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Abstract— Guided by the empirical observation that real-
time MPEG video streams exhibit both multiple time scale and
subexponential characteristics, we construct a video model that
captures both of these characteristics and is amenable to queueing
analysis. We investigate two fundamental approaches for extract-
ing the model parameters: using sample path and second-order
statistics-based methods. The model exhibits the following two
canonical queueing behaviors.

When strict stabilityconditions are satisfied, i.e., the conditional
mean of each scene is smaller than the capacity of the server, pre-
cise modeling of the interscene dynamics (long-term dependency)
is not essential for the accurate prediction of small to moderately
large queue sizes. In this case, the queue length distribution is
determined using quasistationary (perturbation theory) analysis.

When weak stabilityconditions are satisfied, i.e., the conditional
mean of at least one scene type is greater than the capacity of
the server, the dominant effect for building a large queue size
is the subexponential (long-tailed) scene length distribution. In
this case, precise modeling of intrascene statistics is of secondary
importance for predicting the large queueing behavior. A fluid
model, whose arrival process is obtained from the video data by
replacing scene statistics with their means, is shown to asymptot-
ically converge to the exact queue distribution.

Using the transition scenario of moving from one stability
region to the other by a change in the value of the server capacity,
we synthesize recent queueing theoretic advances and ad hoc
results in video modeling, and unify a broad range of seemingly
contradictory experimental observations found in the literature.
As a word of caution for the widespread usage of second-order
statistics modeling methods, we construct two processes with
the same second-order statistics that produce distinctly different
queueing behaviors.

Index Terms—Long-tailed distributions, MPEG, multimedia
communication, multiple time scales, queueing analysis, subex-
ponential distributions, video traffic modeling.

I. INTRODUCTION

T HE key objective of this work is to bridge the gap
between video trafficmodelingand recently developed
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queueinganalysis techniques. To do this, we construct an
accurate and analytically tractable model of MPEG video
traffic streams. Analytically tractable models of traffic sources
play a crucial part in, for example, admission control policies
that ensure efficient utilization of network resources while pro-
viding quality of services guarantees. Our approach provides a
unified context for explaining a number of seemingly conflict-
ing results that have recently been reported in the literature.
Along the same lines, our model applies to the full range
of queueing behavior that is relevant to engineering different
video applications such as real-time videoconferencing, video
on demand, broadcasting, etc.

We focus on two fundamental characteristics of MPEG
video streams:multiple time scalesandsubexponentiality. We
identify the importance of these characteristics for approximate
queueing analysis. Accordingly, we design a video model that
accurately reflects these characteristics. The model is struc-
tured so that it is amenable to recently developed queueing
theoretical analysis [1], [2].

In the literature, the existence of multiple time scale statis-
tics in video traffic has been consistently observed by many
authors. The bit rate of a video stream exhibits dependencies
(correlations) that extend over a wide range of time scales,
ranging from the time between consecutive cells or pack-
ets (microseconds), to consecutive frames (milliseconds), to
higher level properties of video such as scenes (seconds), to
entire movies or video calls.

Different modeling perspectives have been taken in exam-
ining this complex time-dependency structure. Li and Hwang,
in [3], argue from the frequency domain point of view that the
low frequency band of the autocorrelation’s Fourier transform
(long-term correlation) has the most significant impact on
queueing. Lazaret al. [4] developed video models for the
slice and frame time scales, and showed that in the case
of strict quality of service (QOS) requirements (small time
delay), precise modeling of the high-order autocorrelation is
of secondary importance. In [5], Frost and Melamed survey
a wide range of approaches to traffic modeling, several of
which take multiple time scales into account, for example,
self-similar or fractal models. These models essentially attempt
to capture an infinite number of time scales and, for that
reason, they generally suffer from high computational com-
plexity. Landry and Stavrakakis [6] have presented a modeling
approach based on multiple time scales that is appropriate for
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cell and slice levels of video traffic. The range of dependence
types investigated (i.e., the shape of the autocorrelation) is
restricted by the class of periodic Markov chains underlying
the model.

In most of these modeling approaches, however, time scales
are not explicitly represented in a manner that is suited both for
queueing analysis and for computationally inexpensive traffic
generation. A distinct queueing behavior that results from the
multiple time scale structure of arrival processes was recently
investigated in [7] and [8]. In these papers, it was analytically
shown that when a stream with multiple time scales passes
through a queue, the queue length distribution has multiple
decay rates. Similar results were independently reported in
[9]. Furthermore, a perturbation theory technique that exploits
the multiple time scale structure of the arrival process and
leads to a computationally efficient algorithm for evaluating
the queue length distribution was developed in [8]. All of this
suggests a need for video models with explicit representation
of multiple time scales whose queueing behavior is analytically
tractable.

The second dominant MPEG video traffic characteristic is
the subexponential duration of scene lengths. Subexponential
(long-range) dependence has been observed and studied in
video traffic in [10], where the modeling approach was through
self-similar processes. Resnick and Samorodnitsky [11] in-
vestigated the long-range dependency of the autocorrelation
function of video conference traces. We observed a subexpo-
nential scene length duration in MPEG video streams (this
was also seen in [12] for video coded by a simpler DPCM
scheme without motion compensation), which is responsible
for the long-range dependency. A calculus of almost negligable
computational complexity (unlike the case of self-similar
processes) for the analysis of subexponential queueing systems
was recently reported in [7], [1], [13]; in those papers, it
is shown that queueing systems with subexponential arrival
processes exhibit queueing behavior which is very distinct
from the one obtained by exploring conventional exponential
models.

In this paper, we present a general model of MPEG video
streams that accurately captures both the multiple time scale
and subexponential characteristics of video streams.1 The
model is structured such that both of these fundamental
characteristics areexplicitly represented.

