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Abstract— Consider a generic data unit of random sizelL that
needs to be transmitted over a channel of unit capacity. The
channel dynamics is modeled as an on-off procedgA;, U;)}i>1
with alternating independent periods when channel is avaible
A; and unavailable U;, respectively. During each period of
time that the channel becomes available, sayl;, we attempt
to transmit the data unit. If L < A;, the transmission was
considered successful; otherwise, we wait for the next peri
Aiy1 when the channel is available and attempt to retransmit
the data from the beginning. We study the asymptotic properies
of the total transmission time 7" and number of retransmissions
N until the data is successfully transmitted.

In recent studies [1], [2], it was proved that the waiting time
T follows a power law when the distributions of L and A; are of
an exponential type, e.g., Gamma distribution. In this pape we
show that the distributions of N and T follow power laws with
exponenta as long aslog P[L > z] =~ alogP[A; > z] for large
x. Hence, it may appear surprising that we obtain power law
distributions irrespective of how heavy or light the distributions
of L and A; may be. In particular, both L and A; can decay
faster than any exponential, which we term superexponentia
For example, if L and A; are Gaussian with variancess? and
0%, respectively, thenN and T have power law distributions with
exponenta = ¢%/0%; note that, if 0% < o}, the transmission
time has an infinite mean and, thus, the system is unstable.

The preceding model, as recognized in [1], describes a vatje
of situations where failures require jobs to restart from the
beginning. Here, we identify that this model also provides a
new mechanism for explaining the frequently observed power
law phenomenon in data networks. Specifically, we argue that
it may imply the power laws on both the application as well
as the data link layer, where variable-sized documents andI®)
packets are transmitted, respectively. We discuss the enggering
ramifications of our observations, especially in the contexof
wireless ad hoc and sensor networks where channel failuresea
frequent. Furthermore, our results provide an easily compuable
benchmark for measuring the matching between the data and
channel characteristics that permits/prevents satisfacry trans-
mission.

I. INTRODUCTION

middle of the download the connection breaks and one has
to restart the download from the beginning. Similar protdem
might arise in transmitting (IP) packets of variable lengter

the data link layer. Here, in case of an error, the packet is
resent automatically, which is known as the Automatic Repea
reQuest (ARQ) protocol (e.g., see Section 2.4 of [3]). Bdth o
the preceding problems are especially important in thelesse
environment, e.g., for wireless ad hoc and sensor networks,
where frequent channel failures occur due to a variety of
reasons, including interference, signal fading, contentvith
other nodes, multipath effects, obstructions, node mgpind
other changes in the environment [4].

We use the following generic channel with failures to model
the preceding situations. The channel dynamics is destebe
an on-off procesg(A4;, U;)}i>1 with alternating independent
periods when channel is availabl¢; and unavailablelU;,
respectively. In each period of time that the channel become
available, sayA;, we attempt to transmit the data unit of
random sizeL. If L < A;, we say that the transmission was
successful; otherwise, we wait for the next peridd ; when
the channel is available and attempt to retransmit the data
from the beginning. We study the asymptotic properties ef th
distributions of the total transmission tin¥e and number of
retransmissiond/, for the precise definitions of these variables
and the model, see Section II.

The preceding model was introduced and studied in [5] and,
apart from the already mentioned applications in communica
tions, it represents a generic model for other situationsreh
jobs have to restart from the beginning after a failure. Iswa
first recognized in [1] that this model results in power laws
when the distributions of. and A; have a matrix exponential
representation. The more recent study in [2] rigorouslyeso
that the distribution ofl" is asymptotically a power law when
the variables., and A; are of exponential type (e.g., Gamma
distribution).

In this paper, we study a problem of transmitting a generic In this paper, we discover that the distributions fand

data unit of random sizd. over a channel with failures.

T follow power laws with the same exponentas long as

For example, most of us have experienced difficulties witeg P[L > 2] ~ alogP[A; > z] for largex. The recognition
downloading files/Web pages from the Internet where in thRat this relative condition between the distributions lof
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and A, is the primary cause of power laws, rather than any
absolute assumptions (e.g., exponential), representsobne
the main novelties of our approach. Hence, maybe somewhat
surprisingly, one obtains power law distributions irrespe



