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Abstract—Guided by the empirical observation that real- queueinganalysistechniques. To do this, we construct an
time MPEG video streams exhibit both multiple time scale and gccurate and analytically tractable model of MPEG video

subexponential characteristics, we construct a video model that o sireams. Analytically tractable models of traffic sources
captures both of these characteristics and is amenable to queueing

analysis. We investigate two fundamental approaches for extract- play a crucial P"’_‘rt n, fqr example, admission control pOIICIeS
ing the model parameters: using sample path and second-order that ensure efficient utilization of network resources while pro-
statistics-based methods. The model exhibits the following two viding quality of services guarantees. Our approach provides a
canonical queueing behaviors. unified context for explaining a number of seemingly conflict-

When strict stability conditions are satisfied, i.e., the conditional . . .
mean of each scene is smaller than the capacity of the server, pre_|ng results that have recently been reported in the literature.

cise modeling of the interscene dynamics (long-term dependency)Along th? same Iines, our model applies to th? fuII_range
is not essential for the accurate prediction of small to moderately of queueing behavior that is relevant to engineering different
large queue sizes. In this case, the queue length distribution is video applications such as real-time videoconferencing, video
determined using quasistationary (perturbation theory) analysis. 5n demand broadcasting, etc.

When weak stabilityconditions are satisfied, i.e., the conditional .
mean of at least one scene type is greater than the capacity of We focus on two fundamental characteristics of MPEG

the server, the dominant effect for building a large queue size Video streamsmultiple time scalesndsubexponentialityWe
is the subexponential (long-tailed) scene length distribution. In identify the importance of these characteristics for approximate
this case, precise modeling of intrascene statistics is of secondaryqueueing analysis. Accordingly, we design a video model that

importance for predicting the large queueing behavior. A fluid 500 rately reflects these characteristics. The model is struc-
model, whose arrival process is obtained from the video data by ’

replacing scene statistics with their means, is shown to asymptot- tured so that it is amenable to recently developed queueing
ically converge to the exact queue distribution. theoretical analysis [1], [2].

Using the transition scenario of moving from one stability In the literature, the existence of multiple time scale statis-
region to the other by a change in the value of the server capacity, tics in video traffic has been consistently observed by many

we synthesize recent queueing theoretic advances and ad hoc . . [ .
results in video modeling, and unify a broad range of seemingly authors. The bit rate of a video stream exhibits dependencies

contradictory experimental observations found in the literature. (corrglations) that gxtend over a wide range of time scales,

As a word of caution for the widespread usage of second-order ranging from the time between consecutive cells or pack-

statistics modeling methods, we construct two processes with ets (microseconds), to consecutive frames (milliseconds), to

the same second-order statistics that produce distinctly different higher level properties of video such as scenes (seconds), to

gueueing behaviors. . . . ’
entire movies or video calls.

Index Terms—Long-tailed distributions, MPEG, multimedia Different modeling perspectives have been taken in exam-
communication, multiple time scales, queueing analysis, subex-jning this complex time-dependency structure. Li and Hwang
ponential distributions, video traffic modeling. . . . . !

in [3], argue from the frequency domain point of view that the
low frequency band of the autocorrelation’s Fourier transform
(long-term correlation) has the most significant impact on
HE key objective of this work is to bridge the gapgueueing. Lazaet al. [4] developed video models for the
between video traffianodelingand recently developedslice and frame time scales, and showed that in the case
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cell and slice levels of video traffic. The range of dependenceln order to alleviate this problem, we also propose a direct
types investigated (i.e., the shape of the autocorrelation)nethod for extracting some statistical parameters of the video
restricted by the class of periodic Markov chains underlyingodel that exhibits a very low computational complexity
the model. and canexactlymatch any marginal distribution function and

In most of these modeling approaches, however, time scatemivex nonincreasing autocorrelation function (second-order
are not explicitly represented in a manner that is suited both fatistics). We demonstrate that this method works well on
gueueing analysis and for computationally inexpensive traffieal-time video data, and can be used as an alternative to
generation. A distinct queueing behavior that results from thiee sample-path-based definitions of scenes. However, since
multiple time scale structure of arrival processes was recenthis modeling approach is only based on second-order statis-
investigated in [7] and [8]. In these papers, it was analyticaltjcs (which do not completely determine the process), some
shown that when a stream with multiple time scales pasdaaccuracy in this methodology can be expected. In that
through a queue, the queue length distribution has multiplegard, as a word of caution for the usage of this (or any
decay rates. Similar results were independently reported dther second-order statistics-based) method, we construct two
[9]. Furthermore, a perturbation theory technique that exploigocesses that have exactly the same marginals and autocor-
the multiple time scale structure of the arrival process amdlation functions, but produce distinctly different queueing
leads to a computationally efficient algorithm for evaluatingehavior.
the queue length distribution was developed in [8]. All of this Although the presented video model is rather simple, a
suggests a need for video models with explicit representatidirect queueing analysis does not appear to be straightforward.
of multiple time scales whose queueing behavior is analytically significant simplification in the queueing analysis can be
tractable. obtained, however, thanks to the structured representation of

The second dominant MPEG video traffic characteristic ihe dominant video characteristics. When a stream generated
the subexponential duration of scene lengths. Subexponential our model is fed into a single-server queue, depending
(long-range) dependence has been observed and studiedrirthe capacity of the queue and the buffer sizes of interest,
video traffic in [10], where the modeling approach was throughe relative importance of the different aspects of the arrival
self-similar processes. Resnick and Samorodnitsky [11] iprocess emerges. We identify two canonical queueing dynam-
vestigated the long-range dependency of the autocorrelatios: strict and weak stability. In each of these, the relevant
function of video conference traces. We observed a subexparts of the model are significantly simpler than in the original
nential scene length duration in MPEG video streams (thisodel, and as mentioned above, are amenable for recently
was also seen in [12] for video coded by a simpler DPCleveloped theoretical analysis.
scheme without motion compensation), which is responsiblewhen strict stability conditions are satisfied, i.e., the con-
for the long-range dependency. A calculus of almost negligallional mean of each scene is smaller than the capacity of
computational complexity (unlike the case of self-similaghe server, the dominant effect in queue buildup is due to
processes) for the analysis of subexponential queueing systenes variations on the fast time scale within each scene. In
was recently reported in [7], [1], [13]; in those papers, ithis case, a precise modeling of the interscene dynamics (long
is shown that queueing systems with subexponential arrivihe dependency) is not essential for the accurate prediction
processes exhibit queueing behavior which is very distingt small to moderate queue sizes. The queue length distribu-
from the one obtained by exploring conventional exponentigibn is determined using quasistationary (perturbation theory)
models. analysis.

