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Abstract— Consider a generic data unit of random sizeL that
needs to be transmitted over a channel of unit capacity. The
channel dynamics is modeled as an on-off process{(Ai, Ui)}i≥1

with alternating independent periods when channel is available
Ai and unavailable Ui, respectively. During each period of
time that the channel becomes available, sayAi, we attempt
to transmit the data unit. If L ≤ Ai, the transmission was
considered successful; otherwise, we wait for the next period
Ai+1 when the channel is available and attempt to retransmit
the data from the beginning. We study the asymptotic properties
of the total transmission time T and number of retransmissions
N until the data is successfully transmitted.

In recent studies [1], [2], it was proved that the waiting time
T follows a power law when the distributions ofL and A1 are of
an exponential type, e.g., Gamma distribution. In this paper, we
show that the distributions of N and T follow power laws with
exponent α as long aslog P[L > x] ≈ α log P[A1 > x] for large
x. Hence, it may appear surprising that we obtain power law
distributions irrespective of how heavy or light the distributions
of L and A1 may be. In particular, both L and A1 can decay
faster than any exponential, which we term superexponential.
For example, if L and A1 are Gaussian with variancesσ2

L and
σ2

A, respectively, thenN and T have power law distributions with
exponent α = σ2

A/σ2
L; note that, if σ2

A < σ2
L, the transmission

time has an infinite mean and, thus, the system is unstable.
The preceding model, as recognized in [1], describes a variety

of situations where failures require jobs to restart from the
beginning. Here, we identify that this model also provides a
new mechanism for explaining the frequently observed power
law phenomenon in data networks. Specifically, we argue that
it may imply the power laws on both the application as well
as the data link layer, where variable-sized documents and (IP)
packets are transmitted, respectively. We discuss the engineering
ramifications of our observations, especially in the context of
wireless ad hoc and sensor networks where channel failures are
frequent. Furthermore, our results provide an easily computable
benchmark for measuring the matching between the data and
channel characteristics that permits/prevents satisfactory trans-
mission.

I. I NTRODUCTION

In this paper, we study a problem of transmitting a generic
data unit of random sizeL over a channel with failures.
For example, most of us have experienced difficulties with
downloading files/Web pages from the Internet where in the
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middle of the download the connection breaks and one has
to restart the download from the beginning. Similar problems
might arise in transmitting (IP) packets of variable lengthover
the data link layer. Here, in case of an error, the packet is
resent automatically, which is known as the Automatic Repeat
reQuest (ARQ) protocol (e.g., see Section 2.4 of [3]). Both of
the preceding problems are especially important in the wireless
environment, e.g., for wireless ad hoc and sensor networks,
where frequent channel failures occur due to a variety of
reasons, including interference, signal fading, contention with
other nodes, multipath effects, obstructions, node mobility, and
other changes in the environment [4].

We use the following generic channel with failures to model
the preceding situations. The channel dynamics is described as
an on-off process{(Ai, Ui)}i≥1 with alternating independent
periods when channel is availableAi and unavailableUi,
respectively. In each period of time that the channel becomes
available, sayAi, we attempt to transmit the data unit of
random sizeL. If L ≤ Ai, we say that the transmission was
successful; otherwise, we wait for the next periodAi+1 when
the channel is available and attempt to retransmit the data
from the beginning. We study the asymptotic properties of the
distributions of the total transmission timeT and number of
retransmissionsN , for the precise definitions of these variables
and the model, see Section II.

The preceding model was introduced and studied in [5] and,
apart from the already mentioned applications in communica-
tions, it represents a generic model for other situations where
jobs have to restart from the beginning after a failure. It was
first recognized in [1] that this model results in power laws
when the distributions ofL andA1 have a matrix exponential
representation. The more recent study in [2] rigorously proves
that the distribution ofT is asymptotically a power law when
the variablesL andA1 are of exponential type (e.g., Gamma
distribution).

In this paper, we discover that the distributions ofN and
T follow power laws with the same exponentα as long as
log P[L > x] ≈ α log P[A1 > x] for largex. The recognition
that this relative condition between the distributions ofL
and A1 is the primary cause of power laws, rather than any
absolute assumptions (e.g., exponential), represents oneof
the main novelties of our approach. Hence, maybe somewhat
surprisingly, one obtains power law distributions irrespective



of how heavy or light the distributions ofL and A1 are,
allowing bothL andA1 to decay faster than any exponential,
which we term superexponential; see Theorems 2 and 3 of
Section III-A. In particular, ifL andA1 take absolute values
of Gaussian random variables with variancesσ2

L and σ2
A,

respectively, thenN and T have power law distributions
with exponentα = σ2

A/σ2
L; note that, if σ2

A < σ2
L, the

transmission time has an infinite mean and, thus, the system is
unstable. Furthermore, in Section III-B, we refine our results
by establishing the exact power law asymptotics in Theorems4
and 5. Finally, in Section III-C, we show that, if the distribution
of L has an infinite support (P[L > x] > 0 for all x ≥ 0),
the distributions ofN andT are subexponential (decay slower
than any exponential) regardless of what the distribution of A1

may be.
Power laws, and in general heavy tails, are frequently

observed in computer communication networks and systems.
The heavy-tailed transmission delays are typically attributed to
power law distributions of files/documents on the internet,e.g.,
see [6] and the references therein. Hence, transmitting these
heavy-tailed objects over communication channels (that have
bounded capacity) naturally results in power law delays. Inthis
paper, we recognize that the power laws can result entirely
from the retransmissions, a commonly used component of
communication protocols, even if the documents as well as
the channel characteristics are light-tailed (i.e., bounded by an
exponential).

