 we set s = -Q
x�/x and estimate the expectation in (4) as a

sum of three terms:

Ɛes
X∧u� =
∫ 1/s

0

esz d� �X ≤ z�+
∫ u

1/s
esz d� �X ≤ z�+ esu� �X > u�(5)

≤ 1+ sƐX+ s2ƐX2 +
∫ u

1/s
esz d� �X ≤ z�+ esu−Q
u��

where we used ex ≤ 1+ x+ x2 on �0�1�. Now, the assumption on the range of u implies

�≤ u/x≤ 1− � and, hence, by the choice of s,

su−Q
u� = -
u

x
Q
x�−Q
u�(6)

≤
[

-
u

x
−
(

u

x

)� ]

Q
x� <−cQ
x��

where the second inequality is due to Lemma 1(i) and the last bound follows from the

range of - . The last inequality, for all u in the assumed interval, leads to esu−Q
u� ≤
s2s−2e−cQ
x� ≤Cs2 (recall that by definition Q
x�/ logx→� as x→�). On the other hand,
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integration by parts, Markov’s inequality and concavity of Q
·� result in a bound on the
integral in (5):

∫ u

1/s
esz d� �X ≤ z� ≤ e� �X > 1/s�+ s

∫ u

1/s
esz−Q
z� dz

≤ s2eƐX2 +Csx
esu−Q
u� + e1−Q
1/s��

≤ Cs2
(

1+ x2
esu−Q
u� + e1−Q
1/s��
)

0

note that the concavity of any f 
x�≥ 0 implies supa≤x≤b f 
x�≤ f 
a�+ f 
b�. Hence, due
to (6), the choice of s and X ∈�� (Q
x�/ logx→� and Q
x�=O
x��, 0<�< 1), the
right-hand side of the preceding inequality is bounded by Cs2. The obtained bounds, in
connection with (5), yield Ɛes
X∧u� ≤ 1+ sƐX+C∗s2, for some constant C∗ and all u in the
given interval. Then, by replacing this estimate in (4), using 1+ x ≤ ex for all x > 0 and
the definition of s, we obtain

�

[ n
∑

i=1
Xi ∧ u− nƐX > x

]

≤ e−sx+nC∗s2

≤ e−-Q
x��1−
n/x�C∗-Q
x�/x� ≤Ce−
1+��Q
x��

since - > 1 and Q
x�/ logx→� as x→�; this concludes the proof. �

Finally, we provide the proof of Proposition 1.
Proof of Proposition 1. In order to simplify the notation we define

f � �

[ Nx
∑

i=0
Xi −�xƐX > �x�

Nx
∨

i=0
Xi ≤ �x− x1/2+�

]

�

The following straightforward identity represents the basis of our analysis

Nx
∑

i=0
Xi =

Nx
∑

i=0

[

Xi ∧
( Nx
∨

j=0
Xj

)]

=
Nx
∨

j=0

{ Nx
∑

i=0
Xi ∧Xj

}

�

This identity, the union bound, and conditioning on X0 yield

f ≤ �

[ Nx
∨

j=0

{ Nx
∑

i=0
Xi ∧Xj1�Xj≤�x−x1/2+��

}

−�xƐX > �x

]

(7)

≤ Cx�

[ Nx
∑

i=0
Xi ∧X01�X0≤�x−x1/2+�� −�xƐX > �x

]

+ � �Nx >Cx�

≤ Cx
∫ �x−x1/2+�

0

�

[ Nx
∑

i=1
Xi ∧ u−�xƐX > �x− u

]

d� �X ≤ u�+ o
� �X > �x���

as x →�; the last inequality is also due to Lemma 2 and Lemma 1(i). Next, we upper
bound the integrand in the preceding inequality for all u in the interval of integration.
To ease the notation, let g
x�u� � 
�x − u�x−�/2. Then, for any 0 < � < 1/2 and � > 0,
invoking Lemma 3 (when u≤ ��x) and Theorem 3(i) (when u> ��x) yields

�

[ Nx
∑

i=1
Xi ∧ u−�xƐX > �x− u

]

(8)

≤ �

[ ��x+g
x�u��
∑

i=1
Xi ∧ u−�xƐX > �x− u

]