of how heavy or light the distributions of and A; are, file from the Internet. This issue has been already recognize
allowing both L and A, to decay faster than any exponentialin practice where software for downloading was developat th
which we term superexponential; see Theorems 2 and 3wduld save the intermediate data (checkpoints) and resiene t
Section llI-A. In particular, ifL and A; take absolute values download from the point when the connection was broken.
of Gaussian random variables with variances and 0%, However, our results emphasize that, in the presence of fre-
respectively, thenN and 7' have power law distributions quently failing connections, the long delays may arise even
with exponenta = 0% /0%; note that, ifc < o7, the when downloading relatively small documents. Hence, we
transmission time has an infinite mean and, thus, the systenaigue that one may need to adopt the application layer sadtwa
unstable. Furthermore, in Section IlI-B, we refine our rsulfor the wireless environment by introducing checkpointsrev
by establishing the exact power law asymptotics in Theo#mgor small to moderate size documents. We also discuss pessib
and 5. Finally, in Section IlI-C, we show that, if the distitton  large delays that may result on the data link layer due to
of L has an infinite support®(L > x| > 0 for all x > 0), (IP) packet variability and channel failures. We assumé tha
the distributions ofV andT are subexponential (decay slowein the physical layer, the codewords, which represent the
than any exponential) regardless of what the distributfoA 0 basic units of packet transmission, are much smaller than
may be. the maximum size of the packet. We believe that this is

Power laws, and in general heavy tails, are frequentdyrealistic situation for sensor networks, where comptidat
observed in computer communication networks and systerneding schemes are unlikely since the nodes have very timite
The heavy-tailed transmission delays are typically aitéd to computational power. In this context, our results show that
power law distributions of files/documents on the intereed,, the number of retransmissions could be power law, which
see [6] and the references therein. Hence, transmittingethehallenges the traditional model that assumes a geometric
heavy-tailed objects over communication channels (thae hanumber of retransmissions. We discuss possible solutions t
bounded capacity) naturally results in power law delayshis alleviate this problem, such as breaking large packets into
paper, we recognize that the power laws can result entirayaller units. Obviously there is a tradeoff between thessiz
from the retransmissions, a commonly used component aff these newly created packets and the throughput since, if
communication protocols, even if the documents as well #se packets are too small, they will mostly contain the packe
the channel characteristics are light-tailed (i.e., baghioy an headers and, thus, very little useful information.
exponential)

In Section 1V, we illustrate our theoretical results witmsi- [I. DESCRIPTION OF THECHANNEL
lation and numerical experiments. In particular, we emizieas
the characteristics of the studied channel that may not ben this section, we formally describe our model and provide
immediately apparent from our theorems. For example, thecessary definitions and notation.
relative logarithmic condition that we identify as a cause o Let L denote the random length of a generic data unit
power laws is based on high order distributional propertiggacket). Without loss of generality, we assume that thecha
and, thus, it is quite insensitive to the mean values ahdA;. nel is of unit capacity. The channel dynamics is modeled as
Interestingly enough, we show that, even if the expected dain on-off procesg(A;, U;)};>1 with alternating independent
size EL is much smaller than the average length of channgériods when channel is availablé; and unavailablel;,
availability EA;, the transmission delays can be power lawgspectively. In each period of time that the channel besome
with infinite expected delays and number of retransmissiongailable, say4;, we attempt to transmit the data unit and,
Furthermore, in practice, the distribution of documerdtekets if I < A;, we say that the transmission was successful;
might have a bounded support. We show that this situation magherwise, we wait for the next perioti;  ; when the channel
result in distributions of” and N exhibiting power laws in the is available and attempt to retransmit the data from the
main body, i.e., essentially truncated power law distitng. beginning. A sketch of the model depicting the system is
To this end, it is also important to note that the power lawmadrawn in Figure 1.
body have an exponentiated (stretched) support in relation
the support ofL. and, thus, may result in very long, although,  dataunit{L} —=
exponentially bounded delays. L ][] channel with failurels

From an engineering perspective, our main discovery is the {(Ai, Ui)}
matching between the statistical characteristics of tremohl
and transmitted data (packets). Basicallylog P[4 > z| >
logP[L > z] or logP[A > z] < logP[L > «z], then one
can expect good or bad (infinite mean) delay performance.
We discuss these and other engineering implications of our
results in Section V. In particular, we focus on the wireless
environment where channel/connection failures are frejue
As stated earlier, most of us have been inconvenienced when
the connections would brake while we are downloading a large Fig. 1. Packets sent over channels with failures

resend




Assume tha{U,U,};>1 and{A4, A;};,>1 are two mutually A. Logarithmic Power Law Asymptotics

independent sequences of i.i.d. random variables. In this subsection we present the logarithmic asymptotics

