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Abstract Retransmissions represent a primary failure recovery mechanism on all
layers of communication network architecture. Similarly, fair sharing, for example,
processor sharing (PS), is a widely accepted approach to resource allocation among
multiple users. Recent work has shown that retransmissions in failure-prone, for exam-
ple, wireless ad hoc, networks can cause heavy tails and long delays. In this paper,
we discover a new phenomenon showing that PS-based scheduling induces complete
instability with zero throughput in the presence of retransmissions, regardless of how
low the traffic load may be. This phenomenon occurs even when the job sizes are
bounded/fragmented, for example, deterministic. Our analytical results are further
validated via simulation experiments. Moreover, our work demonstrates that schedul-
ing one job at a time, such as first-come-first-serve, achieves a larger stability region
and should be preferred in these systems.
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1 Introduction

High variability and frequent failures characterize the majority of large-scale systems,
for example, infrastructure-less wireless networks, cloud/parallel computing systems,
etc. The nature of these systems imposes the employment of failure recovery mech-
anisms to guarantee their good performance. One of the most straightforward and
widely used recovery mechanisms is to simply restart all the interrupted jobs from the
beginning after a failure occurs. In communication systems, restart mechanisms lie at
the core of the network architecture where retransmissions are used on all protocol
layers to guarantee data delivery in the presence of channel failures, for example,
automatic repeat request (ARQ) protocol [2], contention-based ALOHA-type proto-
cols in the medium access control (MAC) layer, end-to-end acknowledgements in
the transport layer, HTTP downloading scheme in the application layer, and oth-
ers.

Furthermore, sharing is a primary approach to fair scheduling and efficient man-
agement of the available resources. Fair allocation of the network resources among
different users can be highly beneficial for increasing throughput and utilization.
For instance, CDMA is a multiple access method used in communication networks,
where several users can transmit information simultaneously over a single channel
via sharing the available bandwidth. Another example is processor sharing (PS)
scheduling [3] where the capacity is equally shared between multiple classes of
customers. In generalized PS (GPS) [4], service allocation is done according to
some fixed weights. The related discriminatory PS (DPS) [5–7] is used in comput-
ing to model the weighted round-robin (WRR) scheduling, while it is also used in
communications as a flow level model of heterogeneous TCP connections. Simi-
larly, fair queuing (FQ) is a scheduling algorithm where the link capacity is fairly
shared among active network flows; in weighted fair queuing (WFQ), which is
the discretized version of GPS, different scheduling priorities are assigned to each
flow.

In general, PS-based scheduling disciplines have been widely used in computer
and communication networks. Early investigations of PS queues were motivated by
applications in multiuser computer systems [8]. TheM/G/1 PS queue has been studied
extensively in the literature [9]. In the case of the M/M/1 PS system, the conditional
Laplace transform of the waiting time was derived in [8]. The importance of schedul-
ing in the presence of heavy tails was first recognized in [10], and later, in [11], the
M/G/1 PS queue was studied assuming subexponential job sizes; see also [11] for
additional references.

In [12], it was proven that, although there are policies known to optimize the sojourn
time tail under a large class of heavy-tailed job sizes (for example, PS and SRPT) and
there are policies known to optimize the sojourn time tail in the case of light-tailed job
sizes, for example, first-come-first-serve (FCFS), no policies are known to optimize
the sojourn time tail across both light- and heavy-tailed job size distributions. Indeed,
such policies must “learn” the job size distribution in order to optimize the sojourn
time tail. In the heavy-tailed scenarios, any scheduling policy that assigns the server
exclusively to a very large job, for example, FCFS, may induce long delays, in which
case sharing guarantees better performance.
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In this paper, we study the effects of sharing on the system performance when
restarts are employed in the presence of failures. We revisit the well-studied M/G/1
PS queue with a new focus on server failures and restarts.We use the following generic
model, which was first introduced in [13] in the application context of computing. The
system dynamics are described as a process {An}n≥1, where An correspond to the
periods when the system is available. {An}n≥1 is a sequence of i.i.d random variables,
independent of the job sizes. In each period of time that the system is available, say
An , we attempt to execute a job of random size B. If An > B, we say that the job
is successfully completed; otherwise, we restart the job from the beginning in the
following period An+1 when the channel is available.

With regard to retransmissions, it was first recognized in [13–15,20] that restart
mechanisms may result in heavy-tailed (power law) delays even if the job sizes and
failure rates are light tailed. In [16], it was shown that the power law delays arise
whenever the cumulative hazard functions of the data and failure distributions are
proportional. In the practically important case of bounded data units, a uniform char-
acterization of the entire body of the retransmission distributionwas derived in [17,18],
which allows for determining the optimal size of data units/fragments in order to alle-
viate the power law effect. Later, these results were extended to the case where the
channel is highly correlated [19], i.e., switches between states with different charac-
teristics, and was proved that the delays are insensitive to the channel correlations and
are determined by the ‘best’ channel state.

In this paper, our main contributions are the following. First, we prove that the
M/G/1 PS queue is always unstable, regardless of how light the load is and how
small the job sizes may be, see Theorems 1 and 2 in Sect. 3. This is a new phenom-
enon, since contrary to the conventional belief, sharing the service even between very
small deterministic jobs can render the system completely unstable when retransmis-
sions/restarts are employed. This instability is strong, in the sense of system having
zero throughput. The intuition is the following. If a large number of jobs arrive in a
short period of time, then under the elongated service time distribution induced by
sharing, coupled with retransmissions, the queue will keep accumulating jobs that
will equally share the capacity, which further exacerbates the problem. Every time a
failure occurs, the system resets and the service requirement for each job elongates as
the queue size increases. The expected delay until the system clears becomes increas-
ingly long and, consequently, the queue will continue to grow, leading to instability.
This result also applies to the DPS queue, where the service is not shared equally
but according to some fixed weights. Next, we remove the Poisson assumption and
extend our results to general renewal arrivals in Sect. 4. This demonstrates that instabil-
ity arises from the interplay between sharing and retransmission/restart mechanisms,
rather than any specific characteristics of the arrival process and/or service distribu-
tion.

We would also like to emphasize that job fragmentation cannot stabilize the system
regardless of how small the fragments are made, since Theorem 2 shows instability
for any minimum job size β > 0. Similarly, the system cannot be stabilized by
checkpointing regardless of how small the intervals between successive checkpoints
are chosen. In our experimental results, we make an interesting observation on the
system behavior before it saturates. There exists a transient period, during which
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the queue appears as if it were stable. Although it may occasionally accumulate a
substantial number of jobs, it returns to zero and starts afresh. However, there exists
a time when the queue reaches a critical size after which the service rate of the jobs
reduces so much that neither of them can depart. Hence, as the queue continues to
increase in size, the system becomes unstable.

To contrast these results, in Sect. 3.2, we study the stability of a non-preemptive
policy that serves one job at a time under more specific assumptions of Poisson failure
rates. To this end, Theorem 3 shows that when jobs are bounded, serving one job at a
time, for example, FCFS, always has a non-empty stability region, and thus performs
better than PS.

In order to gain further insight into the system,we then focus on its transient behavior
and study the properties of the completion time of a finite number of jobswith no future
arrivals. Specifically, we compare twowork-conserving policies: scheduling one job at
a time, for example, FCFS, and PS. Overall, we discover that serving one job at a time
exhibits uniformly better performance than PS; compare Theorems 7 and 8, respec-
tively. Furthermore, under more technical assumptions, and for light-tailed job/failure
distributions, we show that PS performs distinctly worse compared to the heavy-tailed
ones, and that PS is always unstable.