In Section IV, we illustrate our theoretical results with simu-
lation and numerical experiments. In particular, we emphasize
the characteristics of the studied channel that may not be
immediately apparent from our theorems. For example, the
relative logarithmic condition that we identify as a cause of
power laws is based on high order distributional properties
and, thus, it is quite insensitive to the mean values ofL andA1.
Interestingly enough, we show that, even if the expected data
size EL is much smaller than the average length of channel
availability EA1, the transmission delays can be power laws
with infinite expected delays and number of retransmissions.
Furthermore, in practice, the distribution of documents/packets
might have a bounded support. We show that this situation may
result in distributions ofT andN exhibiting power laws in the
main body, i.e., essentially truncated power law distributions.
To this end, it is also important to note that the power law main
body have an exponentiated (stretched) support in relationto
the support ofL and, thus, may result in very long, although,
exponentially bounded delays.

From an engineering perspective, our main discovery is the
matching between the statistical characteristics of the channel
and transmitted data (packets). Basically, iflog P[A > x] >
log P[L > x] or log P[A > x] < log P[L > x], then one
can expect good or bad (infinite mean) delay performance.
We discuss these and other engineering implications of our
results in Section V. In particular, we focus on the wireless
environment where channel/connection failures are frequent.
As stated earlier, most of us have been inconvenienced when
the connections would brake while we are downloading a large

file from the Internet. This issue has been already recognized
in practice where software for downloading was developed that
would save the intermediate data (checkpoints) and resume the
download from the point when the connection was broken.
However, our results emphasize that, in the presence of fre-
quently failing connections, the long delays may arise even
when downloading relatively small documents. Hence, we
argue that one may need to adopt the application layer software
for the wireless environment by introducing checkpoints even
for small to moderate size documents. We also discuss possible
large delays that may result on the data link layer due to
(IP) packet variability and channel failures. We assume that
in the physical layer, the codewords, which represent the
basic units of packet transmission, are much smaller than
the maximum size of the packet. We believe that this is
a realistic situation for sensor networks, where complicated
coding schemes are unlikely since the nodes have very limited
computational power. In this context, our results show that
the number of retransmissions could be power law, which
challenges the traditional model that assumes a geometric
number of retransmissions. We discuss possible solutions to
alleviate this problem, such as breaking large packets into
smaller units. Obviously there is a tradeoff between the sizes
of these newly created packets and the throughput since, if
the packets are too small, they will mostly contain the packet
headers and, thus, very little useful information.

II. D ESCRIPTION OF THECHANNEL

In this section, we formally describe our model and provide
necessary definitions and notation.

Let L denote the random length of a generic data unit
(packet). Without loss of generality, we assume that the chan-
nel is of unit capacity. The channel dynamics is modeled as
an on-off process{(Ai, Ui)}i≥1 with alternating independent
periods when channel is availableAi and unavailableUi,
respectively. In each period of time that the channel becomes
available, sayAi, we attempt to transmit the data unit and,
if L ≤ Ai, we say that the transmission was successful;
otherwise, we wait for the next periodAi+1 when the channel
is available and attempt to retransmit the data from the
beginning. A sketch of the model depicting the system is
drawn in Figure 1.
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Fig. 1. Packets sent over channels with failures



Assume that{U, Ui}i≥1 and{A, Ai}i≥1 are two mutually
independent sequences of i.i.d. random variables.

Definition 1: The total number of (re)transmissions for a
generic data unit of lengthL is defined as

N , inf{n : An ≥ L},

and, the total transmission time for the data unit is defined as

T ,
N−1
∑

i=1

(Ai + Ui) + L.

We use the following notations to denote the complementary
cumulative distribution functions forA andL respectively,

Ḡ(x) , P[A > x],

and

F̄ (x) , P[L > x].

As already stated in the introduction, a problem of this type
(with Ui ≡ 0), in a different application context, was defined
and examined in [5]. It was first recognized in [1] that this
model can result in power laws when the distributions ofL
and A have a matrix exponential representation. The more
recent study in [2] rigorously proves that the distributionof T
is asymptotically a power law when the variablesL andA are
of exponential type (e.g., Gamma distribution). The following
theorem is quoted from Theorem 7 in [2]. In this paper we use
the following standard notations. For any two real functions
a(t) and b(t) and fixedt0 ∈ R ∪ {∞}, we usea(t) ∼ b(t)
as t → t0 to denotelimt→t0 [a(t)/b(t)] = 1. Similarly, we
say thata(t) & b(t) as t → t0 if limt→t0

a(t)/b(t) ≥ 1;
a(t) . b(t) has a complementary definition.