Def!nmon L The total nu_mber_of (re)transmissions for 3or the number of transmissions and the total transmission
generic data unit of lengtlh is defined as time in Theorem 2 and Theorem 3, respectively. These results
N 2inf{n: A, > L}, ?mply that logarithmic scale. iS. the right measure of the
interplay between the data unit size and the lengths of diann
and, the total transmission time for the data unit is defireed availability. The proof of Theorem 3 is deferred to Section V
Theorem 2:If there existsa > 0, such that,

N—-1
N LT -
T= Z(A1+Ul)+L- - log F'(x) . @)
=1 —— =,
We use the following notations to denote the complementary v—eo log G(z)
cumulative distribution functions fod and L respectively,  then, we have
A A
G(z) £ P[A > z], lim log ]Il”([)JgV > n] o 3)
n—oo n
and B Theorem 3:Under the same condition of Theorem 2 and
F(z) £ P[L > z]. E[(U + A)1To+?] < oo for somed > 0, then,
As already stated in the introduction, a problem of this type T PIT >t Ca @)

(with U; = 0), in a different application context, was defined n—oo  logt T
and examined in [5]. It was first recognized in [1] that this Remark 1:These two theorems indicate that the distribution

model can result in power laws when the distributionsZof tails of the number of transmissions and total transmistine

and A have a matrix exponential representation. The mofé€ essentially power laws. Thus, the system can exhibiit hig

recent study in [2] rigorously proves that the distributmfri’  variations and possible instability, e.g., wher< o < 2, the

is asymptotically a power law when the variablesind A are tra_nsmission time has an inf_in_ite variance and, whena <

of exponential type (e.g., Gamma distribution). The follogy 1. it does not even have a finite mean.

theorem is quoted from Theorem 7 in [2]. In this paper we use Remark 2:1t is easy to understand that if the data sizes

the following standard notations. For any two real funcsior(€.g., files, packets) follow heavy-tailed distributiotts total

a(t) andb(t) and fixedt, € R U {oc}, we usea(t) ~ b(t) transmission time is also heavy-tailed. However, from ¢hes

ast — to to denotelim;_,[a(t)/b(t)] = 1. Similarly, we two theorems, we see that even if the distributions of the dat

say thata(t) > b(t) ast — to if lim, , a(t)/b(t) > 1; and channel characteristics are highly concentrated)igbt-

a(t) < b(t) has a complementary definition. tailed (e.g., see Corollary 1 below), once they are asymptot
Theorem 1 (AFLS06)Assume thatG(z) = e #* and ically p_roportional on the ngar?thmic scale, the heavijeth

F(z) ~ (a/8)zbe=% whereb € R anda, 3,6 > 0, U; = 0, transmission delays can still arise.

then, 1) Proof of Theorem 2Notice that the number of retrans-

BT > f] ~ a* (a) (otbe1) (1Ogat)b’ ) missions is geometrically distributed given the packet diz
' PNV >n | L] = (1-G(L)",
wherea = /0.

In the following section we will derive more general resulténd, therefore,
of this type. The preceding theorem will be a direct conse- _ N
guence of our Theorem 5. The main novelty of our results PIN >n] = E[(1 - G(L))"]. ®)
is that it reveals that power law arises from the relativaigal
between the hazard functions bfand 4, and does not depend
on the absolute forms aff and F'. Hence,G and F' can have
arbitrarily heavy or light tails, as long as, roughly speaki
their hazard functions are asymptotically proportional, esee

First, let us establish an upper bound. The condition de-
scribed in (2) implies that for an§ < e < 1/«, there exists
., such that for allz > z., we haveF(z)=*c < G(z) <
F(z)=*. Hence,

equation (2) in the forthcoming Theorem 2. E[(1 - G(L))"] = E[(1 — G(L))"1(L > z.)]
l1l. MAIN RESULTS +E[(1-G(L))"1(L < z.)]
This section presents our main results. Here, we assume <E [(1 - F(L)a+€) } + (1 - G(Ie))n
that F'(z) is a continuous function with support df, co). aF(L)A e _ "
The same results can be derived whefx) is lattice valued <E [e } + (1= G(z)".

which we will prove in the extended version of this paper [7]. B B
However, some of the examples in Section IV will be baseSince F'(z) is continuousF'(L) is a uniform random variable
on discrete valued random variables. (denoted bylU) between0 and1 (e.g., see Proposition 2.1 in