From an engineering perspective, our results indicate that traditional approaches
in existing systems may be inadequate in the presence of failures. This new
phenomenon demonstrates the need to revisit existing techniques for large-scale
failure-prone systems, where PS-based scheduling may perform poorly. For exam-
ple, since PS is unstable even for deterministic jobs, packet fragmentation, which
is widely used in communications, cannot alleviate instabilities. Indeed, frag-
mentation can only postpone the time when the instability occurs, but cannot
eliminate the phenomenon; see Example 1 in Sect. 6. Therefore, serving one
job at a time, for example, FCFS, is highly advisable in such systems; see
Sect. 3.2.

The paper is organized as follows. In Sect. 2, we introduce the model along with
the necessary definitions and notation. Next, in Sect. 3, we present our main results
on the M/G/1 PS queue, which are further extended in Sect. 4 to general renewal
arrivals. On the other hand, in Sect. 3.2 we study the stability of non-preemptive
policies that serve one job at a time, for example, FCFS. Later, in Sect. 5, we
analyze the transient behavior of the system under two different scheduling poli-
cies, i.e., serving one job at a time and PS. Lastly, Sect. 6 presents our simulation
experiments that validate our main theoretical findings, while Sect. 7 concludes the
paper.

2 Definitions and notation

First, we provide the necessary definitions and notation assuming that the jobs are
served individually. Consider a generic job of random size B, B > 0 a.s., request-
ing service in a failure-prone system. Without loss of generality, we assume that the
system is of unit capacity. The failure dynamic is described as a process {An}n≥1 of
i.i.d availability periods, where at the end of each period An , the system experiences
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Fig. 1 System with failures

Fig. 2 Jobs executed in system with failures

a failure, as shown in Fig. 1. The channel/server statistics {An}n≥1 are independent of
the job size B.

Furthermore, we assume that the first failure occurs at time A0 ≥ 0, which is
independent of {An}n≥1 and B. When A0 is equal in distribution to the excess/residual
distribution of A1, {An}n≥0 will be in stationarity. Throughout the paper, we will use
different assumptions on A0, for example, A0 ≡ 0,whichwill be explicitly stated in the
corresponding results. Let A be a generic random variable that is equal in distribution
to A1. We denote the complementary cumulative distribution functions for A and B,
respectively, as

Ḡ(x) � P(A > x) and F̄(x) � P(B > x).

At each period of time that the system becomes available, say An , we attempt to
process a generic job of size B. If An > B, we say that the job is completed success-
fully; otherwise, we wait until the next period An+1 when the channel is available and
restart the job. A sketch of the model depicting the system is drawn in Fig. 2.

The number of restarts, N , and the total service time, S, for a job of size B, whose
service begins immediately after a first failure A0 and is served in isolation without
preemption are defined as follows.

Definition 1 The number of restarts for a generic job of size B is defined as

N � inf{n ≥ 1 : An > B}.

Definition 2 The service time is the total time until a generic job of size B is success-
fully completed and is denoted by

S �
N−1∑

i=1

Ai + B.
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Note that the preceding definitions will be different when jobs are sharing a server,
as in the PS discipline. In general, a job B will successfully complete service during
an availability period An+1 if there exists t ≤ An+1 such that

∫ Tn+t

Tn
C B
u du = B,

where CB
u is the service rate that job B receives at time u and Tn is the time of the

nth failure, Tn = ∑n
i=0 Ai , n ≥ 0. Note that in general CB

u depends on the number
of jobs at time Tn , the arrival process, and the service discipline. We use Bj to denote
the service requirement of job j where {Bj } j≥1 is an i.i.d process equal in distribution
to B. The failure times {An}n≥0, job requirements {Bj } j≥1 and the arrival process are
mutually independent.

Throughout the paper, we use the following standard notation. For any two real
functions f (x) and g(x) and fixed x0 ∈ R∪ {∞}, we say f (x) ∼ g(x) as x → x0, to
denote limx→x0 f (x)/g(x) = 1.

3 M/G/1 queue with restarts

In this section, we discuss the stability of the M/G/1 queue under two scheduling dis-
ciplines: PS and non-preemptive one job at a time policy. Throughout this section, we
assume that the arrival process is Poisson with rate λ > 0. In the following subsec-
tion, we show in Theorem 2 that the M/G/1 PS queue is unstable under considerable
generality. Next, in Sect. 3.2, we derive the necessary and sufficient condition for the
system to be stable when the jobs are processed one at a time and the failure rates are
Poisson.

3.1 Instability of processor sharing queue

In this section, we show in Theorems 1 and 2 that the M/G/1 PS queue is unstable
when jobs need to restart after failures. We consider a general renewal failure process
as defined in Sect. 2. First, in Proposition 1, we show that for some initial condition on
the queue size, the probability that no job completes service approaches 1, under the
mild assumption that jobs are bounded from below by some positive constant β. This
is a natural assumption for communication or computing applications where jobs, for
example, files, packets, threads,must have a header to contain the required information,
such as destination address, thread id, etc. Hence, the job sizes, in practice, cannot be
smaller than a positive constant.

Next, in Theorem 1, without any initial condition on the queue size, we prove that
after somefinite time, no job ever leaves the system; this result is stronger than standard
stability theorems. Then, in Corollary 1, we draw a weaker conclusion that the queue
size grows to infinity, which is also stated in Theorem 2. Nevertheless, the latter does
not require the assumption on the minimum job size.

We begin with the following proposition. As previously mentioned, in this section
we assume a general renewal failure process {An}n≥0, as defined in Sect. 2. In the
following proposition, we assume that the first failure occurs at t = 0, i.e., A0 = 0.
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The remaining results (Theorems 1 and 2) allow for an arbitrary delay until the first
failure, 0 ≤ A0 < ∞; this assumption includes the stationary version of {An}n≥0,
when A0 has the excess distribution of A.

Proposition 1 Assume that a failure occurs at time t = 0, i.e., A0 ≡ 0, and there are
Q0 ≥ k jobs in the M/G/1 PS queue. If EA < ∞ and P[B ≥ β] = 1, β > 0, then
there exists θ > 0, such that for all k ≥ 1

P[no job ever completes service] ≥ 1 − O(EA1(A ≥ βk) + e−θk). (3.1)

Proof Let T1 = ∑ck
i=1 Ai be the cumulative time that includes the first ck failures for

t > 0; to simplify notation we write
∑y

x to denote
∑
y�

�x
, where �x
 is the smallest

integer ≥x and 
y� is the largest integer ≤y. Now, define the event A1 ≡ A1(k) �
{A1 < βk, A2 < βk, . . . , Ack < βk}. On this event, no job can leave the system since
Q0 ≥ k and all of them are at least of size β. Thus, if they were served in isolation,
they could not have completed service in the first ck attempts.

Now, let E1 denote the event that there is no departure in the first ck service attempts
and there are at least k arrivals in (0, T1]; we use Z(t0,t1] to denote the number of Poisson
arrivals in the interval (t0, t1], whereaswe simplywrite Zt for intervals (0, t]. Formally,

E1 ⊃ E1 � {ZT1 ≥ k,A1},

on the set {Q0 ≥ k}. Note that E1 is clearly a subset of E1, since there may be many
other scenarios when no jobs leave the queue either because jobs are larger than β or
more than k jobs are sharing the server. Now, observe that

P(E1) ≥ P(ZT1 ≥ k, T1 ≥ 2k/λ,A1)

≥ P(Z2k/λ ≥ k, T1 ≥ 2k/λ,A1)

≥ P(Z2k/λ ≥ k)P(T1 ≥ 2k/λ,A1),

since Poisson arrivals are independent of the failure process. Thus,

P(E1) ≥ P(Z2k/λ ≥ k) (P(A1) − P(T1 < 2k/λ)) .