By analogy with the visual content of a video stream,
i.e., its semantic structure, simple algorithms can be devised
to parse the stream into a set of scenes. Subexponentiality
and the slow time scale dynamics are motivated by the
subexponential (Pareto) scene length duration distribution and
Markovian interscene dynamics. Fast time scale dynamics are
due to the independent identically distributed (i.i.d.) intrascene
statistics. These statistics may vary depending on the scene.
This modeling approach requires a detailed statistical analysis,
and in particular evaluating the statistics of the scene lengths
and their dynamics. This process may be tedious, complex,
and often involves a certain amount of “eyeballing.”

1Preliminary modeling results that concentrate only on the multiple time
structure were reported in [14].

In order to alleviate this problem, we also propose a direct
method for extracting some statistical parameters of the video
model that exhibits a very low computational complexity
and canexactlymatch any marginal distribution function and
convex nonincreasing autocorrelation function (second-order
statistics). We demonstrate that this method works well on
real-time video data, and can be used as an alternative to
the sample-path-based definitions of scenes. However, since
this modeling approach is only based on second-order statis-
tics (which do not completely determine the process), some
inaccuracy in this methodology can be expected. In that
regard, as a word of caution for the usage of this (or any
other second-order statistics-based) method, we construct two
processes that have exactly the same marginals and autocor-
relation functions, but produce distinctly different queueing
behavior.

Although the presented video model is rather simple, a
direct queueing analysis does not appear to be straightforward.
A significant simplification in the queueing analysis can be
obtained, however, thanks to the structured representation of
the dominant video characteristics. When a stream generated
by our model is fed into a single-server queue, depending
on the capacity of the queue and the buffer sizes of interest,
the relative importance of the different aspects of the arrival
process emerges. We identify two canonical queueing dynam-
ics: strict and weak stability. In each of these, the relevant
parts of the model are significantly simpler than in the original
model, and as mentioned above, are amenable for recently
developed theoretical analysis.

When strict stability conditions are satisfied, i.e., the con-
ditional mean of each scene is smaller than the capacity of
the server, the dominant effect in queue buildup is due to
the variations on the fast time scale within each scene. In
this case, a precise modeling of the interscene dynamics (long
time dependency) is not essential for the accurate prediction
of small to moderate queue sizes. The queue length distribu-
tion is determined using quasistationary (perturbation theory)
analysis.

When weak stabilityconditions are satisfied, i.e., the con-
ditional mean of at least one scene type is greater than
the capacity of the server, the dominant effect in building
a large queue size is the subexponential (long-tailed) scene
length distribution. In this case, a precise modeling of in-
trascene statistics is of secondary importance for predicting
the large queueing behavior. A fluid model, obtained from the
video data by replacing scene statistics with their means, is
shown to asymptotically converge to the exact queue distri-
bution.

The results described above—namely, that in the weak
stability scenario, the dominant effect on the asymptotic queue-
ing behavior is the subexponential (long-range) dependency,
and that in the strict stability scenario, the dominant effect
is due to the fast time scale buildups—put in the broader
context some conflicting results from the literature. Indeed,
a number of authors [3], [15], [16] contend that long-range
dependence of one form or another has a dominant impact
on the queue, while others claim that it does not [17], [18],
[4]. Our framework allows one to synthesize these results
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in that the former can be viewed as instances of the weak
stability scenario, while the latter are instances of the strict
stability scenario. The capacity of the server that characterizes
the transition from one stability scenario to the other plays
a key role in understanding the queueing behavior of MPEG
video streams.

This paper is organized as follows. In the next section,
we present our multiple time scale model of video streams.
The formal model is given in Section II-C, and the two
fundamental approaches to parameter matching are detailed
in Sections II-B and II-D. In Sections III and IV, we look at
two typical scenarios which illustrate the impact of time scales
and subexponentiality on the queueing behavior. Section V
concludes the paper.

II. M ODELING MPEG VIDEO STREAMS

A. MPEG Video Data

The video data employed consisted of video sequences of
MPEG-I frame sizes, created at the Institute of Computer Sci-
ence, University of Ẅurzburg, and are described in [19]. In all,
17 sequences (sportscasts, movies, music videos, newscasts,
talk shows, cartoons, and “set top”) of 40 000 frames each
were available.

Taking as input the raw video frames, the MPEG coder
produced three types of frames at its output.

• frames: Only information of the current frame is used
to encode it, i.e., only spatial redundancies are
exploited.

• frames: Motion compensation with respect to the pre-
vious frame is used to achieve further com-
pression.

• frames: Both the previous and the nextor frames
are used to eliminate temporal redundancies,
as well as spatial ones.

On average, frames are approximately, twice the size of
frames, and one third the size offrames. The frame types

occur in a fixed periodic pattern. In this data set, the period is
12 frames, and the pattern is Such a
segment of 12 frames is called a group of pictures (GOP).

In this paper, we focus on the analysis and modeling of
video traces on the GOP level. Thus, our basic unit or sample
is the size of a GOP, i.e., the sum of the sizes of the 12 frames.
Our working data set will be a sequence of 59 292 samples,
formed by the concatenation of the 17 movies end to end.2

B. Sample Path Modeling

The basic concept which we use in separating time scales is
that of scenes. As mentioned above, in this work, the unit of
our video streams is the MPEG GOP, so the duration of one
GOP (i.e., 12 frames, or half a second) is the basic time unit.
For the behavior at the smaller time scale of a single frame,
the reader is referred to [14].

2Note that since 40 000 is not divisible by 12, the concatenation perturbs
the IPB pattern, but since we are summing over GOP’s, at worst, this only
affects 16 out of the 59 292 samples.