Theorem 1 (AFLS06):Assume thatḠ(x) = e−βx and
F̄ (x) ∼ (a/δ)xbe−δx whereb ∈ R and a, β, δ > 0, Ui ≡ 0,
then,

P[T > t] ∼ aΓ (α) β−(α+b+1) (log t)b

tα
, (1)

whereα = δ/β.
In the following section we will derive more general results

of this type. The preceding theorem will be a direct conse-
quence of our Theorem 5. The main novelty of our results
is that it reveals that power law arises from the relative value
between the hazard functions ofL andA, and does not depend
on the absolute forms ofG andF . Hence,G andF can have
arbitrarily heavy or light tails, as long as, roughly speaking,
their hazard functions are asymptotically proportional, e.g., see
equation (2) in the forthcoming Theorem 2.

III. M AIN RESULTS

This section presents our main results. Here, we assume
that F̄ (x) is a continuous function with support on[0,∞).
The same results can be derived whenF̄ (x) is lattice valued
which we will prove in the extended version of this paper [7].
However, some of the examples in Section IV will be based
on discrete valued random variables.

A. Logarithmic Power Law Asymptotics

In this subsection we present the logarithmic asymptotics
for the number of transmissions and the total transmission
time in Theorem 2 and Theorem 3, respectively. These results
imply that logarithmic scale is the right measure of the
interplay between the data unit size and the lengths of channel
availability. The proof of Theorem 3 is deferred to Section VI.

Theorem 2:If there existsα > 0, such that,

lim
x→∞

log F̄ (x)

log Ḡ(x)
= α, (2)

then, we have

lim
n→∞

log P[N > n]

log n
= −α. (3)

Theorem 3:Under the same condition of Theorem 2 and
E[(U + A)1+α+θ] < ∞ for someθ > 0, then,

lim
n→∞

log P[T > t]

log t
= −α. (4)

Remark 1:These two theorems indicate that the distribution
tails of the number of transmissions and total transmissiontime
are essentially power laws. Thus, the system can exhibit high
variations and possible instability, e.g., when1 < α < 2, the
transmission time has an infinite variance and, when0 < α <
1, it does not even have a finite mean.

Remark 2: It is easy to understand that if the data sizes
(e.g., files, packets) follow heavy-tailed distributions,the total
transmission time is also heavy-tailed. However, from these
two theorems, we see that even if the distributions of the data
and channel characteristics are highly concentrated, i.e., light-
tailed (e.g., see Corollary 1 below), once they are asymptot-
ically proportional on the logarithmic scale, the heavy-tailed
transmission delays can still arise.

1) Proof of Theorem 2:Notice that the number of retrans-
missions is geometrically distributed given the packet size L,

P[N > n | L] = (1 − Ḡ(L))n,

and, therefore,

P[N > n] = E[(1 − Ḡ(L))n]. (5)

First, let us establish an upper bound. The condition de-
scribed in (2) implies that for any0 < ǫ < 1/α, there exists
xǫ, such that for allx > xǫ, we haveF̄ (x)

1
α +ǫ ≤ Ḡ(x) ≤

F̄ (x)
1
α−ǫ. Hence,

E[(1 − Ḡ(L))n] = E[(1 − Ḡ(L))n
1(L > xǫ)]

+ E[
(

1 − Ḡ(L)
)n

1(L ≤ xǫ)]

≤ E

[(

1 − F̄ (L)
1
α +ǫ
)n]

+
(

1 − Ḡ(xǫ)
)n

≤ E

[

e−nF̄ (L)
1
α

+ǫ

]

+
(

1 − Ḡ(xǫ)
)n

.

SinceF̄ (x) is continuous,F̄ (L) is a uniform random variable
(denoted byU ) between0 and1 (e.g., see Proposition 2.1 in



Chapter 10 of [8]), we derive

P[N > n] ≤ E

[

e−nU
1
α

+ǫ

]

+
(

1 − Ḡ(xǫ)
)n

=
Γ (α/(1 + αǫ) + 1)

nα/(1+αǫ)
+
(

1 − Ḡ(xǫ)
)n

, (6)

where the last equality is due to the identity

E

[

e−θU1/β
]

= Γ(β + 1)/θβ , for θ, β > 0. (7)

Therefore, by lettingn → ∞, and thenǫ → 0 in (6), we
obtain

lim
n→∞

log P[N > n]

log n
≤ −α. (8)

Next, we derive a lower bound. Noticing that for any0 <
δ < 1, there existsxδ > 0 such that1 − x ≥ e(1−δ)x for all
0 < x < xδ, we can choosexǫ large enough, such that

E[(1 − Ḡ(L))n] ≥ E
[(

1 − Ḡ(L)
)n

1(L > xǫ)
]

≥ E

[(

1 − F̄ (L)
1
α−ǫ
)n

1
(

F̄ (L) < F̄ (xǫ)
)

]

≥ E

[

e−n(1−ǫ)F̄ (L)
1
α

−ǫ

1
(

F̄ (L) < F̄ (xǫ)
)

]

≥ E

[

e−n(1−ǫ)U
1
α

−ǫ

]

− e−n(1−ǫ)F̄ (xǫ)
1
α

−ǫ

.