First, note that

P(Z2k/λ ≥ k) = 1 − P(Z2k/λ < k) = 1 − P(2k − Z2k/λ > k)

≥ 1 − e−θk
Eeθ(2k−Z2k/λ) = 1 − eθk

Ee−θ Z2k/λ ,

by Cramer’s bound for θ > 0. Next, observe that Z2k/λ is Poisson with mean 2k and
thus

P(Z2k/λ ≥ k) ≥ 1 − eθke2(e
−θ−1)k = 1 − e−θ1k,

where θ1 = 2(1 − e−θ ) − θ > 0, for θ small.
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Second, observe that

P(T1 < 2k/λ) = P

(
ck∑

i=1

Ai < 2k/λ

)
= P

(
ck∑

i=1

(Ai − EA) < 2k/λ − ckEA

)

≤ P

⎛

⎝
3k/λEA∑

i=1

(EA − Ai ) > k/λ

⎞

⎠ ,

by picking c � 3/(λEA). Now, let Xi � EA − Ai , which are bounded from above
since Xi ≤ EA < ∞, from our main assumption. Therefore, Cramer’s large deviation
bound implies that

P(T1 < 2k/λ) ≤ P

⎛

⎝
3k/λEA∑

i=1

Xi > k/λ

⎞

⎠ ≤ H2e
−θ2k,

for some H2, θ2 > 0.
Therefore,

P(E1) ≥ (1 − e−θ1k)
(
P(A1) − H2e

−θ2k
)

≥ P(A < βk)ck −
(
e−θ1k + H2e

−θ2k − H2e
−(θ1+θ2)k

)

≥ (1 − P(A ≥ βk))ck − He−θk,

where θ = min(θ1, θ2) and H > 0 such that H < (1+H2). Next, using 1− x ≥ e−2x

for small x , we have for all k ≥ k0

P(E1) ≥ e−2ckP(A≥βk) − He−θk

≥ 1 − 2ckP(A ≥ βk) − He−θk

≥ e−4ckP(A≥βk)− 2He−θk
.

Next, at time T1 = T1, on event E1, the queue has at least 2k jobs, i.e., QT1 ≥ 2k,
and no jobs have departed. Similarly, as before, let T2 = ∑3ck

i=ck+1 Ai be the cumu-
lative time that includes the next 2ck failures, and define A2 ≡ A2(k) = {Ack+1 <

2βk, Ack+2 < 2βk, . . . , A3ck < 2βk}. Now, if E2 is the event that there is no
departure in the next 2ck attempts and there are at least 2k arrivals in (T1,T2], then
E2 ⊃ E2 � {ZT2 ≥ 2k,A2} on {QT1 ≥ 2k}; note that E2 is independent of E1.
Then, the probability that no job departs in (0,T2], where T2 = T1 + T2, is lower
bounded by
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P(no job departs in (0,T2]) ≥ P(E1 ∩ E2)

≥ P(ZT1 ≥ k,A1, ZT2 ≥ 2k,A2) = P(E1)P(E2)

≥ P(ZT1 ≥ k,A1, QT1 ≥ 2k, Z(T1,T2] ≥ 2k,A2),

(3.2)

since {QT1 ≥ 2k} ⊇ {ZT1 ≥ k,A1} on the set {Q0 ≥ k}; the remaining statements in
this proof should all be considered on {Q0 ≥ k}.

Next, via identical arguments to before, we obtain

P(E2) ≥ P(ZT2 ≥ 2k, T2 ≥ 4k/λ,A2)

≥ P(Z4k/λ ≥ 2k) (P(A2) − P(T2 < 4k/λ)) ≥ e−8ckP(A≥2βk)−2He−2θk
.

Therefore, at time T2, on event E1 ∩ E2, there are at least 4k jobs.
In general, for any n, we can extend the reasoning from (3.2) to obtain

P(no job departs in (0,Tn]) ≥ P(E1 ∩ E2 ∩ · · · ∩ En)

≥ P(ZT1 ≥ k,A1, ZT2 ≥2k,A2, . . . , ZTn ≥2n−1k,An)

= P(E1 ∩ E2 ∩ · · · ∩ En),

where Tn = ∑n
i=1 Ti , Tn = ∑(2n−1)ck

i=(2n−1−1)ck+1
Ai , En is the event that there are no

departures during 2n−1ck attempts and there are at least 2n−1k arrivals in (Tn−1,Tn),
and En = {ZTn ≥ 2n−1k,An}. Similarly to before,

P(En) ≥ e−2n+1ckP(A≥2n−1βk)−2He−θ2n−1k
.

Hence, using the preceding inequality and the independence of Ei s, we obtain

P(E1 ∩ E2 ∩ · · · ∩ En) ≥ P(E1 ∩ E2 ∩ · · · ∩ En) = P(E1)P(E2) · · ·P(En)

≥
n∏

i=1

e−2i+1ckP(A≥2i−1βk)−2He−2i−1θk

= e−4
∑n−1

i=0 2i ckP(A≥2iβk)−2H
∑n−1

i=0 e−2i θk

≥ e−4
∑∞

i=0 2
i ckP(A≥2iβk)−2He−θk ∑∞

i=0 e
−(2i−1)θk

.

Now, observe that
∑∞

i=0 e
−(2i−1)θk < ∞ , and thus we can pick H such that

P(E1 ∩ E2 ∩ · · · ∩ En) ≥ e−4
∑∞

i=0 2
i ckP(A≥2iβk)−He−θk

.
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Furthermore, we observe that

∞∑

i=0

2i ckP(A ≥ 2iβk) ≤ c

β

∞∑

i=0

βk
∫ 2i+1

2i
P(A ≥ xβk)dx

≤ c

β
βk

∫ ∞

1
P(A ≥ xβk)dx = c

β

∫ ∞

βk
P(A ≥ y)dy

= c

β
EA1(A ≥ βk),

and thus

P(E1 ∩ E2 ∩ · · · ∩ En) ≥ e−4cβ−1
EA1(A≥βk)−He−θk ≥ 1 − H(EA1(A≥βk)+e−θk).

Lastly note that, on {Q0 ≥ k},

P(no job ever completes service) ≥ P(∩∞
i=1Ei ) = lim

n→∞P(E1 ∩ E2 ∩ · · · ∩ En)

≥ 1 − H(EA1(A ≥ βk) + e−θk),

where the first inequality follows by definition and the second equality frommonotone
convergence.

Hence, we proved that the statement holds for all k ≥ k0. Lastly, for k < k0, we can
choose H > 1/(EA1(A ≥ βk0) + e−θk0), such that P(no job ever completes service
|Q0 ≥ k) ≥ 0 ≥ 1 − H(EA1(A ≥ βk0) + e−θk0) ≥ 1 − H(EA1(A ≥ βk) + e−θk)

and thus (3.1) holds trivially. ��
We proceed with our main theorem which shows that, after some finite time, no job

will ever depart.

Theorem 1 In the M/G/1 PS queue, if EA < ∞, 0≤ A0 < ∞ a.s., and P[B≥β]=1,
β > 0, then

lim
t→∞P (no job ever completes service after time t) = 1.

Proof For any k ≥ 1, let Tk be the first time that there are k jobs in the queue and a
failure occurs. Tk is almost surely finite since it is upper bounded by the time T̄k that
there are at least k arrivals in an open interval of size β just before a failure; note that
0 ≤ A0 < ∞ a.s. The probability of this event is P(Zβ ≥ k) > 0.