The next time scale is associated with the dynamic behavior
over dozens of GOP’s. By analogy with the visual content of
the video stream, we call the units of this time scalescenes.
The scenes we refer to here are defined by significant changes
in the GOP size sequence, and although it makes intuitive
sense to think so, it is not necessarily the case that these
correspond to visual scenes.3

Following [12], we define a scene change to occur at a point
where the normalized second difference of GOP sizes is large
and negative. More precisely, let be the
empirical sequence of GOP sizes. GOPis the last of a scene if

(1)

This mechanism for extracting scenes, as well as the values
of the normalization window (25 GOP’s) and the threshold
( 0.5), were selected empirically from a variety of methods.
Among the other methods we considered is the approach of [4],
which identifies scene changes as jumps ,
subject to a minimum scene length . Indeed, there is no
single “natural” definition of scenes that arises directly from
the time series .

Fig. 1 illustrates the scene extraction from the actual MPEG
GOP sequence via (1). Our full MPEG sequence of 59 292
GOP’s yields 3162 scenes of mean length 18.75. Scenes
constitute the basic unit at the slower time scale.

MPEG sequences can be thought of as consisting of scenes
or states of a slower process, modulating the fast time scale
process. For tractability purposes, however, the number of
scenes is too large. Thus, our next objective is to cluster (ag-
gregate) the scenes extracted from an MPEG video sequence
into a small number ofregimes.

In order to do so, we first characterize the scenes by
the simplest possible criterion: average GOP size during
the scene. Fig. 2 shows the histogram of this quantity. The
scenes are classified into four types: , and
and consist of, respectively, the bottom third and middle
third of the scenes (on the horizontal axis), each of the
clusters having 1054 scenes. Because of the “long tail” of
the histogram, we divided the top third into the two clus-
ters and , with the 856 smallest scenes in the first
and the other 198 scenes in the second. More sophisticated
approaches to clustering scenes have been investigated in the
literature (see, for example, [20]), but we find that they do
not add fundamental insights to the main conclusions of this
paper.

Regime instances are formed by merging consecutive scenes
of the same type. The average GOP sizes for the regimes are

The horizontal lines in Fig. 1 show the extracted sequence of
regimes. In this way, the full MPEG GOP sequence yields a

3Our work is based on traces of frame sizes from real video streams, but
not on the actual images.
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Fig. 1. Scene changes (vertical lines) and regimes (horizontal segments) in the MPEG GOP video sequence.

Fig. 2. Histogram of the average GOP size/scene.

sequence of 1213 regimes of the four types. The durations
of regimes have the probability density functions (pdf’s)
shown in Fig. 3. Note that, since instances of regimes,
by definition, occur very rarely, our data set is insufficient
to obtain a meaningful distribution of duration for the
regime. However, in constructing our model in Section II-C,
based on the closeness of the duration distributions of the

other three regimes, we will argue that all regimes can be
modeled as having the same duration statistics. This will be
further justified in Section IV, where we show that, for our
purposes, the importance of the regime duration is mainly in
the subexponential nature of the tail of the regime duration
distribution, where the three regimes (and, we assume, the
fourth) are even more similar.
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Fig. 3. Regime duration statistics.

Finally, by counting the relative frequencies of regime
transitions on the sample path, we obtain the matrix of
transition probabilities between regimes

...

C. A Mathematical Model for MPEG Video Streams

Let be a sequence of renewal times, i.e.,
the sequence is i.i.d. with a marginal
distribution The process represents
the time instances at which the video stream changes from
one regime to another. Further, let
be a Markov chain with state space , and a
probability transition matrix , with . This
chain models the transitions between different regimes.

Let be a process taking values in

and
represents the indicator of the regime in which a video stream
is at time . The regime indicator process has Markovian jumps
to the next state, but arbitrarily distributed sojourn times in
each state. Thus, the regime indicator processis a Markov
renewal process (see, for example, [21]).

To finish the construction of the model, we define four
mutually independent i.i.d. processes ,
with marginal distribution , mean , each being
independent of and . Each process

models the fast time scale statistics (intrascene “noise”)

for the regime . Finally, we model the video stream as a
process of the form , where
the process of regimes constitutes the slow time scale
component that is modulated by the fast time scale “noise”
process .

Remarks: 1) The fast time scale process could be
made dependent, but as shown by the results of the follow-
ing sections, the additional complexity is not necessary to
obtain models that are accurate enough. This is because the
time dependence is, to a large extent, accounted for by the
modulating process (specifically by the regime durations).
2) The sojourn times can be made state dependent, i.e.,,
which takes values in , could have distribution
for , but this also seems unnecessary in view of Fig. 3
which shows that the different regimes types have similar
duration distributions. Thus, we set for all .

The marginals of the fast time scale processes are
obtained directly from the MPEG GOP traces, specifically
from the histogram of the subsequence corresponding to the
portions where the extracted regime is. Thus, the (stationary)
overall marginal distribution of the model
matches that of the data exactly. The sojourn time distribution

is obtained from the regime duration histograms extracted
from the MPEG GOP trace (shown in Fig. 3—see Section IV
for details on scene durations).

D. Second-Order Statistics-Based Modeling

A common approach to modeling video streams is to gener-
ate a stochastic process that matches its first- and second-order
statistics, i.e., its marginal distribution and autocorrelation
functions (ACF’s) (see, for example, [22], [3], [4], [23]). For
these methods to work well, it is desirable to have an easily
computable expression of the ACF for the generated process



JELENKOVIĆ et al.: MULTIPLE TIME SCALES AND SUBEXPONENTIALITY 1057

Fig. 4. Multiple time scale model of MPEG video.

in terms of model parameters. For the model presented in
Section II-C above, we obtain such expressions after some
further simplifying assumptions, and show how a simple
model matches video traffic arbitrarily well up to second-order
statistics. We present it here as an alternative to the sample path
domain extraction of parameters employed in Section II-B.