Recalling the identity (7), passingn → ∞, and thenǫ → 0,
we derive

lim
n→∞

log P[N > n]

log n
≥ −α. (9)

Finally, combining (8) and (9), we obtain (3). ■

B. Exact Power Law Asymptotics

This section presents the exact asymptotic results for the
number of retransmissions and the total transmission time.The
proof of Theorem 5 is deferred to Section VI.

Theorem 4:If Ḡ(x) ∼ H
(

− log F̄ (x)
)

F̄ (x)1/α, α > 0
with H(x) being a continuous and regularly varying function,
then, asn → ∞,

P[N > n] ∼
Γ(α + 1)

nαH(α log n)α
. (10)

Theorem 5:Under the same conditions as in Theorem 3
and 4, we have, ast → ∞,

P[T > t] ∼
Γ(α + 1)(E[U + A])α

tαH(α log t)α
. (11)

The preceding theorems, under a bit more restrictive con-
ditions, characterize the exact asymptotic tail behavior of the
distributions ofN and T and, therefore, refine Theorems 2
and 3.

Note that Theorem 1 can be easily derived from Theorem 5
using the following argument. First, it is easy to verify that,
asx → ∞,

Ḡ(x) ∼
δ(b+1)/α

a1/α

(

− log F̄ (x)
)−b/α

F̄ (x)1/α,

whereα = δ/β, and, therefore, we can choose

H(x) =
δ(b+1)/α

a1/α
x−b/α.

Thus, using Theorem 5, we derive the asymptotics in (1).
Before moving to the proof, we state one more straight-

forward consequence of the preceding theorems that allowsF̄
andḠ to have normal-like distributions, i.e., much lighter tails
than exponential.

Corollary 1: SupposeḠ(x) = P[|N(0, σ2
A)| > x] and

F̄ (x) = P[|N(0, σ2
L)| > x], whereN(0, σ2) is a Gaussian

random variable with mean zero and varianceσ2, then,

P[N > n] ∼ Γ (α + 1)α−1/2 (π log n)
1
2
(α−1)

nα
, (12)

whereα = σA
2/σL

2.
Proof: First, notice that

P[|N(0, σ2)| > x] ∼
2σ√
2πx

e−
x2

2σ2 ,

and, therefore, recalling thatα = σA
2/σL

2, it is easy to obtain

Ḡ(x) ∼ π
1
2
(1/α−1)α1/2

(

− log F̄ (x)
)

1
2
(1/α−1) (

F̄ (x)
)1/α

.

Hence,F̄ (x) and Ḡ(x) satisfy the assumption of Theorem 4
with

H(x) = π
1
2
(1/α−1)α1/2x

1
2
(1/α−1),

which implies (12).
1) Proof of Theorem 4:First, let us prove the upper bound.

Observe that

P[N > n] = E
[(

1 − Ḡ(L)
)n]

≤ E

[

e−nḠ(L)
]

≤ E

[

e−nḠ(L)
1(L < x1)

]

+ E

[

e−nḠ(L)
1(x1 ≤ L ≤ x2)

]

+ E

[

e−nḠ(L)
1(L > x2)

]

, I1 + I2 + I3. (13)

Then, for any1 > δ > 0, there existsxδ, such that for
all x > xδ, we have (1 − δ)H

(

− log F̄ (x)
)

F̄ (x)1/α ≤
Ḡ(x) ≤ (1 + δ)H

(

− log F̄ (x)
)

F̄ (x)1/α. Next, sinceF̄ (x)
is continuous, there existx1, x2 > xδ, such thatF̄ (x2) =
1/nα+ǫ and F̄ (x1) = 1/nα−ǫ for any α > ǫ > 0. Therefore,
asn → ∞,

I1 = E

[

e−nḠ(L)
1(L < x1)

]

≤ e−nḠ(x1)

≤ e−n(1−δ)H(− log F̄ (x1))F̄ (x1)
1/α

= o

(

1

nα

)

, (14)

and,

I3 = E

[

e−nḠ(L)
1(L > x2)

]

≤ P[L > x2]

= o

(

1

nα

)

. (15)