Chapter 10 of [8]), we derive
PN >n] <E [e‘"U‘i“} + (1= G(ze)"
I'(a/(1+ae)+1)

- no/(1+ae) + (1 - G(IE)) ) (6)
where the last equality is due to the identity
E [e*"U”‘*} —T(8+1)/6°, for 0,3 > 0. @)

Therefore, by lettingn — oo, and thene — 0 in (6), we

obtain
— logP
lim

n—oo

N
logPIN>n] . _ ®)
logn

Next, we derive a lower bound. Noticing that for afy
§ < 1, there existse; > 0 such thatl — 2 > ¢(1=97 for all

0 < x < x5, we can choose, large enough, such that
E(1-G(L)">E[(1-G(L))" 1L > z.)]
>E [(1 — F(L) ) 1(F(L) < F(xe))]

Ple.)]

Recalling the identity (7), passing — oo, and thene — 0,
we derive

L_e
o

_ 1_. _
>E [e—"“*)m)‘* 1(F(L) <

>SE |:e—n(l—e)U(1xE:| _ (-9 F(z)a

logP[N > n] <

lim
logn

n—oo

Finally, combining (8) and (9), we obtain (3).

9)

B. Exact Power Law Asymptotics

This section presents the exact asymptotic results for the

number of retransmissions and the total transmission flthe.
proof of Theorem 5 is deferred to Section VI.
Theorem 4:If G(z) ~ H (—logF(z)) F(z)Y/*, a > 0

with H(z) being a continuous and regularly varying function,

then, asn — oo,
P[N > n] ~ F(O‘—"'l)_ (10)
n®H (alogn)
Theorem 5:Under the same conditions as in Theorem
and 4, we have, as— oo,
INa+ 1)(E[U + A)”

P[T > t] ~
7> t*H(alogt)®

(11)

The preceding theorems, under a bit more restrictive con-

ditions, characterize the exact asymptotic tail behaviahe

distributions of N and T and, therefore, refine Theorems 2

and 3.

Note that Theorem 1 can be easily derived from Theorem 5

using the following argument. First, it is easy to verify tha
asr — oo,

§5b+1) /e B
Ta (—log F(x))
wherea = §/4, and, therefore, we can choose
§5b+1) /e

all/e

—-b/a

G(x) ~ F(a)"e,

7b/a.

H(z) =

Thus, using Theorem 5, we derive the asymptotics in (1).

Before moving to the proof, we state one more straight-
forward consequence of the preceding theorems that alfows
andG to have normal-like distributions, i.e., much lighter sail
than exponential.

Corollary 1: SupposeG(z) = P[|N(0,0%)] > =] and
F(z) = P[N(0,02)| > ], where N(0,0?) is a Gaussian
random variable with mean zero and variance then,

(mlo n)%(a_l)
P[N >n] ~T (a+1)a /2 gna . (12
wherea = g42/012.
Proof: First, notice that
2 3')2
PN (0,02)| > 2] ~ —0t—e 302,
2mx

and, therefore, recalling that= 042 /02, it is easy to obtain
G(z) ~ m2(/a=1)g1/2 (—log F(x)) t@/e-n) (F(z))

Hence,F(z) and G(z) satisfy the assumption of Theorem 4
with

1/«

H(l‘) = W%(l/a_l)al/2x%(l/(¥—l)7

which implies (12). [ ]
1) Proof of Theorem 4First, let us prove the upper bound.
Observe that

PN >n] =E[(1-G(L))"]
<E {e—ném}
<E [e-"@@l(L < xl)]
+E [e_"G(L)l(xl <L< a:Q)}
+E [e*”G@h(L > xg)}
2L+ 1L+ I (13)

Then, for anyl > § > 0, there existszs, such that for
all z > x5, we have(l — §)H (—log F(z)) F(z)/* <

G(z) < (1+0)H (—log F(z)) F(z)'/*. Next, sinceF(z)

B continuous, there exist;,z2 > x5, such thatF(zqg) =

1/not¢ and F(x;) = 1/n%~¢ for any a > ¢ > 0. Therefore,
asn — oo,

I =E {e—"@@)l(L < xl)}
< efné(ml)

< e—n(l—é)H(—logF(ml))F(zl)l/a

(L), ”
and,
I;=E {e—"G@)l(L > xg)}
< P[L > z9]
(L) -



Now, since F(z) and H(z) are continuous,f'(L) = U

is a uniform random variable betwedgnand 1 (e.g., see
Proposition 2.1 in Chapter 10 of [8]), and there exists ¢ <