LetB � {BTk
1 , . . . , BTk

QTk
} denote the job sizes that are present in the queue at time

Tk . From Proposition 1, we have

P(no job leaves after Tk |QTk ,B) ≥ 1 − H(EA1(A ≥ βk) + e−θk) ≥ 1 − ε, (3.3)

for all k ≥ k0, since θ > 0 and EA1(A ≥ βk) → 0 as k → ∞.
Now, for any fixed time t , we obtain
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P(no job leaves after time t) ≥ P (Tk ≤ t, no job leaves after Tk)

=E[P(Tk ≤ t |QTk ,B)P(no job leaves after Tk |QTk ,B)]
≥ P(Tk ≤ t)(1 − ε),

which follows from (3.3); the equality follows from the fact that the event {no job
leaves after Tk} is independent of the past, for example, Tk ≤ t , given QTk ,B. Next,
recall that Tk is almost surely finite, i.e., limt→∞ P(Tk ≤ t) = 1, and thus taking the
limit as t → ∞ yields

limt→∞P(no job leaves after timet) ≥ 1 − ε.

Lastly, letting ε ↓ 0 finishes the proof. ��
Corollary 1 Under the conditions in Theorem 1, we have as t ↑ ∞,

Qt ↑ ∞ a.s.

Proof Note that the number of arrivals Zt ↑ ∞ as t ↑ ∞ a.s. Thus, without loss of
generality, we can assume that Zt (ω) ↑ ∞ as t ↑ ∞ for every ω (by excluding the
set of zero probability). Then, for any v > 0,

Uv � {no job ever completes service after time v} ⊂ {Qt ↑ ∞ as t ↑ ∞}.

Now, ifω ∈ Uv , then for t ≥ v, Qt (ω) is non-decreasing. Furthermore, since there are
no departures, the rate of increase of Qt is equal to the arrival rate, and thus Qt ↑ ∞.
Hence,

P(Qt ↑ ∞ as t ↑ ∞) ≥ P(no job ever completes service after time v)

which, by Theorem 1, implies

P(Qt ↑ ∞ as t ↑ ∞) = lim
v→∞P(no job ever completes service after time v) = 1.

��
Remark 1 Note that Theorem 1 is stronger than the standard stability theorems, since
it also implies that eventually no job ever leaves the system.

Finally, we show instability, in general, without the condition P[B ≥ β] = 1.
However, the conclusion is slightly weaker than in Theorem 1, and is the same as in
Corollary 1. Basically, one cannot guarantee that no job ever completes service, since
jobs can be arbitrarily small.

Theorem 2 In the M/G/1 PS queue, if EA < ∞ and 0 ≤ A0 < ∞ a.s., we have as
t ↑ ∞,

Qt ↑ ∞ a.s.
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Proof First, by assumption, we can pick β > 0 such that P[B ≥ β] > 0. Then, for
any time t , let Qβ

t be the number of jobs whose size is at least β and qβ
t be the number

of jobs that are smaller than β. Hence,

Qt = Qβ
t + qβ

t ≥ Qβ

t
,

where Qβ
t
is the queue in a system with the same arrival process where only jobs of

size B ≥ β are served and the smaller ones are discarded. By Corollary 1, Qβ
t

↑ ∞
a.s., and, therefore, we obtain Qt ↑ ∞ a.s. ��

3.1.1 Extension to DPS

In modern system design, PS cannot capture the heterogeneity of users and services,
which is associated with unequal sharing of resources. Hence, we discuss the DPS
queue which is a multi-class generalization of the PS queue: all jobs are served simul-
taneously at rates that are determined by a set of weights wi , i = 1, . . . , K . If there
are n j jobs in class j , each class-k job receives service at a rate ck = wk/

∑K
j=1 w j n j .

DPS has a broad range of applications. In computing, it is used to model WRR
scheduling. In communication networks, DPS is used for modeling heterogeneous,
for example, with different round trip delays, TCP connections. Despite the fact that
the PS queue is well understood, the analysis of DPS has proven to be very hard; yet,
our previous results on PS are easily extended to DPS in the corollary below.

Corollary 2 Under the conditions in Theorems 1 and 2, the DPS queue is also always
unstable, with the same conclusion as in Theorems 1 and 2, respectively.

Proof Without loss of generality, assume that the set of weights is ordered such that
w1 ≤ w2 . . . ≤ wK . In the M/G/1 DPS queue, the service allocation at any given time
t for a single customer in class k is given by

ck(t) = wk∑K
i=1 wi ni (t)

≤ wk

w1
∑K

i=1 ni (t)
≤ wK

w1Qt
.

Note that c(t) = wK /(w1Qt ) is the service rate in a PS queue with capacity c =
wK /w1 ≥ 1. Therefore, each class-k job, k = 1 . . . K , in the DPS queue is served at
a lower rate than the rate c of the PS queue. Hence,

QDPS
t ≥ QPS(c)

t ,

and since, under the conditions in Theorem 1, the PS queue is always unstable, it
follows that the DPS queue is also unstable. ��

3.2 Stability of one job at a time non-preemptive policy

In this section, we study the stability of service disciplines where jobs are processed
one at a time in a non-preemptive fashion, for example, FCFS. The stability results
will be derived for exponentially distributed availability period A with rate μ. This
assumption is needed to ensure the memoryless property of the system after each job
completion.
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Under such policies, the expected service time for a single job from Definition 2 is
given by

E[S] = E

[
N−1∑

i=1

Ai + B

]
.

Note that N � inf{n ≥ 1 : An > B} is a well-defined stopping time for the process
(A, {An}n≥1), and thus the expected service time follows from Wald’s identity as

E[S] = E

[
N∑

i=1

Ai − AN + B

]

= E[N ]E[A] − E[AN ] + E[B].

Now, assuming that the availability period A is exponentially distributed with rate μ

(Poisson failures), the expected service time is given by

E[S] = E[N ]E[A] − (E[A] + E[B]) + E[B]
= (E[N ] − 1)E[A], (3.4)

sinceE[AN ] = E [E[A|A > B]] = E[A+B] = E[A]+E[B], due to the memoryless
property of the exponential distribution.

The necessary and sufficient condition for the stability of the non-preemptiveM/G/1
queue with failures is

λE[S] < 1.

Next, we derive an explicit formula for E[N ] by observing that

P[N > n|B] = P(A ≤ B|B)n = G(B)n .

Thus, using the exponential distribution of A, the expected number of restarts is

E[N ] = E[E[N |B]] = E

[ ∞∑

n=0

P[N > n|B]
]

= E

[ ∞∑

n=0

G(B)n

]
= E

[
Ḡ(B)−1

]
= E[eμB].

Hence, plugging the preceding expression in (3.4), we obtain

E[S] = (E[eμB] − 1)μ−1,

which yields the following theorem.
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Theorem 3 If {An}n≥0 is Poisson with rate μ, arrivals are Poisson with rate λ > 0,
and B is a typical job size, then the queue, for any non-preemptive policy that serves
one job at a time, for example, FCFS, is stable iff

λE[S] = λμ−1
(
E[eμB] − 1

)
< 1. (3.5)

Note that, for exponential job sizes, the mean service time is finite and equal to
1/(1/E[B] − μ) if and only if E[B] < 1/μ, and the stability region is given by
λ/(1/E[B] − μ) < 1. On the other hand, if B does not have exponential moments,
thenE[S] = ∞, i.e., any non-preemptive policy will be unstable. Furthermore, the sta-
bility region for the systemwith failures is strictly smaller than in the traditionalM/G/1
queue, since E[S] > μ−1μE[B] = E[B]. In addition, since ex − 1 − x is increasing
in x for x > 0, the stability region shrinks as the jobs grow in size. Alternatively,
as the job sizes are decreasing, for example, applying fragmentation/checkpointing
techniques, the stability region of a system with failures can approach the one of the
traditional M/G/1 queue. Specifically, if B = β is deterministic, λμ−1(eμβ −1) ∼ λβ

as β → 0, where λβ < 1 is the stability region of the ordinary M/G/1 queue without
failures.