In this paper, we present a general model of MPEG videowhen weak stabilityconditions are satisfied, i.e., the con-
streams that accurately captures both the multiple time scalonal mean of at least one scene type is greater than
and subexponential characteristics of video strearifie the capacity of the server, the dominant effect in building
model is structured such that both of these fundamentallarge queue size is the subexponential (long-tailed) scene
characteristics arexplicitly represented length distribution. In this case, a precise modeling of in-

By analogy with the visual content of a video streamrascene statistics is of secondary importance for predicting
i.e., its semantic structure, simple algorithms can be devisg@ large queueing behavior. A fluid model, obtained from the
to parse the stream into a set of scenes. Subexponentialiteo data by replacing scene statistics with their means, is

and the slow time scale dynamics are motivated by tR@own to asymptotically converge to the exact queue distri-
subexponential (Pareto) scene length duration distribution aggkion.

Markovian interscene dynamics. Fast time scale dynamics arerhe results described above—namely, that in the weak
due to the independent identically distributed (i.i.d.) intrasceRgability scenario, the dominant effect on the asymptotic queue-
statistics. These statistics may vary depending on the sceifg. behavior is the subexponential (long-range) dependency,
This modeling approach requires a detailed statistical analysigd that in the strict stability scenario, the dominant effect
and in particular evaluating the statistics of the scene lengigsdue to the fast time scale buildups—put in the broader
and their dynamics. This process may be tedious, complegntext some conflicting results from the literature. Indeed,
and often involves a certain amount of “eyeballing.” a number of authors [3], [15], [16] contend that long-range
dependence of one form or another has a dominant impact

1Preliminary modeling results that concentrate only on the multiple i@ the queue, while others claim that it dogs not [17], [18],
structure were reported in [14]. [4]. Our framework allows one to synthesize these results
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in that the former can be viewed as instances of the weakThe next time scale is associated with the dynamic behavior

stability scenario, while the latter are instances of the striover dozens of GOP’s. By analogy with the visual content of

stability scenario. The capacity of the server that characterizbe video stream, we call the units of this time scadenes

the transition from one stability scenario to the other playBhe scenes we refer to here are defined by significant changes

a key role in understanding the queueing behavior of MPEG the GOP size sequence, and although it makes intuitive

video streams. sense to think so, it is not necessarily the case that these
This paper is organized as follows. In the next sectionprrespond to visual scengs.

we present our multiple time scale model of video streams.Following [12], we define a scene change to occur at a point

The formal model is given in Section II-C, and the twavhere the normalized second difference of GOP sizes is large

fundamental approaches to parameter matching are detaded negative. More precisely, IQVL :t=1,2,---} be the

in Sections 1I-B and 1I-D. In Sections Il and IV, we look atempirical sequence of GOP sizes. GOPthe last of a scene if

two typical scenarios which illustrate the impact of time scales

and subexponentiality on the queueing behavior. Section V [(Appr — Ay) — (A — A1) 05 1
concludes the paper. . L < =0.5. 1)
5 2. A

Il. MODELING MPEG VIDEO STREAMS =t
This mechanism for extracting scenes, as well as the values

A. MPEG Video Data of the normalization window (25 GOP’s) and the threshold
The video data employed consisted of video sequences(gf-5); were selected empirically from a variety of methods.

MPEG-I frame sizes, created at the Institute of Computer S&Mong the other methods we considered is the approach of [4],

ence, University of Wirzburg, and are described in [19]. In allWhich identifies scene changes as jumis— A; 1| > Awin,

17 sequences (sportscasts, movies, music videos, newsc&SJECt 0 a minimum scene lengthy,. Indeed, there is no

talk shows, cartoons, and “set top”) of 40000 frames easHgle “natural” definition of scenes that arises directly from

were available. the time series4;.
Taking as input the raw video frames, the MPEG coder Fig. 1 illustrates the scene extraction from the actual MPEG
produced three types of frames at its output. GOP sequence via (1). Our full MPEG sequence of 59292

. 90P’s yields 3162 scenes of mean length 18.75. Scenes
L . . constitute the basic unit at the slower time scale.
to encode it, i.e., only spatial redundancies aré _

exploited MPEG sequences can be thought of as consisting of scenes

. L , . or states of a slower process, modulating the fast time scale

« P frames: Motion compensation with respect to the pre- .

process. For tractability purposes, however, the number of

vious I frame is used to achieve further com- ; L
pression scenes is too large. Thus, our next objective is to cluster (ag-

. B frames: Both the previous and the ndxor P frames gregate) the scenes extracted from an MPEG video sequence
are used to eliminate temporal redundancie'sn,t0 a small number ofeglmgs .
In order to do so, we first characterize the scenes by

well ial ones. . ; o . .
as well as spatial ones the simplest possible criterion: average GOP size during

On average/” frames are approximately, twice the size Ofhe gcene. Fig. 2 shows the histogram of this quantity. The
B frames, and one third the size bframes. The frame types ¢.anes are classified into four type&: M, L, and XL. S

occur in a fixed periodic pattern. In this data set, the period &d M consist of, respectively, the bottom third and middle
12 frames, and the pattern IBBPBBPBBPBB. SUCh @ g of the scenes (on the horizontal axis), each of the

segment of 12 frames is called a group of pictures (GOP). oy gters having 1054 scenes. Because of the “long tail” of

_ In this paper, we focus on the analysis a_nd modeling e histogram, we divided the top third into the two clus-
video traces on the GOP level. Thus, our basic unit or sam%gs L and XI. with the 856 smallest scenes in the first
is the size of a GOP, i.e., the sum of the sizes of the 12 framgfy e other 198 scenes in the second. More sophisticated

Our working data set will be a sequence of 59292 Szaempl%?)proaches to clustering scenes have been investigated in the
formed by the concatenation of the 17 movies end to“end. literature (see, for example, [20]), but we find that they do

not add fundamental insights to the main conclusions of this
B. Sample Path Modeling paper.

The basic concept which we use in separating time scales igkegime instances are formed by merging consecutive scenes
that of scenes. As mentioned above, in this work, the unit 8f the same type. The average GOP sizes for the regimes are
our video streams is the MPEG GOP, so the duration of one 3
GOP (i.e., 12 frames, or half a second) is the basic time urfids; Am, Ar, Axr) = (1.1626,2.1919,3.4041, 5.9237) x 10°.

For the behavior at the smaller time scale of a single frame,
the reader is referred to [14]. The horizontal lines in Fig. 1 show the extracted sequence of
regimes. In this way, the full MPEG GOP sequence yields a

2Note that since 40000 is not divisible by 12, the concatenation perturbs
the IPB pattern, but since we are summing over GOP’s, at worst, this only 30ur work is based on traces of frame sizes from real video streams, but
affects 16 out of the 59292 samples. not on the actual images.
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5 MPEG GOP sequence and scene changes
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Fig. 1. Scene changes (vertical lines) and regimes (horizontal segments) in the MPEG GOP video sequence.
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Fig. 2. Histogram of the average GOP size/scene.

sequence of 1213 regimes of the four types. The duratiooiher three regimes, we will argue that all regimes can be
of regimes have the probability density functions (pdf'sinodeled as having the same duration statistics. This will be
shown in Fig. 3. Note that, since instancesf. regimes, further justified in Section IV, where we show that, for our
by definition, occur very rarely, our data set is insufficierpurposes, the importance of the regime duration is mainly in
to obtain a meaningful distribution of duration for tb€L the subexponential nature of the tail of the regime duration
regime. However, in constructing our model in Section II-Qistribution, where the three regimes (and, we assume, the
based on the closeness of the duration distributions of tfeurth) are even more similar.
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Fig. 3. Regime duration statistics.