Let denote the steady-state probability of
being in regime . Assuming that the Markov chain is i.i.d.,

the ACF of the
process is given as follows.4

Theorem 1: If, in the model of Section II-C, the Markov
chain consists of a sequence of i.i.d. random variables and
the renewal distribution is arbitrary, then ( )

where is the
residual distribution for the renewal distribution.

Proof: Follows from straightforward algebra.
Remark: A simple asymptotic expresion for the ACF is

also available when is Markovian and the renewal times are
subexponential (see Appendix B for the definition of subexpo-
nential distributions). This result (Theorem 4) is presented in
Section IV together with the other results on subexponential
distributions.

The expression above gives us substantial flexibility in
adjusting model parameters to fit an empirical ACF. In all
other known models, however, there is noexplicit expression
for estimating model parameters for exactly matching a given
ACF. This is usually done by heuristic searches in the param-
eter space. Here, we can overcome this substantial obstacle,
at the expense of further simplifying the model, by assuming
that the noise processes are constant, i.e., . Thus,

reduces to a simple fluid model, with constant rate arrivals
in each renewal interval that are chosen independently from

4For the general case of a non i.i.d. modulating chain, we give asymptotic
relations in Section IV.

previous intervals (regime indicator lines in Fig. 4 illustrate the
sample path of the fluid model). We call this type of process a
space–time renewal process(SRP); the name comes from the
fact that both space and time are renewal. The expression in
the above theorem now becomes

(2)

The ACF is exactly equal to the integrated tail of the renewal
distribution function. Therefore, given an ACF , it is easy
to obtain the regime duration distribution.

From (2), by setting ( ), we get

(3)

and yields

(4)

For to be a probability distribution, it must be nonde-
creasing, which implies that must beconvex, and
implies that must benonincreasing. Finally, consistency
calls for

Since , this implies that we must
have .

Strengths of the SRP Approach:The main strengths of this
modeling approach are the following. First, it provides an
arbitrarily exact match of the first- and second-order statistics,
a property which is not achieved by any other known method.
Second, a very broad and realistic class of AFC’s can be
matched, including, for example, Markovian models such
as the Markov-modulated Poisson process of Skellyet al.
[17], the TES-based models [22], or the DAR models [24].
Note that all of these examples taken from the literature
can only match exponentially decreasing ACF’s. Third, an
SRP model can matchsubexponentialACF’s, and as such,
it is a uniquely efficient and simple model capturing long-
range dependence. Note that the arrival model (see
[16]) also displays great flexibility in modeling second-order
statistics with subexponential autocorrelation structure. We
refer the reader to [16, Proposition 4.2] for the explicit form
of the ACF of the arrival process. However, there
is no explicit algorithm to extract model parameters
from the second-order statistics of an empirical trace. (Precise
fluid queue asymptotics with arrivals were obtained
in [13], [2], and [25].) Fourth, in the presence of long-tailed
renewal times, Theorem 2 (see Section IV-B) further justifies
the usage of the fluid type models.

We now use this SRP model to generate traffic matching that
of 17 MPEG sources multiplexed (summed) into one stream.
For clarity, we consider the stream at the GOP level, where
the measured ACF exhibits the desired (convex, decreasing)
properties. Fig. 5 shows portions of sample paths for the real
and generated traffic, and how well the statistics match.5

In conclusion, independent of whether one uses a sample
path (as in Section II-B) or a statistics-based approach (as in
the this section) for obtaining the parameters of the regime

5That, however, is not the end of the story—see Appendix A.
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Fig. 5. Matching first- and second-order characteristics of MPEG video.

duration distribution , the main strength of the general
model presented in Section II-C is that it provides a single
framework in which to view the different characteristics which
are relevant to traffic engineering for the full range of video
communications services. This is further demonstrated in
Sections III and IV.

III. STRICTLY STABLE QUEUE: FAST TIME SCALE BUILD-UPS

Consider a single-server queue with the arrival process
and constant server capacity, whose queue size at time

is defined by Lindley’s recursion

(5)

For the rest of the paper, we assume that is the unique
stationary solution to the recursion (5) (see [26]), i.e., we
assume that the queue is in its steady state. The arrival process

, represents the mathematical model for
MPEG video streams as described in Section II-C.

In this section, we consider the case of what we call astrictly
stablequeue. This is the case when the capacity of the server
is greater than the mean arrival rate in the “worst case” regime

. Fig. 6 illustrates this case.
The queue will build up only when the arrivals exceed the

server capacity (the value indicated by the horizontal line).
Under the strict stability condition, this tends to happen with
occasional large peaks (see Fig. 6), and not with sustained
bursts since the capacity is above the mean rate of even the
worst regime (the regimes and their mean GOP sizes are shown
by the horizontal segments). Thus, it is more important to
capture these peaks (which are in the fast time scale process)
rather than the slow time scale bursts (i.e., the duration of
regimes).

Under the strictly stable condition, the queueing behavior
is approximately given by the following superposition result
(see the superposition theorem in [7] and [8]):

(6)

where is the queue size obtained by feeding the queue
only with regime , and is the steady-state probability of
being in regime . Informally, this result should be understood
as as the
holding times of the regimes approach. In the formal proof
of this result, which can be found in [8], the limit is taken
only with respect to the regime sojourn times, and the buffer
size is kept fixed (finite). Therefore, this result gives good
approximations when the average renewal (regime duration)
times are much larger than the time unit (one GOP) and the
buffer sizes are small to moderately large. A refinement of (6)
based on perturbation theory asymptotic expansion series can
be found in [8].