Remark 2 Note that the preceding result can be derived alternatively by noticing that
for deterministic job sizes, B = β, the service time S behaves exactly the same as
a busy period in an M/D/∞ queueing system with arrival rate μ and service time B,
which yields E[S] = (eμβ − 1)/μ. This line of argument extends to random job sizes
B, as in Theorem 3.

4 GI/G/1 PS queue with restarts

In the previous section, we showed that PS is unstable assuming Poisson arrivals.
Here, we show that this result can be extended to more general arrival distributions, for
example, renewal processes.However, to avoid technical complicationsweassume that
the failure process is Poisson of rateμ, i.e., the availability periods Ai are exponential.
To this end, we use M(t0,t1] to denote the number of Poisson failures in (t0, t1] and
write Mt for intervals of the form (0, t]. Let (τ, {τn}n≥1) be an i.i.d. sequence, where
τn represent the interarrival times of the renewal process. Similarly to the definition
of the general failure process in Sect. 2, we assume that the first arrival occurs at
time τ0 ≥ 0. When τ0 has the residual distribution of τ1, then {τn}n≥0 will be in
stationarity.

The main purpose of this section is to show that there is nothing special about
the Poisson arrival assumption that leads to instability. Instead, the instability results
from the interplay between sharing and retransmission/restart mechanisms. First, we
prove the following proposition using similar arguments to those in Proposition 1.
However, we embed the proof at the points of arrivals instead of failures. In the
following proposition, we assume that the first arrival occurs at t = 0, i.e., τ0 = 0.
The remaining results allow for an arbitrary delay until the first arrival, 0 ≤ τ0 < ∞;
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these results imply the stationaryversionof {τn}n≥0,when τ0 has the excess distribution
of τ1.

Proposition 2 Assume that a new job arrives at time t = 0, i.e., τ0 = 0, and there
are Q0 ≥ k jobs in the GI/G/1 PS queue with remaining service ≥ β. If failures are
Poisson, Eτ 1+δ < ∞, 0 < δ < 1 and P[B ≥ β] = 1, β > 0, then for all k ≥ 1

P
[
no job ever completes service

] ≥ 1 − O(EA1(A ≥ βk) + k−δ).

Proof Let T1 = ∑k
i=1 τi be the cumulative time that includes the first k arrivals for

t > 0 and MT1 be the number of failures in (0, T1). Now, define the event A1 ≡
A1(k) � {A1 < βk, A2 < βk, . . . , AMT1

< βk}. On this event, no job can leave the
system since Q0 ≥ k and all of them are at least of size β. Thus, if they were served
in isolation, they could not have completed service in the first MT1 attempts.

Now,with a small abuse of notation, let E1 denote the event that there is no departure
in the first MT1 attempts and there are at most ck failures in (0, T1]. Formally,

E1 ⊃ E1 � {MT1 ≤ ck,A1},

on the set {Q0 ≥ k}. Now, observe that

P(E1) = P(MT1 ≤ ck, A1 < βk, A2 < βk, . . . , AMT1
< βk)

≥ P(MT1 ≤ ck, A1 < βk, A2 < βk, . . . , Ack < βk)

≥ P(A1 < βk)ck − P(MT1 > ck).

Next, note that

P(MT1 > ck) = P

(
MT1 > ck, T1 ≤ 3kEτ

2

)
+ P

(
MT1 > ck, T1 >

3kEτ

2

)

≤ P

(
M 3kEτ

2
> ck

)
+ P

(
T1 >

3kEτ

2

)
,

where the first term is negligible for c > 2μEτ since the expected number of failures
is 3kμEτ/2. Now, observe that

P

(
T1 >

3kEτ

2

)
= P

(
k∑

i=1

τi >
3kEτ

2

)
= P

(
k∑

i=1

(τi − Eτ) >
3kEτ

2
− kEτ

)
.

Now, let Xi � τi −Eτ , and by choosing h = 2−δ(Eτ)1+δ and y = Eτ/4 in Lemma 1
of [20], we obtain
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P

(
k∑

i=1

Xi > kEτ/2

)
≤ kP(X1 > kEτ/4) + hk

2−δ(kEτ)1+δ

≤ kP(τ1 > kEτ/4 + Eτ) + 1

kδ

≤ k
Eτ 1+δ

(kEτ/4 + Eτ)1+δ
+ k−δ ≤ 2k−δ.

Therefore,

P(E1) ≥ (1 − P(A ≥ βk))ck − 2k−δ,

where using 1 − x ≥ e−2x for small x , we have for all k ≥ k0
P(E1) ≥ e−2ckP(A≥βk) − 2k−δ ≥ 1 − 2ckP(A ≥ βk) − 2k−δ

≥ e−4ckP(A≥βk)−4k−δ

.

Next, at time T1 = T1, on event E1, the queue has at least 2k jobs, i.e., QT1 ≥ 2k,
and no jobs have departed. Similarly to before, let T2 = ∑3k

i=k τi be the cumula-
tive time that includes the next 2k arrivals, and define A2 ≡ A2(k) = {AMT1+1 <

2βk, AMT1+2 < 2βk, . . . , AMT1+T2
< 2βk}. The probability that no job departs in

(0,T2], where T2 = T1 + T2, is lower bounded by

P(no job departs in (0,T2]) ≥ P(MT1 ≤ ck,A1, QT1 ≥ 2k, M(T1,T2] ≤ 2ck,A2)

≥ P(MT1 ≤ ck,A1, M(T1,T2] ≤ 2ck,A2), (4.1)

since {QT1 ≥ 2k} ⊇ {MT1 ≤ ck,A1} on the set {Q0 ≥ k}; to avoid repetitions, the
following statements are all on Q0 ≥ k.

Now, if E2 is the event that there is no departure in the next MT2 attempts and there
are at most 2ck failures in (T1,T2], then E2 ⊃ E2 � {MT2 ≤ 2ck,A2}; note that E2
is independent of E1 due to the Poisson memoryless property. Via identical arguments
to before, we obtain

P(E2) ≥ P(MT2 ≤ 2ck, Ack+1 < βk, . . . , A3ck < βk)

≥ e−8ckP(A≥2βk)−4(2k)−δ

.

Therefore, at time T2, on event E1 ∩ E2, there are at least 4k jobs.
In general, for any n, we can extend the reasoning from (4.1) to obtain

P(no job departs in (0,Tn]) ≥ P(MT1 ≤ ck,A1, MT2 ≤ 2ck,

A2, . . . , MTn ≤ 2n−1k,An)

= P(E1 ∩ E2 ∩ · · · ∩ En),

where Tn = ∑n
i=1 Ti , Tn = ∑(2n−1)k

i=(2n−1−1)k+1
τi , En denotes the event that there is

no departure in MTn attempts and there are at most 2n−1 failures in (Tn−1,Tn], and
En = {MTn ≤ 2n−1ck,An}. Similarly,
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P(En) ≥ e−2n+1ckP(A≥2n−1βk)−4(2n−1k)−δ

.

Hence, we obtain

P(E1 ∩ E2 ∩ · · · ∩ En) ≥
n∏

i=1

e−2i+1ckP(A≥2i−1βk)−4(2i−1k)−δ

= e−4
∑n−1

i=0 2i ckP(A≥2iβk)−4k−δ
∑n−1

i=0 (2i )−δ

≥ e−4
∑∞

i=0 2
i ckP(A≥2iβk)−4k−δ

∑∞
i=0 2

−δi
.