Finally, by counting the relative frequencies of regiméor the regime:. Finally, we model the video stream as a
transitions on the sample path, we obtain the matrix gfocess of the formd = {4, = Xi(B:),t > 0}, where

transition probabilities between regimes the process of regime® constitutes the slow time scale
0  psm PSL PSXL component that is modulated by the fast time scale “noise”
’ ’ ’ processX.

p=|pmus O . )
j Remarks: 1) The fast time scale process, (i) could be

made dependent, but as shown by the results of the follow-

0 0.862 0.134 3.95¢ — 03 ing sections, the additional complexity is not necessary to
_ 0.449 0 0501 4.95¢—02 obtain models that are accurate enough. This is because the
T | 843¢—-02 0654 0O 0.261 ) time dependence is, to a large extent, accounted for by the
3.39¢ —02 0.288 0.678 0 modulating proces®; (specifically by the regime durations).
2) The sojourn times can be made state dependent,Si,e.,
C. A Mathematical Model for MPEG Video Streams which takes values i{1,2,---}, could have distributior¥;

Let T = {1}, T}, ---} be a sequence of renewal times, i_e_fpr_Jn = ¢, but this also seems unnecessary in view of Fig_. 3
the sequence,, = 1}, — T, > 1 is i.i.d. with a marginal whlch shqws_ thgt the different regimes types have similar
distribution F(7) = IP[S, < 7]. The processl’ represents duration dlst'rlbutlons. Thus, we séf = I for all <.
the time instances at which the video stream changes fromlhe marginalsG; of the fast time scale processes are
one regime to another. Further, let = {J,,n > 0} obtained d_lrectly from the MPEG GOP traces, sp_ecmcally
be a Markov chain with state spade, M, L, XL}, and a from the histogram of the subsgque_nce corresponc_img to the
probability transition matrix? = (p;;), with p; = 0. This portions where the extracted regime i hus, the (stationary)

chain models the transitions between different regimes. ~ overall marginal distributiort(z) = IP[A, < z] of the model
Let B = {B;,t > 0} be a process taking values inmatches that of the data exactly. The sojourn time distribution

def F is obtained from the regime duration histograms extracted

{S,M,L, XL} andB; = J,,T,-1 <t <T,,n>1 B - :
represents the indicator of the regime in which a video stre Rm the_ MPEG GOP trace_ (shown in Fig. 3—see Section IV
or details on scene durations).

is at timet. The regime indicator process has Markovian jum

to the next state, but arbitrarily distributed sojourn times in o ]

each state. Thus, the regime indicator procBss a Markov D- Second-Order Statistics-Based Modeling

renewal process (see, for example, [21]). A common approach to modeling video streams is to gener-
To finish the construction of the model, we define fouate a stochastic process that matches its first- and second-order

mutually independent i.i.d. process&gi) = {X;(¢),t > 0}, statistics, i.e., its marginal distribution and autocorrelation

with marginal distributionG;, mean X;, each X (i) being functions (ACF’s) (see, for example, [22], [3], [4], [23]). For

independent ofl’ and J, ¢ € {S,M,L,XL}. Each process these methods to work well, it is desirable to have an easily

X (¢) models the fast time scale statistics (intrascene “nois&pmputable expression of the ACF for the generated process
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sample path of the fluid model). We call this type of process a
space-time renewal proce§SRP); the hame comes from the
fact that both space and time are renewal. The expression in
X(L) the above theorem now becomes

previous intervals (regime indicator lines in Fig. 4 illustrate the
Regime indicator B,
4 X(XL)
X |

o Wl
ai

Raa(r)=1-m™* Z[I—F(u)] 2)

The ACF is exactly equal to the integrated tail of the renewal

|
1
)
| 1 ) i
] ! ! 1
| | ! 1
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i 1 [ |
| . xen |
) 1
| 1 ) i
1 ' i 1
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X(S) i () distribution function. Therefore, given an AGE, 4, it is easy
| ; ! to obtain the regime duration distributiafi.
| ) ! | From (2), by settingr = 1 ((0) = 0), we get
| | | | 1
. . . . s = 3
To T T, T3 Ty Ts Tg t m=qz R44(1) 3)
Fig. 4. Multiple time scale model of MPEG video. and[l —RAA(T+1)] _ [1 —RAA(T)] — m_l[l —F(T)] yields
F(T):1—m[RAA(T)—RAA(T+1)]. 4)

in terms of model parameters. For the model presented in

Section II-C above, we obtain such expressions after someFor /' to be a probability distribution, it must be nonde-
further simplifying assumptions, and show how a simplereasing, which implies tha& 44 must beconvexandF < 1
model matches video traffic arbitrarily well up to second-ordémplies thatR 4 4 must benonincreasingFinally, consistency
statistics. We present it here as an alternative to the sample padtts for m = > 77 [1 — F(7)] = Y70, m[Raa(r) —

domain extraction of parameters employed in Section II-B. R, 4(7 + 1)]. Since R4.4(0) = 1, this implies that we must

Let 7; %' IP[B, = i] denote the steady-state probability ohavelim, ., R.a(r) = 0.

being in regime. Assuming that the Markov chais is i.i.d., Strengths of the SRP Approaciihe main strengths of this

the ACF R4 4(R.14) def (EAoA, — (IEAg)?)/o2(Ag) of the modeling approach are the following. First, it provides an
processA = {4,,t > 0} is given as follows: arbitrarily exact match of the first- and second-order statistics,

Theorem 1:1If, in the model of Section II-C, the Markov & Property which is not achieved .by. any other known method.
chain J consists of a sequence of i.i.d. random variables amgcond, a very broad and realistic class of AFC's can be

the renewal distribution is arbitrary, thei ¢ 4(0) = 1) matched, including, for example, Markovian models such
as the Markov-modulated Poisson process of Sketlal.