Now, since F̄ (x) and H(x) are continuous,F̄ (L) , U
is a uniform random variable between0 and 1 (e.g., see
Proposition 2.1 in Chapter 10 of [8]), and there existsα− ǫ ≤
ξ1 ≤ α + ǫ, such thatH(ξ1 log n) ≤ H(− log F̄ (L)) when
x1 ≤ L ≤ x2. Therefore,

I2 = E

[

e−nḠ(L)
1(x1 < L < x2)

]

≤ E

[

e−n(1−δ)H(− log F̄ (L))F̄ (L)1/α

1 (x1 < L < x2)
]

≤ E

[

e−n(1−δ)H(ξ1 log n)U1/α
]

=
Γ(α + 1)

(n(1 − δ)H (α log n))
α

(H (α log n))α

(H (ξ1 log n))
α , (16)

and, by the Characterisation Theorem of regular variation
(e.g., see Theorem 1.4.1 of [9]) and the uniform convergence
theorem of slowly varying functions (Theorem 1.2.1 of [9]),
we have

lim
n→∞

H (α log n)

H (ξ1 log n)
→ 1 as ǫ → 0. (17)

Hence, using (13), (14), (15), (16), (17) and passingδ, ǫ to
zero, we derive

P[N > n] .
Γ(α + 1)

nαH (α log n)α . (18)

Next, we prove the lower bound. For anyǫ > 0, choose
x1, x2 > xδ, such thatF̄ (x2) = (log n)−ǫ/nα and F̄ (x1) =
(log n)ǫ/nα. Since H(x) is continuous, there existsα −
ǫ log log n/ logn ≤ ξ2 ≤ α + ǫ log log n/ logn, such that
H(ξ2 log n) ≥ H(− log F̄ (L)) whenx1 ≤ L ≤ x2. Therefore,

P[N > n] = E
[(

1 − Ḡ(L)
)n]

≥ E
[(

1 − Ḡ(L)
)n

1(x1 ≤ L ≤ x2)
]

≥ E

[ (

1 − (1 + δ)H
(

− log F̄ (L)
)

F̄ (L)1/α
)n

1(x1 ≤ L ≤ x2)
]

≥ E

[

(

1 − (1 + δ)H (ξ2 log n)U1/α
)n

1

(

(log n)−ǫ

nα
≤ U ≤ (log n)ǫ

nα

)

]

=

∫ (log n)ǫ/α

(log n)−ǫ/α

(

1 − (1 + δ)H (ξ2 log n)u

n

)n
d (uα)

nα

∼ Γ(α + 1)

(1 + δ)αnαH (ξ2 log n)α asn → ∞. (19)

Thus, by passingδ, ǫ to zero in (19), we derive

P[N > n] &
Γ(α + 1)

nαH (α log n)
α . (20)

Combining (18) and (20) completes the proof. ■

C. Subexponential asymptotics

The preceding results establish the relationships between
L and A, under which power law tails arise. However, it is
natural to ask if there is any other relationship betweenL and

A, such that the distributions ofN and T are light-tailed,
i.e., bounded by an exponential. Interestingly enough, the
following lemma gives a negative answer to this question. This
result was proven in Theorem 6 of [2] under the assumption
that Ḡ(x) is exponential, but, as it can be seen from Lemma
1, the exponential assumption is not necessary.

Lemma 1: If F̄ (x) > 0 for all x ≥ 0, then bothN andT
aresubexponentialin the following sense that, for anyǫ > 0,

eǫn
P[N > n] → ∞ asn → ∞, (21)

and

eǫt
P[T > t] → ∞ ast → ∞. (22)

Proof: Note that for any1 > δ > 0, there existstδ > 0
such that

1 − t ≥ (1 − δ)e−t,

for all 0 < t < tδ. Therefore, we can choosexδ large enough,
such that1 − Ḡ(x) ≥ (1 − δ)e−Ḡ(x), for all x > xδ. Then,

eǫn
P[N > n] ≥ eǫn

E
[(

1 − Ḡ(L)
)n

1(L ≥ xδ)
]

≥ eǫn
E

[

(1 − δ)ne−nḠ(L)
1(L ≥ xδ)

]

≥
(

eǫ−Ḡ(xδ)(1 − δ)
)n

F̄ (xδ).

Thus, by selectingδ small enough andxδ large enough, we can
always makeeǫ−Ḡ(xδ)(1 − δ) > 1, and, by passingn → ∞,
we complete the proof of (21).