Fig. 7 shows the queue length pdf’s resulting from queueing
simulations of the type defined by (5) for five different
sequences. In the top plot, the queue is fed by each of the
four subsequences of the empirical GOP trace corresponding
to the regime types. The bottom plot of Fig. 7 compares the
weighted sum of the four queue distributions with the queue
distribution for the full empirical sequence (GOP trace). The
server capacity satisfies the strict stability
condition. The close match between the superposition of the
four regimes and the full sequence verifies (6).

This suggests thatthe fast time scale i.i.d. processes are
sufficient for capturing the queueing behavior due to the dif-
ferent regimes. To corroborate this, Fig. 8 compares the queue
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Fig. 6. MPEG GOP trace; the horizontal line shows the server capacity satisfying strict stability.

Fig. 7. Under strict stability, MPEG GOP satisfies superposition principle; see text for details.

length distributions obtained when the traffic is generated by

two instances of the model we described in Section II-C,

with the queue length distribution resulting from the actual

MPEG GOP trace. The first instance of the model has a Pareto

regime duration distribution , and the second has a geometric

distribution. In both cases, the mean equals the mean regime

duration of the empirical MPEG GOP trace. The closeness of

the queue length distributions (at least for the small buffer

sizes) for the two model instances supports the claim that

(6) holds in the strict stability scenario: the slow time scale

dynamics do not come into play since knowledge of the steady-

state regime probabilities is enough. Thus, the specific form

of the dependency structure (here, Pareto or geometric) is of

little consequence.
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Fig. 8. Strictly stable queue pdf for MPEG GOP and generated model.

The relatively low computational complexity of (6) justifies
our multiple time scale approach to modeling, at least in the
strict stability case: if strict stability is the realistic context
(i.e., if the maximum buffer size and cell loss requirements
are stringent), then one can concentrate the modeling effort,
separately, on each of the regimes.The multiple time scale
nature of the traffic needs to be taken into account up to
the mean regime durations. Higher order statistics of the
slow time scale variations do not offer significant additional
improvements (for small buffer sizes).

Thus, for the purpose of analytical predictions of queueing
behavior, one computes the queue length distribution asso-
ciated with each of the simple processes , and weights
them by . For the purpose of traffic generation, the advantage
is that one need not expend too much effort in estimating
the parameters of as long as the mean is accurate; this is
especially useful with heavy-tailed regime durations (i.e., long-
range dependency) whose parameters are difficult to estimate.6

Often, for the purpose of a network admission controller
seeking to guarantee a given quality of service while efficiently
utilizing resources, one wants to accurately estimate the tail of
the queue, and derive from that the traffic stream’s “equivalent
bandwidth” [27]. However, a simple-minded application of the
notion of equivalent bandwidth based only the decay rate of
the queue tail would, in this case, overestimate the queue by
a factor of 1 (i.e., two orders of magnitude), and thus
result in an underutilization of resources. This is because the
asymptotic decay rate of the queue distribution depends mainly
on the “worst case” regime . Indeed, for queue lengths
of 10 bits or more, the contribution of that regime to the

6Note that, since the total length of the data set (the MPEG GOP sequence)
is 59 292, the points at “probabilities” below 10�4 are statistically meaningless
for the queue distribution of the MPEG GOP trace.

summation in (6) is at least ten times that of any of the three
other regimes (see Fig. 7). This is in line with [28, Th. 2].

The above observations for the strict stability scenario help
in the understanding of recent work by a number of authors.
Skelly et al. [17] observed that, although the “presence of
strong correlation is important for capturing the queueing
behavior of video, the actual form of the correlation is not.”
Ryu and Elwalid [18] argued that for “realistic ATM traffic
engineering,” “long term correlations do not have significant
impact on the cell loss rate.” Similarly, Lazaret al. [4]
observed that precise modeling of long-term correlation is
of secondary importance for “real-time” scheduling. These
observations are in full agreement with our modeling approach
to MPEG video streams, and can be readily explained in the
context of the strict stability scenario that we described in this
section.

In the following section, we show that when the queue is
weakly stable, the form of the dependency plays a dominant
role in the associated queueing behavior, especially for large
buffer sizes, and particularly when this dependency (the regime
durations) is subexponential in nature, as is the case for MPEG
video streams.

IV. WEAKLY STABLE QUEUE: SUBEXPONENTIAL BURSTS

A. Queueing Behavior

In the second scenario, the queue isweakly stable, meaning
that the capacity, although still above the overall mean of
the arrival stream, may be below the mean of one or more
“unstable” regimes. This may not be the appropriate context
for real-time interactive services, i.e., video streams with
small delay bounds. However, for services such as video on
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Fig. 9. Weak stability: the horizontal line shows the server capacity.

demand (VOD) or broadcasting, understanding the behavior
in a scenario with large buffers and tolerance for long delays
may be important. In this section, we show how the same
model can be used for modeling and analyzing this end of the
spectrum of video communication services.

Fig. 9 illustrates the weak stability case. Here, the queue
tends to be built up by sustained bursts (i.e., by the unstable
regimes) that require service beyond the capacity of the server.
The duration of the regimes is then critical for the queue length
distribution.

The density of durations for all four types of regimes
combined is shown in Fig. 10. A Pareto function of the form

gives an accurate match (a Pareto function was also
found to match scene durations of VBR video in [12]). If
the density of the durations was exponentially decaying, as
it would be in a purely Markov-modulated model, it would
appear as a straight line on the log-scaled plot. Thus, MPEG
traffic exhibits subexponentialbehavior on the slow time
scale. Some basic definitions and results on long-tailed and
subexponential distributions are given in Appendix B.

The demonstrated subexponentiality of scene lengths plays
a crucial role in the queueing behavior in the weak stability
scenario. Consider the case of the server having a capacity
of . Out of the four regimes, is unstable and
is marginally stable; the queue is stable with respect to the
overall arrival stream.