+ � �Nx > ��x+ g
x�u���

≤C1�u≤��x�e
−Q
�x−u� +C1�u>��x�
e

−c
�x−u�2/x + xe−
1/2�Q
�x−u−g
x�u�ƐX−ƐX��

+ � �Nx > ��x+ g
x�u���
≤C1�u≤��x�e

−Q
�x−u� +C1�u>��x�
e
−c
�x−u�2/x + xe−

1−��/2�Q
�x−u��+Ce−cg2
x�u�/x�
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where in the last inequality we used Lemma 1(i) for the second term inside the brackets

and Lemma 2 for the last term. Now, note that in (8), by the definition of g
x�u�, the first
term in the brackets and the last term are ordered as

e−c
�x−u�2/x ≤Ce−c
�x−u�2/x1+� =Ce−cg2
x�u�/x0

hence, these two terms can be combined into one. Therefore, in conjunction with (8) and (7),

the upper bound on f is as follows:

f ≤ Cx
∫ �x−x1/2+�

0

(

e−c
�x−u�2/x1+�+1�u>��x�xe
−

1−��/2�Q
�x−u�+1�u≤��x�e

−Q
�x−u�
)

d� �X≤u�(9)

+o
� �X>�x��

� f1+f2+f3+o
� �X>�x��� as x→��

Integration by parts yields a bound on f1:

f1 ≤ Cxe−cx1−� +Cx
∫ �x−x1/2+�

0

� �X > u� e−c
�x−u�2/x1+�

du

= Cxe−cx1−� +Cxe−Q
�x�
∫ �x−x1/2+�

0

eQ
�x�−Q
u�−c
�x−u�2/x1+�

du�

To establish f1 = o
� �X > �x��, in view of Lemma 1(i), it is enough to show that the

exponent in the last integral is upper bounded by −cx� for all given u. To this end, by

definition of �� and Lemma 1(i), for all large x,

Q
�x�−Q
u�− c

�x− u�2

x1+�
≤ Cx�

�x− u

x
− c


�x− u�2

x1+�
(10)

≤ Cx−
1/2−��+� − cx��

since for all x large enough the right-hand side of the first inequality is increasing in u and

u≤ �x− x1/2+�. Now, since �< 1/2−� by assumption, it follows that (10) is bounded by

−cx�.
As far as f2 is concerned, discretizing the integral results in

f2 ≤ Cx2
�
1−���x1/2−��

∑

i=1

∫ �x−ix1/2+�

�x−
i+1�x1/2+�
e−

1−��/2�Q
�x−u� d� �X ≤ u�

≤ Cx2
�
1−���x1/2−��

∑

i=1
e−

1−��/2�Q
ix1/2+��−Q
�x−
i+1�x1/2+��

≤ Cx5/2−�e−

1−��/2�Q
x1/2+��−Q
�x−2x1/2+�� ∨Cx5/2−�e−

1−��/2�Q

1−���x�−Q
��x−2x1/2+���

where the last inequality follows from the concavity property of Q
·�; i.e., the maximum
of all summands is equal to either the first or the last summand. Thus, Lemma 1(i) and (ii)

imply that the first term in the maximum is o
� �X > �x�� as x→�; the exponent of the

second term is by Lemma 1(i) bounded by (for large x)

1− �

2
Q

1− ���x�+Q
��x− 2x1/2+��≥Q
�x�

(

1− �

2

1− ��� + 
�− ���

)

�

Next, it is easy to verify that for any � > 
3/5�2 (recall that � < 1/2 by assumption), we

can choose �> 0 sufficiently small such that 

1− ��/2�
1− ��� + 
�−��� > 1, and, thus

we have f2 = o
� �X > �x�� as x→�.
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Finally, for some 5> 0, we estimate

f3 ≤ Cx
���/5�
∑

i=1

∫ i5x


i−1�5x
e−Q
�x−u� d� �X ≤ u�

≤ Cx
���/5�
∑

i=1
e−Q
�x−i5x�−Q

i−1�5x�

and from Lemma 1(iv) it follows that, if 5 is chosen to be sufficiently small, then each

summand in the preceding sum is o
� �X > �x�� as x→�; therefore, f3 = o
� �X > �x��

as x→�.

Replacing the preceding bounds on f1, f2, and f3 in (9) yields the proof. �

Appendix.

Definition 2. A nonnegative random variable X is called subexponential, X ∈� , if

lim
x→�

� �X1 +X2 > x�

� �X > x�
= 2�

where X1 and X2 are independent copies of X.

Definition 3. A nonnegative random variable X belongs to class �
∗, X ∈ �

∗, if X

has finite expectation and

lim
x→�

∫ x

0

� �X > x− y�

� �X > x�
� �X > y�dy = 2ƐX�
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Jelenković, P., P. Momčilović. 2003. Large deviation analysis of subexponential waiting times in a processor

sharing queue. Math. Oper. Res. 28(3) 587–608.
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