Next, suppose that̄G(x0) > 0 for somex0 > 0; otherwise,
T will be infinite, which yields (22) immediately. We can
always findx1 > x0 > 0, such that i.i.d. random variables
Xi , x01(x0 < Ai < x1) satisfy 0 < EX1 < ∞. Now, for
any ζ > 0,

P[T > t] = P

[

N−1
∑

i=1

(Ui + Ai) + L > t

]

≥ P

[

N−1
∑

i=1

Ai1(x0 < Ai < x1) > t

]

≥ P

[

N−1
∑

i=1

Xi > t

]

≥ P

[

N−1
∑

i=1

Xi > t, N ≥ t(1 + ζ)

EX1

]

≥ P

[

N >
t(1 + ζ)

EX1
+ 1

]

− P

[

N−1
∑

i=1

Xi ≤ t, N >
t(1 + ζ)

EX1
+ 1

]

, I1 − I2. (23)



Since, forX̄i , E[Xi] − Xi,

I2 ≤ P





∑

i≤t(1+ζ)/EX1

Xi ≤ t





= P





∑

i≤t(1+ζ)/EX1

X̄i ≥ ζt



 , (24)

it is well known (e.g., see Example 1.15 of [10]) that there
existsη > 0, such that

I2 ≤ e−ηt. (25)

Therefore, by (21), (23) and (25), we obtain that for all0 <
ǫ < η,

eǫt
P[T > t] → ∞ ast → ∞,

implying that (22) holds for anyǫ > 0.
Hence, in view of our preceding results, it remains to

characterize the situations when the distributions ofN and
T decay faster than polynomial but slower than exponential;
these types of distributions are often referred to as being
moderately heavy. However, since these distributions haveall
the moments finite, they can not be a cause of instability, and
therefore, we defer this analysis to the extended version ofthe
paper [7].

IV. N UMERICAL AND SIMULATION EXAMPLES

In this section, we illustrate our theoretical results with
simulation and numerical experiments. In particular, we em-
phasize the characteristics of the studied channel that may
not be immediately apparent from our theorems. For exam-
ple, the relative logarithmic condition that we identify asa
cause of power laws is based on higher order distributional
properties and, thus, it is quite insensitive to the mean values
of L and A. Interestingly enough, we show that, even if the
expected data sizeEL is much smaller than the average length
of channel availabilityEA, the transmission delays can be
power laws with infinite expected delays and retransmissions.
Furthermore, in practice, the distribution of documents/packets
might have a bounded support. We show that this situation may
result in truncated power law distributions forT and N . To
this end, it is also important to note that the distributionsof
N andT will have a power law main body with a stretched
support in relation to the support ofL and, thus, may result
in very long, although, exponentially bounded delays.

Example 1:This example illustrates the exact asymptotic
results presented in Theorem 4. We choose two sets of dis-
tributions. One assumes thatA andL take absolute values of
zero mean normal random variables, as stated in Corollary 1,
with σA = 4 and σL = 6, respectively; the other assumes
thatA andL follow exponential distributions with parameters
λA = 6 and λL = 4, respectively. Now, by Theorem 4
(Corollary 1), the asymptotic behavior ofP[N > n] is given
by Γ(13/9)(3/2)(π log n)−5/18n−4/9, for the normal case;
and byΓ(5/3)n−2/3, for the exponential case. The simulation
results for50, 000 samples and the corresponding asymptotes
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Fig. 2. First illustration for Example 1.

are plotted on log-log scale in Figure 2. From this figure,
we see that even for small values ofn, say n ≈ 5 for
exponential distributions andn ≈ 10 for normal distributions,
the numerical asymptote approximates the simulation quite
well and for larger values ofn the simulation results and the
asymptotic formulas are basically indistinguishable.
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Fig. 3. Second illustration for Example 1.

In general, the asymptotic approximations may not be as ac-
curate for smalln (large probabilities) as in the previous cases.
Here, we demonstrate this point withA andL taking absolute
values of zero mean normal random variables withσA = 8 and
σL = 4, respectively. The simulation results of107 samples
and the asymptote are plotted in Figure 3. From the figure
we can see that only forn > 100

(

P[N > n] < 10−5
)

the
asymptotic approximation becomes accurate. However, even
in this situation the derived asymptote provides a right order



of magnitude and shows the very heavy (highly variable)
behavior of the distribution ofN .

Example 2: Intuitively, one would expect that, if the ex-
pected data sizeEL is smaller than the average length of
channel availabilityEA, the system should behave reasonably
well. In this regard, surprisingly, this example shows that
not only that the distributions ofN and T can have very
heavy tails, but the system can even be unstableEN = ∞,
ET = ∞. Suppose that̄G(x) = P[(N(10, 62))+ > x] and
F̄ (x) = P[(N(15, 42))+ > x], whereN(µ, σ2) is a Gaussian
random variable with meanµ, varianceσ2 and x+ denotes
the positive part ofx. Obviously E[L] ≈ 10 < E[A] ≈ 15,
but we still get a power law distribution withα ≈ 0.67 < 1
for the number of transmissionsN , which implies thatN has
an infinite mean. The simulation result for5 × 105 samples
is presented in Figure 4; the matching asymptote is drawn on
the same figure with a dashed line.
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Fig. 4. Illustration for Example 2.