Simulations were performed with the MPEG GOP stream
and two model-generated streams, respectively. The first gen-
erated stream has Pareto-distributed regime durations, where
the Pareto function is identical to the one shown in Fig. 10.
The second has geometrically distributed regime durations. In
all three streams, the regime durations havethe same mean.

Two generated sample pathsof regime durationsare illus-
trated in Fig. 11. The top, which has the Pareto marginal,
clearly exhibits the subexponential characteristic of having
large isolated peaks, unlike the geometric sequence, which has
an exponentially decaying pdf.

Remark: Intuitively, if are independent,
identically, and subexponentially distributed random variables

(7)

as . This means that a sum of subexponential random
variables exceeds a large valueby having one of them exceed
this value. In other words, in the i.i.d. sequence, the biggest
peaks tend to be isolated, and since subexponential distribu-
tions are “heavy tailed,” roughly speaking, these biggest peaks
are extremely large and dominate the sequence.

Fig. 12 shows the resulting queue length distributions under
weak stability. The figure shows that the Pareto-distributed
regime duration captures the salient features of the queue
length distribution, which the geometric regime duration does
not. Note that by the superposition result described in Section
III, under strict stability conditions, since they have the same
mean regime durations, all three would have the same queue
distribution.

Thus, the dominant effect on the queueing behavior is the
subexponential regime duration. The fast time scale has little
impact in the weak stability scenario. To verify this, we also
simulated the queue with the SRP “fluid flow” version of our
model. Recall that the SRP model is simply the special case
that is obtained by removing the fast time scale “noise,” i.e.,
setting . The fourth curve in Fig. 12 (for the fluid
model with Pareto regime durations) shows that it is indeed
true that the fast time scale does not affect the asymptotic
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Fig. 10. MPEG GOP regime durations (top), and duration density compared to Pareto(2:68 � 104=t2:47) (bottom).

Fig. 11. Sample paths of subexponentially (top) and exponentially (bottom) distributed processes with thesame mean.

queueing behavior. The same figure also suggests that the SRP
model might accurately predict the tail behavior of the queue
for large buffer sizes. This observation will be made precise
in the following section.

The key feature that we will be investigating in the rest
of this paper is the queue tail. This tail can be attributed to
the subexponentiality of the regime durations of the arrival
process. Indeed, the queue tail density corresponding to an

arrival stream with geometric (exponentially decaying) scene
durations has a constant slope on the log scale which is steeper
than the tail corresponding to an arrival stream with Pareto
regimes. Thus, for very large buffers (for the example of
the simulation, a buffer size greater of 10bits or more),
a Markovian model with exponentially decaying (geometric)
regime durations would severely underestimate delays and
loss probabilities. This is clearly apparent in Fig. 13, where
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Fig. 12. Weakly stable queue length pdf for MPEG GOP trace and models with subexponential (Pareto) and exponential (geometric) scene durations.

Fig. 13. Exponential regime durations underestimate large buffer probabilities.

the integrated tail —which closely approximates
buffer overflow probabilities—of the queue generated by the
two models is shown. At small buffer sizes, the Markovian
model overestimates the buffer size. This is because, in order
to have the same mean as the subexponential (heavy-tailed)
distribution, the geometric distribution has to have a bulkier
midsection, i.e., regimes of medium size happen more often.

Thus, compared to the MPEG stream and the Pareto model,
the geometric model generates more regimes of “medium”
duration, and thus has more often a queue of medium length,
but would have fewer of the very long regimes which make
the queue build up to very large sizes.

Due to the limited amount of data, we cannot draw more
than qualitative conclusions purely from the MPEG trace-
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driven simulations. This is even more so for the subexponential
asymptotics since the processes converge to their steady state
only with subexponential speed (see [1]). However, we are
able to infer the dominant queueing behavior for our model
with subexponential regime durations. That in itself is a
valuable lesson for simulation studies of video traffic behavior:
“it takes a very long time” to obtain accurate results on
subexponential statistics. Thus, it is all the more important
to have the analytical tools to calculate the queue distribution.

B. A Fluid Model and Queueing Asymptotics

The simulations indicate that, under weak stability, the
tail of the queue length pdf is subexponential (respectively,
exponential) when the slow time scale statistics are subexpo-
nential (respectively, exponential). As we shall presently show,
analysis confirms this observation. Our modeling approach
leads directly to an analytical estimation of the tail of the
queue length distribution.

First, the asymptotic accuracy of the SRP fluid model is pre-
sented in Theorem 2. Second, an elegant and computationally
efficient queueing formula for the fluid model is obtained in
Theorem 3. Third, we investigate the ACF of our video model
in Theorem 4, and some of its simplifications in Corollary
1. Fourth, Theorem 5 directly relates the queueing and the
ACF asymptotic behavior. A summary of the intersection of
all these results is given in Corollary 2. All of the results in the
rest of this section apply both in the continuous- and discrete-
time case. For the continuous-time versions, the corresponding
sums should be replaced by integrals.

Recall that the arrival stream is of the form ,
where is a Markov renewal process with arbitrarily dis-
tributed durations, and given, is an i.i.d. sequence with
mean . Now consider the process obtained by sampling the
queue length at the renewal epochs: . Contrary
to the strictly stable case where precise modeling of the scene
length distribution was of secondary importance, in the weakly
stable case, the regime duration distribution plays the dominant
role for large buffer occupancy probabilities. The following
theorem illustrates this point precisely.

Consider the fluid version of the model in which the ’s
are replaced by the means and denote the
arrival process by . Let us denote by the queue length
process, corresponding to the fluid approximation arrivals ()
sampled at the renewal times. Further, assume that, in the
full model, the “noise” processes satisfy the following
Craḿer conditions.