Z m(IEX (7))? — (IEAp)? [17], the TES-based models [22], or the DAR models [24].
Raa(r) = i [1—Fi(7)] > 1 Note that all of these examples taken from the literature
AT = Z m(IEX2(i)) — (IEA)? nr T= can only match exponentially decreasing ACF’s. Third, an

SRP model can matcbBubexponentiaACF’s, and as such,
it is a uniquely efficient and simple model capturing long-

where Fi(r) € 1/m> 71— Fw)],m ¥ IES, is the range dependence. Note that th/G/oo arrival model (see
residual distribution for the renewal distributidni. [16]) also displays great flexibility in modeling second-order
Proof: Follows from straightforward algebra. ¢ statistics with subexponential autocorrelation structure. We
Remark: A simple asymptotic expresion for the ACF isrefer the reader to [16, Proposition 4.2] for the explicit form
also available whet is Markovian and the renewal times aredf the ACF of theM /G /oo arrival process. However, there
subexponential (see Appendix B for the definition of subexpis no explicit algorithm to extracd/ /G /oc model parameters
nential distributions). This result (Theorem 4) is presented ffpm the second-order statistics of an empirical trace. (Precise
Section IV together with the other results on subexponenti#id queue asymptotics with//G /oo arrivals were obtained
distributions. in [13], [2], and [25].) Fourth, in the presence of long-tailed
The expression above gives us substantial flexibility ifenewal times, Theorem 2 (see Section 1V-B) further justifies
adjusting model parameters to fit an empirical ACF. In athe usage of the fluid type models.
other known models, however, there is explicit expression  We now use this SRP model to generate traffic matching that
for estimating model parameters for exactly matching a givéf 17 MPEG sources multiplexed (summed) into one stream.
ACF. This is usually done by heuristic searches in the parafer clarity, we consider the stream at the GOP level, where
eter space. Here, we can overcome this substantial obsta#le, measured ACF exhibits the desired (convex, decreasing)
at the expense of further simplifying the model, by assumidgoperties. Fig. 5 shows portions of sample paths for the real
that the noise processes are constant, Xdi) = )\;. Thus, and generated traffic, and how well the statistics match.
A reduces to a simple fluid model, with constant rate arrivals In conclusion, independent of whether one uses a sample

in each renewal interval that are chosen independently frg#ath (as in Section 11-B) or a statistics-based approach (as in
the this section) for obtaining the parameters of the regime

4For the general case of a non i.i.d. modulating chain, we give asymptotic
relations in Section IV. 5That, however, is not the end of the story—see Appendix A.

%
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Fig. 5. Matching first- and second-order characteristics of MPEG video.

duration distribution /', the main strength of the general Under the strictly stable condition, the queueing behavior
model presented in Section II-C is that it provides a single approximately given by the following superposition result
framework in which to view the different characteristics whiclisee the superposition theorem in [7] and [8]):

are relevant to traffic engineering for the full range of video

communications services. This is further demonstrated in P[Q; = z] ~ Z 7 Pr[Q4 (i) = ] (6)
Sections Il and IV. ie{S,M,L,X L}

where @, (¢) is the queue size obtained by feeding the queue
only with regimes, and «; is the steady-state probability of
Consider a single-server queue with the arrival procéss peing in regimei. Informally, this result should be understood
and constant server caypac@, whose gueue siz€), at time asIP[Q, = x|/ Eie{st’LXL} mP[Q.(i) = z] — 1 as the
t is defined by Lindley’s recursion holding times of the regimes approash In the formal proof
Q= (Qu1 — C + A (5) of this_result, which can bg found_ in [8]_, the limit is taken
only with respect to the regime sojourn times, and the buffer
For the rest of the paper, we assume thatis the unique sizex is kept fixed (finite). Therefore, this result gives good
stationary solution to the recursion (5) (see [26]), i.e., wapproximations when the average renewal (regime duration)
assume that the queue is in its steady state. The arrival prodésgs are much larger than the time unit (one GOP) and the
A = (A),t > 0, represents the mathematical model fopuffer sizes are small to moderately large. A refinement of (6)
MPEG video streams as described in Section II-C. based on perturbation theory asymptotic expansion series can
In this section, we consider the case of what we cattiatly be found in [8].
stablequeue. This is the case when the capacity of the serverFig. 7 shows the queue length pdf's resulting from queueing
is greater than the mean arrival rate in the “worst case” regiragnulations of the type defined by (5) for five different
Axr. Fig. 6 illustrates this case. sequences. In the top plot, the queue is fed by each of the
The queue will build up only when the arrivals exceed thimur subsequences of the empirical GOP trace corresponding
server capacity (the value indicated by the horizontal linelp the regime types. The bottom plot of Fig. 7 compares the
Under the strict stability condition, this tends to happen witveighted sum of the four queue distributions with the queue
occasional large peaks (see Fig. 6), and not with sustairgidtribution for the full empirical sequence (GOP trace). The
bursts since the capacity is above the mean rate of even seever capacityC = Ax /0.9 satisfies the strict stability
worst regime (the regimes and their mean GOP sizes are shaendition. The close match between the superposition of the
by the horizontal segments). Thus, it is more important four regimes and the full sequence verifies (6).
capture these peaks (which are in the fast time scale process)his suggests thathe fast time scale i.i.d. processes are
rather than the slow time scale bursts (i.e., the duration sidfficient for capturing the queueing behavior due to the dif-
regimes). ferent regimesTo corroborate this, Fig. 8 compares the queue

lll. STRICTLY STABLE QUEUE: FAST TIME SCALE BuILD-UPS
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Fig. 7. Under strict stability, MPEG GOP satisfies superposition principle; see text for details.

length distributions obtained when the traffic is generated llye queue length distributions (at least for the small buffer
two instances of the model we described in Section 1I-Gjzes) for the two model instances supports the claim that
with the queue length distribution resulting from the actu#b) holds in the strict stability scenario: the slow time scale
MPEG GOP trace. The first instance of the model has a Pardimamics do not come into play since knowledge of the steady-
regime duration distributiol’, and the second has a geometristate regime probabilities; is enough. Thus, the specific form
distribution. In both cases, the mean equals the mean regiafighe dependency structure (here, Pareto or geometric) is of

duration of the empirical MPEG GOP trace. The closenesslifle consequence.



1060 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

10 'k N MPEG GOP: - 3
N Pareto Regime Model: ... ]

el Geom Regime Model: —

PDF

-5 N

107 Vi

-7 | L 1
10° 10
Queue size (bits)

10 s

Fig. 8. Strictly stable queue pdf for MPEG GOP and generated model.

The relatively low computational complexity of (6) justifiessummation in (6) is at least ten times that of any of the three
our multiple time scale approach to modeling, at least in tlwther regimes (see Fig. 7). This is in line with [28, Th. 2].
strict stability case: if strict stability is the realistic context The above observations for the strict stability scenario help
(i.e., if the maximum buffer size and cell loss requirementa the understanding of recent work by a number of authors.
are stringent), then one can concentrate the modeling eff@kelly et al. [17] observed that, although the “presence of
separately, on each of the regim@he multiple time scale strong correlation is important for capturing the queueing
nature of the traffic needs to be taken into account up twehavior of video, the actual form of the correlation is not.”
the mean regime durationsHigher order statistics of the Ryu and Elwalid [18] argued that for “realistic ATM traffic
slow time scale variations do not offer significant additionangineering,” “long term correlations do not have significant
improvements (for small buffer sizes). impact on the cell loss rate.” Similarly, Lazat al. [4]