Now, observe that
∑∞

i=0 2
−δi < ∞, and thus we can pick H > 0 such that

P(E1 ∩ E2 ∩ · · · ∩ En) ≥ e−4
∑∞

i=0 2
i ckP(A≥2iβk)−Hk−δ

.

The remainder of the proof follows identical arguments to those in Proposition 1.
Thus, on {Q0 ≥ k},

P(no job ever completes service) ≥ 1 − H(EA1(A ≥ βk) + k−δ).

��
Theorem 4 In the GI/G/1 PS queue, if failures are Poisson, 0 ≤ τ0 < ∞ a.s.,
Eτ 1+δ < ∞, 0 < δ < 1 and P[B ≥ β] = 1, β > 0, then

lim
t→∞P (no job ever completes service after time t) = 1.

Proof Similarly to the proof of Theorem 1, we observe the system at time Vk when
there are k jobs in the queue and a failure occurs. Since the arrivals are non-Poisson,
we need additional reasoning to ensure that Vk < ∞ a.s. In this regard, let us consider
a time interval T1 = ∑k

i=1 τi when the first k arrivals occur. Then, let tk be such
that P(T1 < tk) > 0 and divide tk into smaller intervals of size β. Now, consider the
probability that {T1 < tk} and there is at least one failure in each of the small intervals
of size β. Since the failures are Poisson, this event has a positive, albeit extremely
small, probability. If this event occurs, then Vk ≤ T1 < ∞ a.s. Otherwise, repeat the
procedure on the next interval T2 = ∑2k

i=k+1 τi . Since the arrivals are renewal and
failures are Poisson, the desired event in interval T2 is independent and has the same
probability as in T1. Hence, after a geometric number of attempts, the queue will have
at least k jobs at the time of failure, implying that Vk < ∞ a.s.

Now, the remainder of the proof follows the same arguments as in Theorem 1 of
Sect. 3. We omit the details. ��
Similarly to Theorem 2 of Sect. 3, we drop the condition P[B ≥ β] = 1 and prove
general instability.

Theorem 5 In the GI/G/1 PS queue, if failures are Poisson, 0 ≤ τ0 < ∞ a.s., and
Eτ 1+δ < ∞, 0 < δ < 1, we have as t ↑ ∞,

Qt ↑ ∞ a.s.
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The proof is similar to the proof of Theorem 2 and thus is omitted. Furthermore, the
equivalent results could be stated for the DPS scheduler as well. Lastly, the preceding
findings could be further extended to both non-Poisson arrivals and non-Poisson fail-
ures. However, the proofs would be much more involved and complicated; here, we
avoid such technicalities.

5 Transient behavior: scheduling a finite number of jobs

In the previous sections, we focused on the steady-state behavior of the M/G/1 queue
with restarts and proved that PS is always unstable for failure distributions with finite
first moment. We also showed instability for the GI/G/1 PS queue, assuming Poisson
failures. In this section, in order to gain further insight into this system, we study its
transient behavior. In this regard, we consider a queue with a finite number of jobs and
no future arrivals and compute the total time until all jobs are completed. In Sects. 5.1
and 5.2, we analyze the system performance when the jobs are served one at a time
and when PS is used, respectively. More precisely, for a finite number of jobs with
sizes Bi , 1 ≤ i ≤ m, and assuming no future arrivals, we study the completion time
Θm , until all m jobs complete their service. Throughout this section, we assume that
service starts at t = 0 and A0 ≡ 0; furthermore, we assume that the distribution
functions Ḡ(x) and F̄(x) are absolutely continuous for all x ≥ 0.

Note that in the case of traditional work-conserving scheduling systems the com-
pletion time does not depend on the scheduling discipline and is always simply equal
to

∑m
i=1 Bi . However, in channels with failures there can be a stark difference in the

total completion time depending on the scheduling policy. This difference can be so
large that in some systems the expected completion time can be infinite, while in others
finite, or even having many high moments.

Overall, we discover that, with respect to the distribution of the total completion
time Θm , serving one job at a time exhibits uniformly better performance than PS;
see Theorems 7 and 8. Furthermore, when the cumulative hazard functions of the job
and failure distributions are proportional, i.e., log F̄(x) ∼ α log Ḡ(x), we show that
PS performs distinctly worse for the light-tailed job/failure distributions as opposed
to the heavy-tailed ones; see parts (i) and (ii) of Theorem 8.

Before presenting our main results, we state the following theorem on the loga-
rithmic asymptotics of the time S̄ = ∑N

i=1 Ai = S + (AN − B), where S is from
Definition 2. Note that S̄ includes the remaining time (AN − B) until the next channel
availability period, thus representing a natural upper bound for S. In the following, let
∨ ≡ max.

Theorem 6 If log F̄(x) ∼ α log Ḡ(x) as x → ∞, α > 1, E[Bα+δ] < ∞,

and E[A1∨α] < ∞ for some δ > 0, then

lim
t→∞

logP[S̄ > t]
log t

= −α (5.1)

Proof By Theorem 6 in [20], when specialized to the conditions of this theorem, we
obtain that logP[S > t] → −α log t as t → ∞. This immediately yields the lower
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bound for S̄ = S + (AN − B) ≥ S. For the upper bound, S̄ = S + (AN − B) and the
union bound result in

P[S̄ > 2x] ≤ P[S > x] + P[AN − B > x].
Hence, in view of Theorem 6 in [20], we only need to bound P[AN − B > x]. To this
end, observe that

P [AN − B > x] = P [AN > B + x] =
∞∑

i=1

P[Ai > B + x, N = i]

=
∞∑

i=1

P
[
Ai > B + x, A1 < B, . . . , Ai−1 < B

]

=
∞∑

i=1

E

[
P (Ai > B + x |B)P (A1 < B|B)i−1

]

= E

[
Ḡ(B + x)

Ḡ(B)

]
≤ Ḡ(x)E[N ],

since E[N ] = E(1/Ḡ(B)). Now, the condition α > 1 guarantees that E[N ] < ∞,
whereas E[Aα] < ∞ implies that Ḡ(x) = O(1/xα). Thus, (5.1) is satisfied. ��

5.1 One job at a time non-preemptive policy

In this subsection, we consider the failure-prone system that was introduced in Sect. 2,
with unit capacity. The jobs are served one at a time, for example, FCFS. Herein, we
analyze the performance of this system assuming that, initially, there are m jobs in
the queue and there are no future arrivals. Specifically, we study the total completion
time, which is defined below.

Definition 3 The total completion time is defined as the total time until all the jobs
are successfully completed and is denoted by

Θm �
m∑

i=1

Si ,

where m is the total number of jobs in the system and Si is the service requirement
for each job.

In the following theorem, we prove that the tail asymptotics of the total completion
time, from Definition 3, under this policy is a power law of the same index as the
service time of a single job.

Theorem 7 If log F̄(x) ∼ α log Ḡ(x) as x → ∞, α > 1, A0 = 0, E[Bα+δ] < ∞,
and E[A1∨α] < ∞ for some δ > 0, then

lim
t→∞

logP[Θm > t]
log t

= −α.
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Proof Recall that the service requirement for a job Bi was previously defined as
Si = ∑Ni−1

j=1 A j + Bi .
For the lower bound, we observe that

P[Θm > t] ≥ P[S1 > t],

since the total completion time is at least equal to the service time of a single job. By
taking the logarithm and using Theorem 6 in [20], we have

logP[Θm > t]
log t

≥ −(1 + ε)α. (5.2)

For the upper bound, we compare Θm with the completion time in a system where
the server is kept idle between the completion time of the previous job and the next
failure. Clearly,

Θm ≤ Θ̄m �
m∑

i=1

S̄i ,

where S̄i �
∑Ni

j=1 A j are the service times that include the remaining availability
period ANi .