Cramér Conditions:There is a positive constantsuch that
for all .

Recall that, for both queueing processes, we assume that
and are in their unique stationary regimes (see [26]).

Theorem 2: Assume that the renewal distribution
(distributions of regular variation defined in Appendix B; the
Pareto family is in ), and that theCramér conditions
are satisfied. Then, assuming that the queue is weakly stable

Proof: Given in Appendix C.
Remarks: 1) This result strongly supports the fluid models

(see [29]) that have much lower computational complexity;
2) related asymptotic results in the Markovian framework that
justify the fluid approximation were obtained in [9] and [30];
3) this result can be proved under the weaker assumption that
the distribution of the renewal times is intermediately regularly
varying [13]. Due to the space constraints and the need for
introducing new definitions, we avoid stating this result in its
most general form.

Intuitively, the result of Theorem 2 can be explained as
follows. In the subexponential world, large queue build-ups
happen in an isolated fashion. When the queue is weakly
stable, a large excursion of the process basically results
from one long isolated regime during which the average
arrival rate exceeds the server capacity. Assume that when
this overflow happens, the arrival process is in regime. Then,
the total server overflow during this long renewal period
is approximately ; to
make this approximation rigorous is the technical difficulty
involved in proving Theorem 2.

A simple illustration of the preceding theorem is given with
the following simulation example. Assume that the modulating
chain is a two-state valued Bernoulli process with

; when in state 0, there are no
arrivals (i.e., ) and when in state 1, the conditional
arrivals are Bernoulli with

. The renewal distribution is assumed to be Pareto
with . The corresponding
fluid model is the one in which the “noise” process
is replaced by its mean . Simulation results are
presented in Fig. 14 (for a sample path length of 210 .)

The fluid model is much easier to analyze. The queue length
sampled at the renewal times satisfies the following
recursion:

(8)

(recall that ). Then, the asymptotic tail
behavior of the queue length distribution is given by the
following result.

Let . Recall that is the class of subexponential
distributions (defined in Appendix B), and similarly to the
defintion of , let be the residual distribution of , i.e.,

, ,

and .
Theorem 3: Let the stability condition be

satisfied, and suppose that for all , there is a distribution
such that , and , as

, with at least one . Then

as .
Proof: Follows from [1, Th. 6].

The following theorem establishes the direct asymptotic
relation between the renewal time distribution function and
the ACF.
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Fig. 14. Comparison between the fluid approximation and the actual queue length distribution.

Theorem 4: Assume that the renewal distribution function
is subexponential. Then, the autocorrelation function
satisfies the following asymptotic relation:

where , and

is the residual distribution for the
renewal distribution .

Proof: Exactly the same proof as for [1, Th. 7] applies
here.

Intuitively speaking, the relatively simple and elegant struc-
ture of the autocorrelation asymptotics in the previous theorem
is because the asymptotics induced by the subexponential
regime holding times eventually wins over the exponential
(Markovian) dependency introduced by the Markovian jumps,
and therefore the Markovian dependency is not visible in
the asymptotic domain. There are several corollaries of this
theorem. The following corollary is [1, Th. 7].7

Corollary 1: The ACF of the fluid arrival model is
given by

Proof: Follows from Theorem 4.

7Theorem 1 is another corollary for the special case when the Markovian
jumps are replaced by independent state transitions. Then, instead of the
asymptotic relation, we get equality.

Now, if in Theorem 3 the distribution can be chosen to be
equal to (renewal distribution) , then by combining
Theorem 3 and Corollary 1, we establish the asymptotic
proportionality of the ACF function with the queue length
distribution.

Theorem 5: If, in Theorem 3, the distribution can be
chosen to be , then

for an appropriately chosen positive constant.
Proof: [1, Th. 8].

Remarks: 1) If the distribution function of belongs to
the regularly varying functions (Pareto family), the assumption

, will be satisfied for all
, i.e., we can choose . 2) This is the first

result that rigorously relates the arrival process ACF and
the queue length distribution. It also explains why, in the
recent literature, much attention has been given to investigating
the impact of the ACF on the queueing behavior [3], [31],
[4].

The constant in the previous theorem can be explicitly
calculated if the renewal distribution is assumed to be
a regularly varying distribution . Recall from the
definition of regular variation (see Appendix B) that
has an explicit representation of the form
as , where is a slowly varying function (see again
Appendix B).
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Corollary 2: If , and if the queue is weakly stable,
then

as ; recall that , and represents the
ACF of the fluid model.

Proof: The first asymptotic relation is just Theorem 2.
The second and the third follow from Theorem 3, and

as . The fourth and the fifth statements of the theorem
follow by straightforward combination of the second asymp-
totic relation and Theorem 4 and Corollary 1, respectively.

V. CONCLUSION

We have shown that real-time MPEG video traffic exhibits
both multiple time scale and subexponential characteristics,
and have presented a video traffic model that captures both of
these characteristics. MPEG sequences were modeled as con-
sisting of scenes or states of a slower process modulating fast
time scale processes. To make the model more tractable, scenes
extracted from the MPEG video sequence were aggregated
into a small number of regimes. Subexponentiality (long tails)
was observed to characterize the regime length distribution.
We showed that model parameters can be obtained by using
sample path and second-order statistics-based approaches. The
model provided a framework for studying MPEG video traffic
in two representative operating scenarios called weakly stable
and strictly stable.

It should be noted that our modeling approach could be
applied to faster time scales, e.g., on the slice/frame or

even cell/slice time scale. Provided the subexponentiality and
multiple time scale nature of the corresponding quantities is
preserved, the same analysis will apply. We will consider this
in our future work, where we will also elaborate on the impor-
tant issue of multiplexing video streams with subexponential
statistics [13].