Thus, for the purpose of analytical predictions of queueirapserved that precise modeling of long-term correlation is
behavior, one computes the queue length distribution assb-secondary importance for “real-time” scheduling. These
ciated with each of the simple processEg¢), and weights observations are in full agreement with our modeling approach
them byr;. For the purpose of traffic generation, the advantage MPEG video streams, and can be readily explained in the
is that one need not expend too much effort in estimatirmpntext of the strict stability scenario that we described in this
the parameters of' as long as the mean is accurate; this isection.
especially useful with heavy-tailed regime durations (i.e., long- In the following section, we show that when the queue is
range dependency) whose parameters are difficult to estfimateeakly stable, the form of the dependency plays a dominant

Often, for the purpose of a network admission controlleple in the associated queueing behavior, especially for large
seeking to guarantee a given quality of service while efficienthuffer sizes, and particularly when this dependency (the regime
utilizing resources, one wants to accurately estimate the tailairations) is subexponential in nature, as is the case for MPEG
the queue, and derive from that the traffic stream’s “equivalevideo streams.
bandwidth” [27]. However, a simple-minded application of the
notion of equivalent bandwidth based only the decay rate of
the queue tail would, in this case, overestimate the queue byY: WEAKLY STABLE QUEUE: SUBEXPONENTIAL BURSTS
a factor of ¥7xr, (i.e., two orders of magnitude), and thus
result in an underutilization of resources. This is because the Queueing Behavior
asymptotic decay rate of f[he queue distribution depends mainlyj,, the second scenario, the queusvisakly stablemeaning
on the “worst case” regimeé( L. Indeed, for queue lengthsiyat the capacity, although still above the overall mean of
of 1C¢ bits or more, the contribution of that regime to thene arrival stream, may be below the mean of one or more

6Note that, since the total length of the data set (the MPEG GOP sequenf:%FStable. reg.lmes' T.hls may.nOt b? the _approprlate Cont?Xt
is 59292, the points at “probabilities” below 1 are statistically meaningless or real-time interactive services, i.e., video streams with
for the queue distribution of the MPEG GOP trace. small delay bounds. However, for services such as video on
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Fig. 9. Weak stability: the horizontal line shows the server capacity.

demand (VOD) or broadcasting, understanding the behaviorTwo generated sample patb§ regime durationsare illus-

in a scenario with large buffers and tolerance for long delaymted in Fig. 11. The top, which has the Pareto marginal,
may be important. In this section, we show how the santdearly exhibits the subexponential characteristic of having
model can be used for modeling and analyzing this end of tlge isolated peaks, unlike the geometric sequence, which has
spectrum of video communication services. an exponentially decaying pdf.

Fig. 9 illustrates the weak stability case. Here, the queueRemark: Intuitively, if X;, X»,---, X, are independent,
tends to be built up by sustained bursts (i.e., by the unstaifléntically, and subexponentially distributed random variables
regimes) that require service beyond the capacity of the server.
The duration of the regimes is then critical for the queue length

distribution. ) )
The density of durations for all four types of regime?sx — oo. This means that a sum of subexponential random

combined is shown in Fig. 10. A Pareto function of the fornﬁ;riables exceeds a large valuby having one of them exceed
I

(8/7) gives an accurate match (a Pareto function was a s value. In othe_r words, in the_|.|.d. sequence, the b_|gg_est
found to match scene durations of VBR video in [12]). Ipeaks tend to be isolated, and since subexponential distribu-

tions are “heavy tailed,” roughly speaking, these biggest peaks

the density of the durations was exponentially decaymg,dg;g,e extremely large and dominate the sequence.

it would be in a purely Markov-modulated model, it woul : . .
appear as a straiaht line on the log-scaled plot. Thus. MPE Fig. 12 s_hows the r_esultmg gueue length dlstrlbuthns_under
PP L 9 . g- P ” v?eak stability. The figure shows that the Pareto-distributed
traffic_exhibits su_bequn_e_nualbehawor on the slow .t|me regime duration captures the salient features of the queue
scale. Some. bas.|c Qef|p|t|ons a”‘?' resylts on Iopg-ta|led ai@?i;gth distribution, which the geometric regime duration does
subexponential distributions are given in Appendix B. not. Note that by the superposition result described in Section
The demonstrated subexponentiality of scene lengths plgys nqer strict stability conditions, since they have the same
a crucial role in the queueing behavior in the weak stabilitgaqn regime durations, all three would have the same queue
scenario. Consider the case of the server having a capagji¥ripution.
of ¢ = Ar. Out of the four regimesX L is unstable and.  Thys, the dominant effect on the queueing behavior is the
is marginally stable; the queue is stable with respect to tBghexponential regime duration. The fast time scale has little
overall arrival stream. impact in the weak stability scenario. To verify this, we also
Simulations were performed with the MPEG GOP streagimulated the queue with the SRP “fluid flow” version of our
and two model-generated streams, respectively. The first gemodel. Recall that the SRP model is simply the special case
erated stream has Pareto-distributed regime durations, whigrt is obtained by removing the fast time scale “noise,” i.e.,
the Pareto function is identical to the one shown in Fig. 18etting X () = \;. The fourth curve in Fig. 12 (for the fluid
The second has geometrically distributed regime durations.rtrodel with Pareto regime durations) shows that it is indeed
all three streams, the regime durations htheesame mean true that the fast time scale does not affect the asymptotic

PX,+Xo+ -+ X, > z] ~nlP[X; > 2] (7
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Fig. 11. Sample paths of subexponentially (top) and exponentially (bottom) distributed processes waiméeean

gueueing behavior. The same figure also suggests that the SiRival stream with geometric (exponentially decaying) scene
model might accurately predict the tail behavior of the quewtirations has a constant slope on the log scale which is steeper
for large buffer sizes. This observation will be made precighan the tail corresponding to an arrival stream with Pareto
regimes. Thus, for very large buffers (for the example of
The key feature that we will be investigating in the reshe simulation, a buffer size greater of ®10@its or more),
of this paper is the queue tail. This tail can be attributed # Markovian model with exponentially decaying (geometric)
the subexponentiality of the regime durations of the arrivaégime durations would severely underestimate delays and
process. Indeed, the queue tail density corresponding to lags probabilities. This is clearly apparent in Fig. 13, where

in the following section.
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the integrated tailP(? > x)—which closely approximates Thus, compared to the MPEG stream and the Pareto model,
buffer overflow probabilities—of the queue generated by thitbe geometric model generates more regimes of “medium”
two models is shown. At small buffer sizes, the Markoviaduration, and thus has more often a queue of medium length,
model overestimates the buffer size. This is because, in ordbert would have fewer of the very long regimes which make

to have the same mean as the subexponential (heavy-taildm) queue build up to very large sizes.

distribution, the geometric distribution has to have a bulkier Due to the limited amount of data, we cannot draw more

midsection, i.e., regimes of medium size happen more oftehan qualitative conclusions purely from the MPEG trace-
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driven simulations. This is even more so for the subexponential Proof: Given in Appendix C.
asymptotics since the processes converge to their steady staiRemarks: 1) This result strongly supports the fluid models
only with subexponential speed (see [1]). However, we afsee [29]) that have much lower computational complexity;
able to infer the dominant queueing behavior for our mod@2) related asymptotic results in the Markovian framework that
with subexponential regime durations. That in itself is pustify the fluid approximation were obtained in [9] and [30];
valuable lesson for simulation studies of video traffic behaviaB) this result can be proved under the weaker assumption that
“it takes a very long time” to obtain accurate results othe distribution of the renewal times is intermediately regularly
subexponential statistics. Thus, it is all the more importamarying [13]. Due to the space constraints and the need for
to have the analytical tools to calculate the queue distributidntroducing new definitions, we avoid stating this result in its
most general form.