& < a+ ¢ such thatH (¢ logn) < H(—log F(L)) when
z1 < L < x,. Therefore,

I, =FE [e—nG(L)l(CCl <L< l’g)jl
<E [e_n(l_é)H(_log F(L))F(L)l/al (r1 < L < 962)}
<E [e_"(1_6)H(51 logn)Ul/ﬂ}

I(a+1) (H (alogn))®
(n(1 —9)H (alogn))® (H (&1 logn))™’

(16)

and, by the Characterisation Theorem of regular variation
(e.g., see Theorem 1.4.1 of [9]) and the uniform convergence
theorem of slowly varying functions (Theorem 1.2.1 of [9]),

we have
. H(alogn)
lim

o H (€ logn)

Hence, using (13), (14), (15), (16), (17) and passihg to
zero, we derive

— 1 ase — 0. a7

Fa+1)
PN S —.
N>l S n*H (alogn)®

Next, we prove the lower bound. For amy> 0, choose
x1, T2 > s, Such thatF'(ze) = (logn)~¢/n® and F'(z1) =
(logn)¢/n®. Since H(z) is continuous, there exista —
eloglogn/logn < & < a + eloglogn/logn, such that
H(&logn) > H(—log F(L)) whenz; < L < x4. Therefore,
PIN > 0] = E[(1 - G(1)"]

> E[(1- G(L)" 1oy < L < )]

>E[(1- (1+0)H (~log F(1)) F(1)"*)"

(18)

1(z1 <L < xg)}

>E| (1= (1+0)H (& logn) Ul/a)n
. <<1ogn> < (logn) > ]
ne n«
- e (RELLIATIRETT,
(logn)—¢/e n n
IMNa+1)
~ (T 0)noH (& logn)” asn — oo. (19)
Thus, by passing, ¢ to zero in (19), we derive
Ia+1)
>_ =)
PN >n] > o (alogn)™ (20)
Combining (18) and (20) completes the proof. [

C. Subexponential asymptotics

The preceding results establish the relationships between
L and A, under which power law tails arise. However, it is

natural to ask if there is any other relationship betwéesnd

A, such that the distributions oV and 7' are light-tailed,
i.e., bounded by an exponential. Interestingly enough, the
following lemma gives a negative answer to this questioris Th
result was proven in Theorem 6 of [2] under the assumption
that G(x) is exponential, but, as it can be seen from Lemma
1, the exponential assumption is not necessary.

Lemma 1:1f F(z) > 0 for all z > 0, then bothN and T
are subexponentiaih the following sense that, for arny> 0,

e"P[N > n] — oo asn — oo,

(21)

and

e“'P[T > t] — oo ast — oo. (22)
Proof: Note that for anyl > § > 0, there existg; > 0
such that

1—t>(1-46)e ",

forall0 < ¢ <ls. Therefore, we can choosg large enough,
such thatl — G(z) > (1 — 6§)e~¢®), for all z > z5. Then,

[(1-G(L)" L(L > )]
> e "B [(1-6)"e OO > a)]
G

Thus, by selecting small enough and; large enough, we can
always make:“~“(#s)(1 — §) > 1, and, by passing. — oo,
we complete the proof of (21).

Next, suppose thak(xq) > 0 for somez, > 0; otherwise,
T will be infinite, which yields (22) immediately. We can
always findxz; > x¢ > 0, such that i.i.d. random variables
X; 2 2ol(zo < A; < x1) satisfy0 < EX; < oo. Now, for
any¢ > 0,

[N—1
PT>t]=P|> (Ui+A)+L>t

Li=1

TN—1
>P ZAil(x0<Ai<$1)>t]

Li=1

[N—1
>P ZXl>t]

Li=1

TN—1

t(1+4¢)

>P X;>t,N >

27 EX,

[ t(1+¢)
>P|N 1
>p N> A ﬂ

N-—1

t(1+¢)

—P X;<t,N>-—_> 41

Fxsuns G0

£ - L. (23)



Since, forX; £ E[X;] — X; 10

-@ Normal

~+ Normal Asymptote
—— Exponential

-t - Exponential Asymptote

L <P Z X, <t i
[i<t(1+¢)/EXy

10

=Pl > Xi>(t], (24)

Li<t(14+0)/EX,

P[N>n]

it is well known (e.g., see Example 1.15 of [10]) that ther
existsn > 0, such that -