Example 3: In many practical applications the data unitL
can be bounded, i.e., the distribution ofF has a bounded
support. Thus, from equation (5) it is easy to see that the
distribution of N is exponentially bounded. However, this
exponential behavior can happen for very small probabilities,
while the number of retransmissions and delay of interest
can fall inside the region of the distribution (main body) that
behaves as power laws. This example is aimed to explain this
important phenomenon. We assume thatL has finite support
[0, K] and show how this results in a truncated power law
distribution for N in the main body, even though the tail
is exponentially bounded. This example is parametrized by
K whereK ranges from20 to 30 and we choose the same
parameters as in Example 2 except that wheneverL exceed
K, we setL to K. We plot the distributions ofP[N > n],
parameterized byK, in Figure 1. From the figure we can see
that, when we increase the support of the distribution from
K = 20 to K = 30, the main (power law) body of the
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Fig. 5. Illustration for Example 3.

distribution of N increase from less than10 to almost104.
This effect is what we call the stretched support of the main
body of P[N > n] in relation to the supportK of L. In
fact, it can be rigorously shown that the support of the main
body ofP[N > n] grows quicker than an exponential function
if the distributions ofL and A are lighter than exponential.
This is why we also refer to the support of the main body
of P[N > n] as being exponentiated in relation toK. We
will present this result formally in the extended version of
this paper [7]. Furthermore, it is important to note that, if
K = 30 and the probabilities of interest forP[N > n] are
greater than10−3, then the results of this experiments are
essentially indistinguishable from Example 2.

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of transmissions : n

P
[N

>
n]

Poisson
Geometric

Fig. 6. Illustration for Example 4.

Example 4:Finally, as stated earlier in the paper, our results
also hold for lattice, e.g., integer-valued random variables. The



detailed proofs of these results will be written in the extended
version of this paper [7]. Here, we justify this claim with two
typical cases of discrete distributions, Poisson and geometric.
For the case whenA and L are Poisson, we selectλA = 8
and λL = 5, respectively. The parameters of the geometric
distributions forA and L are chosen aspA = 0.125 and
pL = 0.2, respectively. The simulation results for5 × 105

samples are illustrated in Figure 6 that clearly shows the linear
characteristics ofP[N > n] on the log-log plot, i.e., the power
law behavior.

V. ENGINEERING IMPLICATIONS

From an engineering perspective, our main discovery is the
matching between the statistical characteristics of the channel
and transmitted data (packets). Basically, ifα log P[A > x] >
log P[L > x] or α log P[A > x] < log P[L > x], then one
can expect good or bad (measured by the existence ofα-
moment forN andT ) delay performance. In this regard, we
want to point out that our model depicted in Figure 1 admits
a variant of a more general form which we term threshold
crossing [7]. We believe that this model provides a basic
structure that explains the power law phenomena in many
natural and man-made systems. For example, we discover a
new effect [11] that a basic finite population ALOHA model
with variable size (exponential) packets is characterizedby
power law transmission delays, possibly even resulting in zero
throughput. This power law effect might be diminished, or
perhaps eliminated, by reducing the variability of packets.
However, we show that even a slotted (synchronized) ALOHA
with packets of constant size can exhibit power law delays
when the number of active users is random.

Furthermore, on the physical layer, it is well known that
wireless links, especially for low-powered sensor networks,
have higher error rates than the wired counterparts. This may
result in large delays on the data link layer due to the (IP)
packet variability and channel failures. When the codewords,
the basic units of packets in the physical layer, are much
smaller than the maximum size of the packets, our results
show that the number of retransmissions could be power
law, which challenges the traditional model that assumes a
geometric number of retransmissions. We believe that short
codewords are realistic assumption for sensor networks, where
complicated coding schemes are unlikely since the nodes have
very limited computational power.

Since in reality, packet sizes may have an upper limit
(e.g., WaveLAN’s maximum transfer unit is1500 bytes), this
situation may result in truncated power law distributions for
T and N in the main body with a stretched (exponentiated)
support in relation to the support ofL (see Example3)
and, thus, may result in very long, although, exponentially
bounded delays. Similar investigations have been examinedfor
truncated heavy-tailed distributions in the queueing context in
[12].

Therefore, our results suggest that, packet fragmentation
techniques need to be applied with special care since, if the
packets are too small, they will mostly contain the packet

header, which can limit the useful throughput; if packets are
too large, power law delays can deteriorate the quality of
transmission.

In conclusion, we would like to emphasize that, in prac-
tice, our results provide an easily computable benchmark for
measuring the tradeoff between the data statistics and channel
characteristics that permits/prevents satisfactory transmission.

VI. PROOFS OFTHEOREM 3 AND THEOREM 5

The proofs are based on large deviation results developed
by Nagaev in [13]; specifically, we summarize Corollary 1.6
and Corollary 1.8 of [13] in this following lemma.

Lemma 2:Let X1, X2, · · ·Xn andX be i.i.d random vari-
ables withEX = 0, anda+

s ,
∫

u≥0
usdP[X < u] < ∞.