APPENDIX A
A WORD OF CAUTION ON SECOND-ORDER

STATISTICS-BASED MODELS

While the universality of the statistics-based approaches
appears attractive in comparison with the somewhat arbitrary
choice made in the time domain extraction of video features
such as scenes, one should note that there is a danger in
matching first- and second-order statistics blindly. As will be
shown shortly, it is possible to achieve a perfect match of
those statistics and still completely fail to capture the queueing
behavior.

It is clear that a process is just partially defined by its ACF
and marginal distribution function (second-order statistics).
Therefore, there might be many different processes which have
these two statistics the same, and a natural question to ask is:
How different can the queue be when these processes are fed
into it? As we shall see in this section, the queueing behavior
can be very different. Along the same lines, for the domain
of self-similar processes, in [16] it was shown that the Hurst
parameter alone is inadequate for characterizing the long-range
dependency.

Example 1: Let us take , and construct the following
Bernoulli-type renewal arrival process . Take a stationary
renewal process with renewal distribution ; and
take two Bernoulli processes with the distribution

. Further, at the beginning
of each renewal interval, we flip a coin with a probability of
success ; if the success occurs, then in the current interval
(say ), we define , and
otherwise.

Now, it is easy to compute the marginal distribution of the
arrival process

From Theorem 1, we compute the ACF for this process

From the two equations above, we can see that the two
processes characterized by the triples ( )
will have the same ACF and m.d.f. as long as the following
set of equations is satisfied:

(9)

(10)

Consider now a numerical example of two processes [that
satisfy (9)] characterized by

, and , and
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a renewal distribution
. It is evident that the queue fed with the first arrival

process is strictly stable, while the queue fed with the second
arrival process is not. Therefore, for the stable case, we have
that the queue length asymptotics is exponential since it is
stochastically smaller than the queue for which the arrival
process is Bernoulli with . On the other hand,
in the second case, due to weak stability, Corollary 2 implies
that the queue is going to be asymptotically proportional to
the integrated tail of the renewal distribution (which is long
tailed) and, therefore, it will display a polynomial decay. The
simulated ACF is represented on the top part of Fig. 15 (the
minor differences between the ACF’s come from the finiteness
of the simulated sample paths). The respective queue length
distributions are given at the bottom part of the same figure; the
solid line represents the first exponentially decaying queue, and
the dotted line represents the second polynomially decaying
queue.

APPENDIX B
SOME THEORETICAL RESULTS ON

SUBEXPONENTIAL DISTRIBUTIONS

Definition 1: A distribution function on is called
long tailed ( ) if

(11)

Definition 2: A distribution function on is called
subexponential( ) if

(12)

where denotes the second convolution of with itself,
i.e., .

The class of subexponential distributions was first intro-
duced by Chistakov [32]. Some examples of distribution
functions in are the following.

1) Distributions of regular variations (contains Pareto
distributions)

, and being a slowly varying function, i.e.,
for all (this class of

distributions was first introduced in [33]).
2) The lognormal distribution

where is the standard normal distribution.
3) Weibull distribution

for .
4)

for .

5) Benktander Type I distribution [34]

and appropriately chosen.
6) Benktander Type II distribution [34]:

, and appropriately chosen.

In what follows, we will state two basic results on subex-
ponential distributions. The general relation betweenand
is the following.

Lemma 1: (Athrey and Ney [35]) .
Lemma 2: If then as ,

for all .
Note: Lemma 2 clearly shows that for long-tailed distribu-

tions, Craḿer-type conditions are not satisfied.

APPENDIX C
WEAK STABILITY : PROOF OF THEOREM 2

In this section, we provide the proof of Theorem 2. Observe
first that the queue length observed at the renewal times
satisfies the following queue length recursion:

(13)
where

and

. (Recall that, for simplicity reasons, since the queue length
is only observed at the renewal times, we denoted

.)
Lower Bound:First we will prove that

. Since , we have

From the inequality above, we see that the lower bound
will follow if we manage to prove that

. The last equality will follow from [1, Th.
6], if we prove that the conditional increments in the random
walk and in the fluid queueing process have the same
asymptotics. More precisely, we need to prove the following
lemma.

Lemma 3:

(14)

where

and
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(a)

(b)

Fig. 15. Two processes with the same marginal d.f. and the same ACF’s (a) that build very different queues (b).
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Proof: If then the right-hand side of (14) is
equal to zero. The left-hand side will be equal to zero if we
show that decays exponentially in, and
that will follow from

for some constants . The latter inequality follows from
the Cramér conditions imposed on .

If , then

(15)

where denotes the integer part of. Again, from the
Craḿer conditions, it follows that the sum in (15) decays
exponentially for any . Therefore, for any

the last equality follows from . Therefore, by passing
, we obtain

(16)

To prove the reversed inequality, observe that

By observing that for each
converges to one exponentially fast, in the same spirit

as in proving inequality (16), we prove the reversed inequality

of (16). This finishes the proof of lemma, and the lower bound

part of the proof of Theorem 2.

Upper Bound:Here, we compare with a fluid queue

that has slightly larger arrivals than , i. e., we assume

that the arrival process to the queue is ,

where is sufficiently small so that represents a

stable queue.

By iterating recursion (13), we obtain that

Further observe that

where . By defining further

, we obtain that is bounded

by

The second in the inequality above is exactly equal to

; the first we denote by . Then, it follows that

From the Cram´er conditions, it is relatively easy to see that for

every is an exponentially bounded random variable,

i.e., there exist , such that .

Therefore, it follows:

Since from [1, Th. 6], it follows that has a
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regularly varying tail, we come to the conclusion that

for all sufficiently small . By passing we obtain

This finishes the proof of the theorem.
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