10 "1

I, < e ™, (25)
Therefore, by (21), (23) and (25), we obtain that for (ak
e<n,
eS'P[T > t] — oo ast — oo, 10°5 L v e ”
10 10 10 L 10 10
implying that (22) holds for any > 0. ] Number of transmissions : f
Hence, in view of our preceding results, it remains to Fig. 2. First illustration for Example 1.

characterize the situations when the distributionsh\ofand

T decay faster than polynomial but slower than exponential,

these types of distributions are often referred to as beiage plotted on log-log scale in Figure 2. From this figure,
moderately heavy. However, since these distributions ladlve we see that even for small values of sayn ~ 5 for

the moments finite, they can not be a cause of instability, aBfiponential distributions and ~ 10 for normal distributions,
therefore, we defer this analysis to the extended versidheof the numerical asymptote approximates the simulation quite
paper [7]. well and for larger values of the simulation results and the

asymptotic formulas are basically indistinguishable.
IV. NUMERICAL AND SIMULATION EXAMPLES ymp y 9

In this section, we illustrate our theoretical results witl ¢, -

simulation and numerical experiments. In particular, we er R R R P —- Simulation |
* -+ - Asymptote

phasize the characteristics of the studied channel that n .
not be immediately apparent from our theorems. For exal

ple, the relative logarithmic condition that we identify as .
cause of power laws is based on higher order distributior
properties and, thus, it is quite insensitive to the meanesl ]
of L and A. Interestingly enough, we show that, even if th's |
expected data siZBL is much smaller than the average lengt %
of channel availabilityEA, the transmission delays can be
power laws with infinite expected delays and retransmissiot
Furthermore, in practice, the distribution of documeraskets 107
might have a bounded support. We show that this situation m
result in truncated power law distributions f@r and N. To 10°F
this end, it is also important to note that the distributiarfis
N andT will have a power law main body with a stretchec 7L w w

10 10" 10

107%

support in relation to the support df and, thus, may result Number of transmissions : n
in very long, although, exponentially bounded delays.
Example 1:This example illustrates the exact asymptotic Fig. 3. Second illustration for Example 1.

results presented in Theorem 4. We choose two sets of dis-

tributions. One assumes thdtand L take absolute values of In general, the asymptotic approximations may not be as ac-
zero mean normal random variables, as stated in Corollaryclrate for smalh (large probabilities) as in the previous cases.
with o4 = 4 and o = 6, respectively; the other assumediere, we demonstrate this point withand L taking absolute
that A and L follow exponential distributions with parameterssalues of zero mean normal random variables with= 8 and

A4 = 6 and \;, = 4, respectively. Now, by Theorem 4¢; = 4, respectively. The simulation results 6" samples
(Corollary 1), the asymptotic behavior 8N > n] is given and the asymptote are plotted in Figure 3. From the figure
by I'(13/9)(3/2)(wlogn)~>/¥n=4/9, for the normal case; we can see that only fon > 100 (P[N > n] < 107°) the

and byT'(5/3)n—2/3, for the exponential case. The simulatiormasymptotic approximation becomes accurate. However, even
results for50, 000 samples and the corresponding asymptot@s this situation the derived asymptote provides a righteord



of magnitude and shows the very heavy (highly variable *

behavior of the distribution oiV.

Example 2:Intuitively, one would expect that, if the ex-
pected data siz&[L is smaller than the average length o
channel availability£ A, the system should behave reasonab
well. In this regard, surprisingly, this example shows th:
not only that the distributions ofV and 7' can have very

heavy tails, but the system can even be unst@liie = oo, ém-
T

ET = oo. Suppose thati(z) = P[(N(10,6%))* > ] and
F(z) = P[(N(15,4?))" > z], where N (i, 0?) is a Gaussian
random variable with meap, variances? and z*+ denotes

the positive part ofc. ObviouslyE[L] ~ 10 < E[A] = 15, 10"

but we still get a power law distribution with =~ 0.67 < 1
for the number of transmission€, which implies thatV has
an infinite mean. The simulation result forx 105 samples
is presented in Figure 4; the matching asymptote is drawn
the same figure with a dashed line.

10°

K=30

10 o 10 10
Number of transmissions : n

Fig. 5. lllustration for Example 3.

—4— Simulation
- - Asymptote
distribution of N increase from less that0 to almost10*.
R This effect is what we call the stretched support of the main
NN body of P[N > n] in relation to the suppor& of L. In
TETNING ', T : ~ .1 fact, it can be rigorously shown that the support of the main
B body of P[V > n| grows quicker than an exponential function

P[N>n]

102k . PN . B B Lo : : B s

10

10° 10" 10* 10°

Number of transmissions : n

Fig. 4. lllustration for Example 2.