If 1 ≤ s ≤ 2, then, forx > y andys ≥ 4a+
s ,

P

[

n
∑

i=1

Xi ≥ x

]

≤ nP[X > y] +

(

ne2a+
s

xys−1

)x/2y

. (26)

If s > 2, then,

P

[

n
∑

i=1

Xi ≥ x

]

≤ nc(1)
s a+

s x−s + exp

(

−c
(2)
s x2

nVar[Xi]

)

, (27)

wherec
(1)
s = (1 + 2/s)s, c

(2)
s = 2(s + 2)−2e−s.

Proof: Please refer to [13].
Now, we are ready to prove Theorem 3.

Proof: First, we establish the upper bound. For anyδ >
0, we have

P[T > t] = P

[

N−1
∑

i=1

(Ui + Ai) + L > t

]

≤ P

[

N
∑

i=1

(Ui + Ai) > t, N ≤ t(1 − δ)

E[U + A]

]

+ P

[

N >
t(1 − δ)

E[U + A]

]

+ P [L > t]

, I1 + I2 + I3. (28)

In the following, we will show thatI1 = o(1/tα) and I3 =
o(1/tα). For I3, the conditionE[(U +A)1+α+ǫ] < ∞ and (2)
imply E[Lα(1+α+θ)] < ∞, which renders

I3 ≤ E[Lα(1+α+θ)]

tα(1+α+θ)
= o

(

1

tα

)

. (29)

For I1, let Xi , (Ui + Ai) − E[(Ui + Ai)] and ζ , (1 −
δ)/E[U + A]. We haveEX1+α+δ

1 < ∞, EX1 = 0 and

I1 ≤ P





∑

i≤t(1−δ)/E[U+A]

(Ui + Ai) > t





= P





∑

i≤ζt

Xi > δt



 . (30)



Here we have two situations. If1 < s = 1+ α + θ ≤ 2, using
(26) with y = δt/2, we obtain, ast → ∞,

P





∑

i≤ζt

Xi > δt



 ≤ ζtP[X > δt/2] +
e22s−1a+

s

ts−1

≤ ζ2s
E[Xs]

δsts−1
+

e22s−1a+
s

ts−1

= o

(

1

tα

)

. (31)

Otherwise, ifs = 1 + α + θ > 2, by (27), we derive

P





∑

i≤ζt

Xi > δt



 ≤ ζt · c(1)
s

a+
s

(δt)s
+ exp

(

−c
(2)
s (δt)2

ζtVar[Xi]

)

= o

(

1

tα

)

. (32)

Hence, from (30), (31) and (32), we derive

I1 ≤ o

(

1

tα

)

. (33)

Recalling Theorem 2, we know

lim
t→∞

log P

[

N > t(1−δ)
E[U+A]

]

log t
= −α, (34)

which, in conjunction with (29), (33) and (34), implies

lim
t→∞

log P [T > t]

log t
≤ −α. (35)

Next, we prove the lower bound. It is easy to obtain

P[T > t] = P

[

N−1
∑

i=1

(Ui + Ai) + L > t

]

≥ P

[

N−1
∑

i=1

(Ui + Ai) > t

]

≥ P

[

N−1
∑

i=1

(Ui + Ai) > t, N ≥ t(1 + δ)

E[U + A]
+ 1

]

≥ P

[

N ≥ t(1 + δ)

E[U + A]
+ 1

]

− P

[

N−1
∑

i=1

(Ui + Ai) ≤ t, N ≥ t(1 + δ)

E[U + A]
+ 1

]

, I1 − I2. (36)

Now, since

I2 ≤ P





∑

i≤t(1+δ)/E[U+A]

(Ui + Ai) ≤ t





= P





∑

i≤t(1+δ)/E[U+A]

(−Xi) ≥ δt



 ,

and(−Xi) ≤ E[U +A] < ∞, by using the same argument as
in the proof for (33), we obtain

I2 ≤ o

(

1

tα

)

. (37)

Again, by Theorem 2,

lim
t→∞

log P

[

N > t(1+δ)
E[U+A] + 1

]

log t
= −α,

from which, using (36) and (37), we derive

lim
t→∞

log P [T > t]

log t
≥ −α. (38)

Combining (35) and (38) completes the proof.
Next, we give a brief sketch of the proof of Theorem 5.

Proof: Using the same technique as in the proof of
Theorem 3, we obtain

P[T > t] ≤ P

[

N ≥ t(1 − δ)

E[U + A]

]

+ o

(

1

tα

)

,

and

P[T > t] ≥ P

[

N ≥ t(1 + δ)

E[U + A]

]

− o

(

1

tα

)

.

By Theorem 4, we have

P

[

N ≥ t(1 − δ)

E[U + A]

]

∼
Γ(α + 1)(E[U + A])α

(t(1 − δ))α · H(α log t)α
, (39)

and

P

[

N ≥ t(1 + δ)

E[U + A]

]

∼
Γ(α + 1)(E[U + A])α

(t(1 + δ))α · H(α log t)α
. (40)

Finally, passingδ to zero in (39) and (40) completes the proof.
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