Then, we argue that

P[Θm > t] ≤ P

[
m∑

i=1

S̄i > t

]
≤ mP

[
S̄1 >

t

m

]
,

which follows from the union bound. By taking the logarithm and using Theorem 6,
we have

logP[Θm > t]
log t

≤ −α(1 − ε) + logm

log t
≤ −(1 − 2ε)α, (5.3)

where we pick t large enough such that log t ≥ logm/(αε).
Letting ε → 0 in both (5.2) and (5.3) finishes the proof. ��

5.2 Processor sharing discipline

In this subsection, we analyze the PS discipline wherem jobs share the (unit) capacity
of a single server. We present our main theorem on the logarithmic scale, which shows
that the tail asymptotics of the total completion time are determined by the shortest job
in the queue. In particular, under our main assumptions, this time is a power law, but
it exhibits a different exponent depending on the job size distribution, as our results
demonstrate; see Theorem 8 and the proof.

– If the jobs are subexponential (heavy tailed) or exponential, the total delay is simply
determined by the time required for any single job to complete its service, as if it
were the only one present in the queue.
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– If the jobs are superexponential (light tailed), the total delay is determined by the
service time of the shortest job. This job generates the heaviest asymptotics among
all the rest.

Our main result, stated in Theorem 8 below, shows that on the logarithmic scale
the distribution of the total completion time Θ PS

m is heavier by a factor mγ−1 for
superexponential jobs relative to the subexponential or exponential case, when the
cumulative hazard functions F and G are proportional. Therefore, in systems with
failures and restarts, sharing the capacity among light-tailed jobs induces long delays,
whereas, for heavy-tailed ones, PS appears to perform as well as serving the jobs one
at a time. Interestingly enough, this deterioration in performance is determined by the
time it takes to serve the shortest job in the system.

Note that in a PS queue with no future arrivals, the shortest job will depart first.
Immediately after this, the server will continue serving the remainingm−1 jobs, and,
similarly, the shortest job, i.e., the second shortest among the original m jobs, will
depart before all the others. This pattern will continue until the departure of the largest
job, which is served alone.

Theorem 8 Assume that the cumulative hazard function − log F̄(x) is regularly
varying with index γ ≥ 0. If log F̄(x) ∼ α log Ḡ(x) as x → ∞, α > 1,
A0 = 0,E[Bα+δ] < ∞, and E[A1∨α] < ∞ for some δ > 0, then

(i) if γ ≤ 1, i.e., B is subexponential or exponential, then

lim
t→∞

− logP[Θ PS
m > t]

log t
= α,

(ii) if γ > 1, i.e., B is superexponential, then

lim
t→∞

− logP[Θ PS
m > t]

log t
= α

mγ−1 < α.

Remark 3 When α > 1, we easily verify that E[Θ PS
m ] < ∞ in case (i); if the jobs

are superexponential, for example, case (i i), then E[Θ PS
m ] = ∞ if α < mγ−1.

Proof Let B(1) ≤ B(2) ≤ · · · ≤ B(m) be the order statistics of the jobs
B1, B2, . . . , Bm .

The assumption that − log F̄(x) is regularly varying with index γ implies that

log F̄(λx) ∼ λγ log F̄(x), (5.4)

for any λ > 0.
We begin with the lower bound.
(i) Subexponential or exponential jobs (γ ≤ 1). The total completion time is lower

bounded by the time required for a single job to depart when it is exclusively served,
i.e., if the total capacity of the system is used. Hence, it follows that
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P[Θ PS
m > t] ≥ P[S1 > t], (5.5)

where S1 is the service time of a single job of random size B1, when there are no other
jobs in the system. Now, recalling Theorem 6 in [20], it holds that

lim
t→∞

logP[S1 > t]
log t

= −α.

By taking the logarithm in (5.5), the lower bound follows immediately.
(i) Superexponential jobs (γ > 1).
The total completion time is lower bounded by the delay experienced by the shortest

job, and hence,

P[Θ PS
m > t] ≥ P[SPS

1 > t],

where SPS
1 is the service time of job B(1). First, note that the distribution of B(1) is

given by

P(B(1) > x) = P(B1 > x, B2 > x, . . . , Bm > x)

= P(B1 > x)P(B2 > x) · · ·P(Bm > x)

= P(B1 > x)m = F̄(x)m, (5.6)

since Bi , i = 1, . . . ,m, are independent and identically distributed. Now, using (5.6)
and (5.4), together with our main assumption, we observe that

logP(mB(1) > x) = m log F̄
( x

m

)

∼ m1−γ log F̄(x) ∼ αm1−γ log Ḡ(x);

note that we compute the distribution of mB(1) since B(1) receives 1/m fraction of
the service. Then, Theorem 6 in [20] applies with α/mγ−1 ≤ α, i.e.,

lim
t→∞

logP[SPS
1 > t]

log t
= − α

mγ−1 .

Next, we derive the upper bound. To this end, we consider a system where the
server is kept idle after the completion of each job until the next failure occurs. At this
time, all the remaining jobs are served under PS until the next shortest one departs.
If there is more than one job of the same size, only one of these departs. Under this
policy, it clearly holds that

Θ PS
m ≤

m∑

i=1

S̄ PS
i ,

where S̄ PS
i corresponds to the service time of the i th smallest job and includes the

time until the next failure.
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Using the union bound, we obtain

P[Θ PS
m > t] ≤ P

[
m∑

i=1

S̄ PS
i > t

]
≤ (1 + ε)

m∑

i=1

P

(
S̄ PS
i >

t

m

)
. (5.7)

It is easy to see that the service time of the i th smallest job B(i) depends on the number
of jobs that share the server, i.e., m − i + 1, since m − i jobs have remained in the
queue. Now, the distribution of the i th shortest job is derived as

P(B(i) > x) =
i−1∑

k=0

(
m

k

)
P(B1 ≤ x)kP(B1 > x)m−k

∼
(

m

i − 1

)
P(B1 > x)m−i+1 ∼ F̄(x)m−i+1. (5.8)

Next, starting from (5.8), it easily follows that

logP
(
(m − i + 1)B(i) > x

)
∼ log F̄

(
x

m − i + 1

)m−i+1

∼ (m − i + 1)1−γ log F̄(x)

∼ α(m − i + 1)1−γ log Ḡ(x),

where we use (5.4) and our main assumption, and define αi � α/(m− i+1)γ−1; here,
we compute the distribution of (m−i+1)B(i) since the B(i) job receives 1/(m−i+1)
fraction of the service.

Now, recalling Theorem 6, we have

logP
[
S̄ PS
i > t

]

log t
→ αi as t → ∞,

and thus (5.7) yields

logP
[
Θ PS

m > t
]

log t
≤ −(1 − ε) min

i=1,...,m
αi ,

for all t ≥ t0.

(i) Subexponential or exponential jobs (γ ≤ 1).
Observe that min

i=1,...,m
αi = α, and thus

logP[Θ PS
m > t]

log t
≤ −(1 − ε)α. (5.9)
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(ii) Superexponential jobs (γ > 1).
In this case, min

i=1,...,m
αi = α/mγ−1, and thus

logP[Θ PS
m > t]

log t
≤ −(1 − ε)

α

mγ−1 . (5.10)

Letting ε → 0 in (5.9) and (5.10), we obtain the upper bound.