Example 3:In many practical applications the data uhit
can be bounded, i.e., the distribution 6f has a bounded
support. Thus, from equation (5) it is easy to see that ti
distribution of N is exponentially bounded. However, thisT
exponential behavior can happen for very small probagdjti §
while the number of retransmissions and delay of intere
can fall inside the region of the distribution (main bodyatth
behaves as power laws. This example is aimed to explain tl
important phenomenon. We assume thahas finite support
[0, K] and show how this results in a truncated power la
distribution for N in the main body, even though the tail
is exponentially bounded. This example is parametrized |
K where K ranges from20 to 30 and we choose the same
parameters as in Example 2 except that whendvexceed
K, we setL to K. We plot the distributions oP[N > n],
parameterized by, in Figure 1. From the figure we can see

10° 4

10

10

10

if the distributions of L and A are lighter than exponential.
This is why we also refer to the support of the main body
. of P[N > n| as being exponentiated in relation 6. We
will present this result formally in the extended version of
this paper [7]. Furthermore, it is important to note that, if
K = 30 and the probabilities of interest f@[N > n| are
greater thanl0—3, then the results of this experiments are
s ‘ ‘ essentially indistinguishable from Example 2.

—=— Poisson :
—— Geometric |

10" 10°

Number of transmissions : n

Fig. 6. lllustration for Example 4.

that, when we increase the support of the distribution from Example 4:Finally, as stated earlier in the paper, our results
K = 20 to K = 30, the main (power law) body of the also hold for lattice, e.g., integer-valued random vagablhe



detailed proofs of these results will be written in the eriesth header, which can limit the useful throughput; if packets ar
version of this paper [7]. Here, we justify this claim withdw too large, power law delays can deteriorate the quality of
typical cases of discrete distributions, Poisson and gétiene transmission.

For the case whenl and L are Poisson, we seledty = 8 In conclusion, we would like to emphasize that, in prac-
and A\, = 5, respectively. The parameters of the geometriice, our results provide an easily computable benchmark fo
distributions for A and L are chosen agp4, = 0.125 and measuring the tradeoff between the data statistics anchehan
pr = 0.2, respectively. The simulation results férx 10° characteristics that permits/prevents satisfactorystrassion.
samples are illustrated in Figure 6 that clearly shows thesli

characteristics oP[N > n] on the log-log plot, i.e., the power VI. PROOFS OFTHEOREM 3 AND THEOREM5

law behavior. L
The proofs are based on large deviation results developed

V. ENGINEERING IMPLICATIONS by Nagaev in [13]; specifically, we summarize Corollary 1.6

From an engineering perspective, our main discovery is tﬁgd Corollary 1.8 of [13] in this following lemma.

matching between the statistical characteristics of tnppl ~_ -€MMa 2:Let X3, X, . ‘ Xn and X be i.i.d random vari-
and transmitted data (packets). Basicallypibg P[A > o] > @Ples WIthEX =0, anda;” = Juso W dP[X < u] < oo.
logP[L > 2] or alogP[A > 1] < logP[L > x], then one I 1 <s <2, then, forz >y andy* > daf,

can expect good or bad (measured by the existence-of " N 7/2
moment forN andT’) delay performance. In this regard, we p [Z X, > x] < nP[X > y] + (nesasl) @6)
want to point out that our model depicted in Figure 1 admits i—1 xy

a variant of a more general form which we term threshold

crossing [7]. We believe that this model provides a basic If s > 2, then,

structure that explains the power law phenomena in many [ » @2

natural and man-made systems. For example, we discoverI%[Z X, >z| < nc§1>ajx‘s + exp (i> , (27)
new effect [11] that a basic finite population ALOHA model  Li=1 nVar|Xi]

with variable size (exponential) packets is characterizgd 1) . @ o .

power law transmission delays, possibly even resultingimz Wherecs * = (1+2/s)% ¢ = 2(s +2)"e™".

throughput. This power law effect might be diminished, or ~ Proof: Please refer to [13]. u

perhaps eliminated, by reducing the variability of packets NOw, we are ready to prove Theorem 3.
However, we show that even a slotted (synchronized) ALOHA  Proof: First, we establish the upper bound. For any
with packets of constant size can exhibit power law delays we have
when the number of active users is random.