Intuitively, the result of Theorem 2 can be explained as
) ] o - follows. In the subexponential world, large queue build-ups

.The simulations indicate t_hat, under wqak stab|I|ty,. thﬁappen in an isolated fashion. When the queue is weakly
tail of the queue length pdf is subexponential (respectlvelgtame' a large excursion of the proce$s basically results

exponential) when the slow time scale statistics are sUbEXRRsm one long isolated regime during which the average
nential (respectively, exponential). As we shall presently shoWrjya rate exceeds the server capacity. Assume that when
analysis confirms this observation. Our modeling approaghs gverflow happens, the arrival process is in regimEnen,
leads directly to an analytical estimation of the tail of th@ e total server overflow during this long renewal perigid
queue length distribution. is approximatelyy"; 5! [X, (i) — C] & S,[EX,(i) - C]; to

First, the asymptotic accuracy of the SRP fluid model is pres e this approximation rigorous is the technical difficulty
sented in Theorem 2. Second, an elegant and computat|onﬁwo|ved in proving Theorem 2.

efficient queueing formula for the fluid model is obtained in A simple illustration of the preceding theorem is given with

Theorem 3. Third, we investigate the ACF of our video modge ¢1owing simulation example. Assume that the modulating
in Theorem 4, and some of its simplifications in Corolla%hainj is a two-state valued Bernoulli process WiE{.J,, =
" =

1. Fourth, Theorem 5 directly relates the queueing and the_ | _ IP[J, = 0] = p = 0.4; when in state 0, there are no
ACF asymptotic behavior. A summary of the intersection (Hfrivals (i.e..X,(0) = 0,) and when in state 1, the conditional

all these results is given in Corollary 2. All of the results in thﬁrrivalth(l) are Bernoulli withP[X, (1) = 0] = P[X,(1) =

rest of this section apply both in the continuous- and discretg- _ 1/2. The renewal distribution is assumed to be Pareto
time case. For the continuous-time versions, the correspondifjg, P[S, > ] = 1/#3,t = 1,2,3,---. The corresponding

sums should be replaced by integrals. fluid model is the one in which the “noise” process (1)

Recall that the arrival stream is of the fory = X(By), g replaced by its meaEX,(1) = 2. Simulation results are
where B, is a Markov renewal process with arbitrarily d'S'presented in Fig. 14 (for a sample path length of 20°.)
tributed durations, and givein X,(¢)

is an i..d. sequence with * 0 f1,id model is much easier to analyze. The queue length

mean);. Now consider the process obtained by sampling the e at the renewal time¥ = /. satisfies the following
queue length at the renewal epoclig, = Qr,. Contrary recursion: In

to the strictly stable case where precise modeling of the scene

length distribution was of secondary importance, in the weakly Q1 =[Qf +S.(AL —O)F (8)
stable case, the regime duration distribution plays the dominant def _ _
role for large buffer occupancy probabilities. The followindrecall thatS, = 7,41 — 1;). Then, the asymptotic tail
theorem illustrates this point precisely. behavior of the queue length distribution is given by the

Consider the fluid version of the model in which thigi)'s ~ following result.
are replaced by the meang = IEX(¢), and denote the Letz; 4f \;—C. Recall thatS is the class of subexponential
arrival process byd/. Let us denote by)/ the queue length distributions (defined in Appendix B), and similarly to the
process, corresponding to the fluid approximation arrival§ ( defintion of £, let H; be the residual distribution of, i.e.,
sampled at the renewal times. Further, assume that, in tHe(t) def 1/m Ei:o[l — H)], m def S ol = H(w)]

full model, the “noise” processeX, (i) satisfy the following 44 H(t) def 4 _ H(t).

B. A Fluid Model and Queueing Asymptotics

Cramer conditions. ' _ - Theorem 3:Let the stability conditionlEA/ < C be
Cé}gir(r:)ar Conditions:There is a positive constafitsuch that  gtisfied, and suppose that for all > 0, there is a distribution
Ee < oo for all <. H such thatH, H, € S, andIP[S,, > t/;]/H(t) — w;, as

Recall that, for both queueing processes, we assume that,
Q, and @/ are in their unique stationary regimes (see [26]). -
Theorem 2: Assume that the renewal distributidn € R f 1
o P ~N— P[S,.(AB, — C
(distributions of regular variation defined in Appendix B; the [@n > 2] ES,.(C—EA;) Z [Sn (A5, ) >l
Pareto family3/z® is in R,,), and that theCramér conditions

oo, with at least onew; > 0. Then

U=z

.o . . Sx — oQ.
are satisfied. Then, assuming that the queue is weakly stak%e Proof: Follows from [1, Th. 6]. o
PO, > 4] The following theorem establishes the direct asymptotic
lim ——n =8y relation between the renewal time distribution function and

a0 P[QF > 1] the ACF.
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Fig. 14. Comparison between the fluid approximation and the actual queue length distribution.

Theorem 4: Assume that the renewal distribution function Now, if in Theorem 3 the distributiofd can be chosen to be
is subexponential. Then, the autocorrelation functiBn.s equal toF" (renewal distribution)d = F', then by combining

satisfies the following asymptotic relation: Theorem 3 and Corollary 1, we establish the asymptotic
Zm(]EX(Z.))Q — (EA)? p_rop.ortlt.)nallty of the ACF function with the queue length
) , [ ] distribution.
Raa(r) ~ & : 1—Fi(r Theorem 5:If, in Theorem 3, the distribution¥ can be
Zm(]EX(Z)Q) — (B4o)? chosen to belf = F, then
where 7, = P[B, = i], and Fi(r) ¥ 1/m¥7_, ;
[1— Fw)], m % ES, is the residual distribution for the PIQf > 1] ~rRY (1), T

renewal distributionF'.
Proof: Exactly the same proof as for [1, Th. 7] applies ] N

here. o for an appropriately chosen positive constant

Intuitively speaking, the relatively simple and elegant struc- _ Proof: _[1' Th.g. . ©
ture of the autocorrelation asymptotics in the previous theoremRemarks: 1) If the distribution function ofS,, belongs to
is because the asymptotics induced by the subexponenfi regularly varying functions (Pareto family), the assumption
regime holding times eventually wins over the exponentidl[Sn > t/zi] ~ wil(t),w; > 0, will be satisfied for all
(Markovian) dependency introduced by the Markovian jumpé; > 0. i.e., we can choosé/ = F. 2) This is the first
and therefore the Markovian dependency is not visible [§Sult that rigorously relates the arrival process ACF and

the asymptotic domain. There are several corollaries of tHfi gueue length distribution. It also explains why, in the
theorem. The following corollary is [1, Th. 7]. recent literature, much attention has been given to investigating