Furthermore, on the physical layer, it is well known that  pi7 > ¢ = p
wireless links, especially for low-powered sensor netwprk
have higher error rates than the wired counterparts. This ma

Ui+ A)+L>t

gl

N
Il
-

N
result in large delays on the data link layer due to the (IP) <P Z(Ui +A;)>t,N< 1 -9)
packet variability and channel failures. When the codewprd i=1 E[U + 4]
the basic units of packets in the physical layer, are much ply t(1—9) PIL
smaller than the maximum size of the packets, our results + = E[U + 4] +P[L>1]
show that the number of retransmissions could be power A 4L+ I (28)

law, which challenges the traditional model that assumes a
geometric number of retransmissions. We believe that sh@itthe following, we will show that/; = o(1/t*) and I3 =
codewords are realistic assumption for sensor networkerewho(l/ta), For I3, the conditionE[(U + A)'te+¢] < 0o and (2)
complicated coding schemes are unlikely since the nodes haviply E[Lo(+e+0)] < o0, which renders
very limited computational power.

Since in reality, packet sizes may have an upper limit I E[Lo(1Fet+0)] (i) (29)
(e.g., WaveLAN'’s maximum transfer unit iS00 bytes), this } = Teltrate) T O\ e )¢
situation may result in truncated power law distributioos f
T and N in the main body with a stretched (exponentiate(?Or I, let X; £ (Ui + Ai) —E[(U; + A;)] and ¢ £ (1 -
support in relation to the support of (see Example3) ©)/E[U + Al. We haveEX |+’ < oo, EX; = 0 and
and, thus, may result in very long, although, exponentially -
bounded delays. Similar investigations have been exanfiored
truncated heavy-tailed distributions in the queueing exinin h=P . Z (Ui + 4i) > ¢
[12]. [i<t(1-8)/E[U+4]

Therefore, our results suggest that, packet fragmentation
techniques need to be applied with special care since, if the =P Z Xi>ot|. (30)
packets are too small, they will mostly contain the packet [i=ct




Here we have two situations. If< s = 1+ a4+ 6 < 2, using
(26) with y = 6t/2, we obtain, ag — oo,

20s—1 .+
3 OX, > ot < CP[X > ot/2 + CL %

ts—1
i<(t
< C2°E[X®] = %25 laf
- 5stsfl tsfl
=o 1 (32)
=0l
Otherwise, ifs =1+ a + 6 > 2, by (27), we derive
(2) (54\2
—cs(0t)
X; >0t <¢t-clt —
cht ( ) (CtVar[Xﬂ)
1
Hence, from (30), (31) and (32), we derive
Il <o (tio‘) . (33)
Recalling Theorem 2, we know
logP |N > 21=9)
lim [ ]E[U+A]} = —q, (34)
t—00 logt

which, in conjunction with (29), (33) and (34), implies

logP [T >t <

lim
t—o0 logt

(35)

Next, we prove the lower bound. It is easy to obtain

[N—1
PIT >t =P|> (Ui+A)+L>t
Li=1
[N—-1
>P > (Uit A) >
Li=1
[N—1
(1+49)
>P i+ A) >t N> 1
;(U—F ) > BT A
t(1 4 6)
>P|N > 1
T ETr 4"
N—-1
t(1+4)
-P Ui+ 4;) <t,N > 1
121( + A EU+ A
21— D. (36)
Now, since
L <P Yo Ui+ A<t
|i<t(1+6)/E[U+A]
=P S (=X =6t
|i<t(1+6)/E[U+A]

and(—X;) < E[U + A] < oo, by using the same argument as
in the proof for (33), we obtain

1
IQ < o (to‘)

Again, by Theorem 2,
log P {N >

37)

t(1+9)
E[U+A]

+1]

lim

= —a7
t—o0

logt
from which, using (36) and (37), we derive

lim logP [T >t > _a
oo logt
Combining (35) and (38) completes the proof. [ ]
Next, we give a brief sketch of the proof of Theorem 5.
Proof: Using the same technique as in the proof of

Theorem 3, we obtain
(1-9) 1
< > — 7 _
P[T>t]_P[N_E[U+A] +o0 )
(1+9)

g~ (@)

(38)

and
PT >t >P [N >

By Theorem 4, we have

t(1—9) I(a+ 1)(E[U 4+ A])~
F [N 2 E[U+AJ ~ GO =) Halogns Y
and
t(1+9) I(a+ 1)(E[U 4+ A])“
F [N Z B U+ AJ ~Ga ) Haogne 9
Finally, passing to zero in (39) and (40) completes the proof.
[ |
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