Corollary 1: The ACF of the fluid arrival modeld! is the impact of the ACF on the queueing behavior [3], [31],

given by [4]. _ . .
f The constant in the previous theorem can be explicitly
Riyalr) ~ [1=F(7)]. calculated if the renewal distributiod” is assumed to be
a regularly varying distributionf” ¢ R,. Recall from the
Proof: Follows from Theorem 4. < definition of regular variation (see Appendix B) thte R.,

has an explicit representation of the fotra- £'(7) ~ I(7)/7¢
"Theorem 1 is another corollary for the special case when the Markoviais — oo, wherel(7) is a slowly varying function (see again
jumps are replaced by independent state transitions. Then, instead of lﬂ?pendix B)
asymptotic relation, we get equality. ’
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Corollary 2: If F' € R, and if the queue is weakly stable,even cell/slice time scale. Provided the subexponentiality and

then multiple time scale nature of the corresponding quantities is
f preserved, the same analysis will apply. We will consider this
P[Qn > 7] ~P[Qy, > 7] in our future work, where we will also elaborate on the impor-
Z T - tant issue of multiplexing video streams with subexponential
x; >0 statistics [13].
~— P[S, >
ES,(C - EA,) ; [Sn > ]
Z P APPENDIX A
= ! I(7) A WORD OF CAUTION ON SECOND-ORDER

“ES,.(C-EA) (- 1)ro-1 STATISTICS-BASED MODELS
n
Z R While the universality of the statistics-based approaches
50 o appears attractive in comparison with the somewhat arbitrary

choice made in the time domain extraction of video features

£5,(C = E4,) such as scenes, one should note that there is a danger in

Zﬂi(]EXQ(i)) — (IEAo)? matching first- and second-order statistics blindly. As will be
L0 Rua(7) shown shortly, it is possible to achieve a perfect match of
Z m(IEX(2))? — (IEAg)? those statistics and still completely fail to capture the queueing
i behavior.
Z T It is clear that a process is just partially defined by its ACF
2.0 f and marginal distribution function (second-order statistics).
~ ES,(C - EA,) Rya(7) Therefore, there might be many different processes which have

these two statistics the same, and a natural question to ask is:

def i — C, a”de;A represents the How different can the queue be when these processes are fed

ast — oo, recall thatz; =

ACF of the fluid model. into it? As we shall see in this section, the queueing behavior
Proof: The first asymptotic relation is just Theorem 2¢an be very different. Along the same lines, for the domain
The second and the third follow from Theorem 3, and of self-similar processes, in [16] it was shown that the Hurst
oo oo parameter alone is inadequate for characterizing the long-range
> RIS.00, -0 >l Y m Y A dependency. |
— = = (wfw)e Example 1: Let us takeC' = 1, and construct the following
. I(r) Bernoulli-type renewal arrival process;. Take a stationary
~ Z T i (@ —1)ro1 renewal proces$T,,, n > 0} with renewal distributior¥’; and
x>0 take two Bernoulli processes with the distributi.X, (i) =
o e 2] = 1-1P[X,(¢) = 0] = b;,7 = 1, 2. Further, at the beginning
~ ZO LiTi Z P[Sn > 4] of each renewal interval, we flip a coin with a probability of
x> U=T

success; if the success occurs, then in the current interval

ast — oo. The fourth and the fifth statements of the theoresay [T, T,,+1)), we defined, = X,(1), and 4, = X.(2)

follow by straightforward combination of the second asympstherwise.

totic relation and Theorem 4 and Corollary 1, respectively. Now, it is easy to compute the marginal distribution of the

o arrival process4,

V. CONCLUSION PlAs =2] =1 = P[As = 0] = pby + (1 = p)b2.
We have shown that real-time MPEG video traffic exhibitsrom Theorem 1, we compute the ACF for this process

both multiple time scale and subexponential characteristics, D24 (1= p)b2) — (pb 1= p)b)2

and have presented a video traffic model that captures both of R4(7) = (pbl + (1 — p)bQ) — (pbl + (1 — p)b2)2

these characteristics. MPEG sequences were modeled as con- (pby + (1 = p)b2) = (pby + (1 = p)b2)

sisting of scenes or states of a slower process modulating fast (1= Fi(r)).

time scale processes. To make the model more tractable, sSCgf88, the two equations above, we can see that the two
extracted from the MPEG video sequence were aggregaﬁgcesses characterized by the triples & :,bo4, i = 1,2)

into a small number of regimes. Subexponentiality (long tail§)i have the same ACE and m.d.f as long as the following
was observed to characterize the regime length distributiqy; equations is satisfied:

We showed that model parameters can be obtained by using
sample path and second-order statistics-based approaches. The pi1by 1 + (1 — p1)ba1 =pabi o + (1 — pa)ba o (9)

model provided a framework for studying MPEG video traffic pubiy + (L= p)b3y =pabl s+ (1= p2)b3,.  (10)
in two representative operating scenarios called weakly stable
and strictly stable. Consider now a numerical example of two processes [that

It should be noted that our modeling approach could tsatisfy (9)] characterized byp; = 0.4,b;; = 04,021 =
applied to faster time scales, e.g., on the slice/frame @), and (p2 = 0.1,b,» = 0.747878,b2» = 0.09468), and
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a renewal distributionlP[T;, — T,,—; > t] = 1/t16 ¢ = 5) Benktander Type | distribution [34]

1,2,-.-. It is evident that the queue fed with the first arrival —a—l —blogx )
process is strictly stable, while the queue fed with the second Flz)=1-c v (0 + 2blog )
arrival process is not. Therefore, for the stable case, we have ¢ > 0,4 > 0, and ¢ appropriately chosen.
that the queue length asymptotics is exponential since it isg) Benktander Type Il distribution [34]:
stochastically smaller than the queue for which the arrival B —(1-b) b
process is Bernoulli witlP[A; = 2] = 0.4. On the other hand, F(z) =1~ cax exp{~(a/b)a"}
in the second case, due to weak stability, Corollary 2 implies . o 0 < 4 < 1, and¢ appropriately chosen.

that the queue is going to be asymptotically proportional to In what follows, we will state two basic results on subex-

th_e integrated tail of the r_ene_wal distribution (WhiCh is lon onential distributions. The general relation betwéeand £
tailed) and, therefore, it will display a polynomial decay. Th the following

simulated ACF is represented on the top part of Fig. 15 (the .
. . - Lemma 1: (Athrey and Ney [35 L.
minor differences between the ACF’'s come from the f|n|teness|_emma 2 |(f F Eyﬁ then(ly—[F(]a)g)eC‘” s 50 8S% — 00
of the simulated sample paths). The respective queue len Pall o> '0 ’ '
distributions are given at the bottom part of the same figure; the ote: Lemﬁa 2 clearly shows that for long-tailed distribu-

solid line represents the first exponentially decaymg queue, & s, Cranér-type conditions are not satisfied.
the dotted line represents the second polynomially decaying

queue. APPENDIX C
APPENDIX B WEAK STABILITY : PROOF OF THEOREM 2
SOME THEORETICAL RESULTS ON In this section, we provide the proof of Theorem 2. Observe
SUBEXPONENTIAL DISTRIBUTIONS first that the queue length observed at the renewal times
Definition 1: A distribution functionF on [0, ) is called Satisfies the following queue length recursion:
long tailed (F € f) |;( | ) Qr,, = max(Qr, + Z1,,,,YT,,,) (13)
, —Flz-vy where
lim ——————==1 . 11
JJLIEO 1-— F(.’E) ’ ve I ( ) Thy1
. . . . . def
Definition 2: A distribution function£" on [0, >) is called Zr, .= Z (4= 0C)
subexponentia(£' € S) if i=Th+1
1 — [*2 and
lim === F((? =2 (12) v, det w A — OV
T—00 — x = a T
Thy1 [T71<I£‘l%)’1(“n+1 ;( )]

where F*2 denotes the second convolution Bf with itself, L .
. (Recall that, for simplicity reasons, since the queue length

e, F*2(z) = | F(x — y)F(dy). ; :
’ [0700) . . . . . . (llkﬂ =
The class of subexponential distributions was first intros only observed at the renewal times, we den 1

: gt O )
ducepl by_ Chistakov [32]. Some examples. of dlstr|but|oQ Lower BoundFirst we will prove thatim inf, ... P[Q, >
functions inS are the following.

Sz o _ z]/P[QL > z] > 1. SinceYy,,, > 0, we have
1) Distributions of regular variation®,, (contains Pareto
distributions) Qr,.\ > My
I(x) def
F(.’L’) =1-——= - Sup(Zﬂz+17Zqu+1 + ZTn? ZTn+1 + ZTn + ZTn—l? t )

o > 0, andl(z) being a slowly varying function, i.e., From the inequality above, we see that the lower bound
limy—oo {(67)/I(z) = 1 for all § > 0 (this class of Will follow if we manage to prove thatim, .. P[M, >

distributions was first introduced in [33]). z]/P[Q}, > z] = 1. The last equality will follow from [1, Th.
2) The lognormal distribution 6], if we prove that the conditional increments in the random
walk M,, and in the fluid queueing proce€¥, have the same
F(z) = q,(lo@ix - “)7 pER,0>0 asymptotics. More precisely, we need to prove the following
g lemma.
where @ is the standard normal distribution. Lemma 3:
3) Weibull distribution . Py, >a|fp=1] . P[S.(N = C) > a]
L =1 14
, B A i Sy = e R
Flz)y=1-¢*
for0 < 8 < 1. where
4) N LA, <t < Thyr, Jn =1,
F(z) = eoloes)™ and
for a > 0. Sn def 1l — Do



1068 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

b
47878, b=0.09468
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20 30 40 50
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Fig. 15. Two processes with the same marginal d.f. and the same ACF's (a) that build very different queues (b).
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Proof: If A\; < C, then the right-hand side of (14) isas in proving inequality (16), we prove the reversed inequality

equal to zero. The left-hand side will be equal to zero if wgs (16). This finishes the proof of lemma, and the lower bound
show thatlP[Z;, > z|J, = i] decays exponentially iz, and

that will follow from part of the proof of Theorem 2. <o

Upper Bound:Here, we compare}, with a fluid queue
Q{-< that has slightly larger arrivals thap/, i. e., we assume
that the arrival process to the queQg- is A/* «f Al +

where ¢ > 0 is sufficiently small so that)/< represents a
for some constants, 6 > 0. The latter inequality follows from stable queue.
the Craner conditions imposed o, (z).

S de—éx

PZy, >x|Jn:i]§i [Z -O)>x

k=1 t=1

By iterating recursion (13), we obtain that

If \; > C, then
]P[ZT > $|J = L] Q" = Sup(YTn?ZTn + YTn—l ) ZTn + ZTn_l + YTn_z )t )
k
= Z P[S,, = k]IP [Z > Further observe that
t=1
Lw//\z —Cte) k Tois +
< Z ]P[Sn = /{;]]P [Z(Xt(L) - C) > Y'T71 < sup Z (Az _ A{,E)
k=1 t=1 T <k<Thni1 i—k
r +
P|S, > +—F— 15 T
+ |: > )\z - C + 6:| ( ) +1

+ sup Z (Al —0)

Tn<k<Tny1 ;4

where |y| denotes the integer part af. Again, from the det et
Craner conditions, it follows that the sum in (15) decays = AYr, +(Z7)
exponentially for any > 0. Therefore, for any > 0

where z;* € STl (AP — ©). By defining further

lim sup P2, > x| Jn = 1] AAg, déf Ezj}lJrl(Ai—Azf’e), we obtain that),, is bounded
X
P|S, > ———
<1 [ ~ Ai —C+ J
> lgICTLSOICl)p ]P[Sn > 37] Q, < sup((), AYTn, AATH + AYTH_UAATH

_<Ai—0+e)“ i P[S, (N — C) > 1] +AAr,  +AYr, )
= _— 111
N —C T—00 ]P[Sn > 37] + Sup(O, szw; 7 Zf’ Zf:1 .
the last equality follows frons,, € R.. Therefore, by passing A/ (D
e — 0, we obtain

The secondup(-) in the inequality above is exactly equal to

lim Plzr, > 2] < hm P\ = €) > a:]

< (16) Q{<; the firstsup(-) we denote byS¢. Then, it follows that
z—oo P[S, > z] —o0 P[S,, > z]

. . P > 2] < P[QLS + 8¢ > 1.
To prove the reversed inequality, observe that @z, I < POz ]

P[Zs, > alJn =] From the Craraf conditions, it is relatively easy to see that for

everye > 0, 5¢ is an exponentially bounded random variable,

'S} k
> Z Sp = E|IP Z >z i.e., there existd,§ > 0, such thatlP[S¢ > z] < de™%=.
L’”/Af—C—EJ =1 Therefore, it follows:
lz/ A —C—¢]

> P (X;@)=C)> = P[S° + Q% > 2] =P[S* + Q) > 2,5 < v/ |
+IP[S 4+ Q5 > 2,5 > V7 ]
[QF >z —Vz |+ P[5 > V]

£,
T,
[QF >z — Va |+ de™?V7.

=1

wlsz[—o=]]

By observing that for each > 0, IP[3° /== (x;(5) -
C) > z] converges to one exponentlally fast, in the same spirBince from [1, Th. 6], it follows that]P[Q > z] has a

P
P

IN A
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regularly varying tail, we come to the conclusion that
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[17]
Z mix; + €)%
]P[Qn > -T] < z;+e>0
]P[Qfl >z me‘f
x>

[18]

limsup

T—00

[29]

for all sufficiently smalle > 0. By passinge — 0, we obtain

This finishes the proof of the theorem.

P[Q, > ]

<1 (20]

limsup <1
P[QY, > ]

T—00

[21]

[22]
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