��

6 Simulation

In this section, we present our simulation experiments in order to demonstrate our
theoretical findings. All the experiments result from N = 108 (or more) samples of
each simulated scenario; this guarantees the existence of at least 100 occurrences in the
lightest end of the tail that is presented in the figures. First, we illustrate the instability
results from Sects. 3 and 4.

Example 1 M/G/1 PS is unstable. In this example, we show that the PS queue becomes
unstable by simulating the M/G/1 PS queue for different arrival rates λ > 0, which
all satisfy the stability condition for the non-preemptive M/G/1 queue, when jobs are
served one at a time. In this regard, we assume constant job size β = 1 and Poisson
failures of rate μ = 1/20. Therefore, by evaluating (3.5), we obtain

λE[S] = λμ−1(eμ − 1
) = 20

(
e0.05 − 1

)
λ = 1.025λ < 1,

or equivalently the stability region for the non-preemptive queue is given by Λ =
{λ ≤ 0 : λ < 0.9752}. Hence, in this example, we use λ from the preceding stability
region, λ ∈ Λ.

In Fig. 3, we plot the number of jobs that have received service up to time t . We
observe that the cumulative number of served jobs always converges to a fixed number
and does not increase any further. This happens after some critical timewhen the queue
starts to grow continuously and is unable to drain. For larger values of λ, the system
saturates faster, meaning that the cumulative throughput at the saturated state is lower.

Furthermore, we observe from the simulation that the system behaves as if it were
stable until some critical time or queue size after which it is unable to drain. From
Fig. 3, we can see that the case λ = 10−1 saturates at time t = 106 and the total
number of served jobs reaches 105. Hence, the departure rate until saturation time is
105/106 = 10−1, which is exactly equal to the arrival rate λ = 10−1, corresponding
to the departure rate of a stable queue. This further emphasizes the importance of
studying the stability of these systems since, at first glance, they may appear stable.

Figure 4 demonstrates the queue size evolution over time. Similarly to Fig. 3, we
observe that for any arrival rateλ, there is a critical time afterwhich the queue continues
to grow and never empties. This time varies depending on the simulation experiment;
yet, on average, we observe that the queue remains stable for longer time when λ is
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Fig. 3 Example 1. Jobs completed over time
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Fig. 4 Example 1. a Queue size evolution. b Zooms in the time range [0, 106] of Fig. 4; Qt (y-axis) is
shown on the logarithmic scale

smaller. Now, we zoom in on the queue evolution on the logarithmic scale in Fig. 4b.
Again, we observe that the queue looks stable until some critical time/queue size.

Lastly, in Fig. 5, we plot the queue evolution for different job sizes, namely β =
1, 1.2, 1.5, and 2. We observe that larger job fragments cause instability much faster
than the smaller units. For example, β = 2 leads to instability almost immediately,
while β = 1.5 renders the queue unstable after 104 time units. Similarly, reducing the
fragment size by 60% delays the process by an additional 3×104 units. Lastly, cutting
the jobs in half causes instability after approximately 13×104 time units. This implies
that one should apply fragmentation with caution in order to select the appropriate
fragment size that will maintain good system performance for the longest time.
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Fig. 5 Example 1. Queue size over time parameterized by fragment length; β = 2, λ = 0.1
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Fig. 6 Example 2. Queue size over time parameterized by job size; β = 4

Example 2 General arrivals. In this example, we consider non-Poisson arrivals. We
assume that the failure distribution is exponential with mean EA = 10 and that job
interarrival times follow the Pareto distribution with α = 2 and mean Eτ = 10.1.
Similarly to the previous example, Fig. 6 shows the queue evolution with time for
different job sizes β.

Next, we validate the results on the transient analysis from Sect. 5.

Example 3 Non-preemptive policy: always the same index α. In this example, we
consider a queue of m = 10 jobs, which are served FCFS, i.e., one at a time. The
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Fig. 7 Example 3. Non-preemptive policy: Logarithmic asymptotics when α = 2 for exponential, super-
exponential (γ > 1), and subexponential (γ < 1) distributions

logarithmic asymptotics from Theorem 7 imply that the tail is always a power law of
index α = 2.

In Fig. 7, we plot the distribution of the total completion time in a queue with
10 jobs that are processed one at a time. On the same graph, we plot the logarithmic
asymptotics (dotted lines) that correspond to a power law of index α = 2.We consider
the following three scenarios:

1. Weibull distributions with γ = 2. The failures A are distributed according to
Ḡ(x) = e−(x/μ)2 with mean E[A] = μ
(1.5) = 1.5, and jobs B also follow
Weibull distributions with F̄(x) = e−(x/λ)2 , λ = μ/

√
2. In this case, it is easy to

check that the main assumption of Theorem 7 is satisfied, i.e.,

log F̄(x) = −(x/λ)2 = α log Ḡ(x), α = (μ/λ)2.

2. Exponential distributions. Failures are exponential withE[A] = 2, Ḡ(x) = e−x/2,
and the jobs B are also exponential of unit mean, i.e., F̄(x) = e−x . Then, trivially,

log F̄(x) = 2 log Ḡ(x).

3. Weibull distributions with γ = 0.5. Failures are Weibull with Ḡ(x) = e−√
x/2,

i.e., E[A] = 8. Also, we assume Weibull jobs B with F̄(x) = e−√
x . Thus,

log F̄(x) = −√
x = 2 log Ḡ(x).

In all three cases, we obtain α = 2. Yet, we observe that the tail asymptotics are
the same regardless of the distribution of the job sizes. For the subexponential
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Fig. 8 Example 4. Logarithmic asymptotics for different number of superexponential jobs when α = 4
under PS and FCFS discipline

jobs (case 3: Weibull with γ < 1), the power law tail appears later compared to
the case of superexponential jobs. This is because the constant factor of the exact
asymptotics are different for each case, and it depends on themean size of A,E[A].

Example 4 PS: the effect of the numbers of jobs. In this example, we consider a
PS queue with m = 5 and m = 2 superexponential jobs, and compare it against a
FCFS queue with m = 5 jobs. We assume superexponential job sizes B’s and A’s,
namely Weibull with γ = 2; see case 1 of Example 3. Here α is taken equal to 4. The
logarithmic asymptotics are given in Theorems 7 and 8.

In Fig. 8, we demonstrate the total completion time Θ PS
m , for different numbers of

jobs, when γ = 2. Theorem 8(ii) states that α(m) = α/mγ−1, and thus for γ = 2
we have α(m) = α/m, i.e., we expect power law asymptotes with index α/m for the
different values ofm. On the same figure, we also plot the FCFS completion time Θm ,
which is always a power law of index α = 4, as we previously observed in Example 3.
It can be seen that PS generates heavier power laws, for superexponential jobs. In
particular, PS with m = 2 results in power law asymptotics with α(2) = 2, while PS
with m = 5 jobs leads to infinite expected delay since α(5) = 4/5 < 1.

Example 5 PS: the effect of the distribution type. In this example, for completeness,
we evaluate the impact of the job distribution on the total completion time under
both heavy- and light-tailed job sizes. To this end, we consider the PS queue from
Example 4, with m = 5 jobs, and compare it against FCFS. In Fig. 9, we re-plot
the logarithmic asymptotics of the total completion time P(Θ PS

m > t) for different
distribution types of the failures/jobs and index α = 4, as before. In particular, we
consider Weibull distributions as in Example 3 with γ = 1/2 < 1 and γ = 2 > 1 for
the subexponential and superexponential cases, respectively.
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Fig. 9 Example 5. Logarithmic asymptotics under FCFS, PS with subexponential and superexponential
jobs

On the same graph, we plot the distribution of the completion time Θm in FCFS,
which is always a power law of the same index, as illustrated in Example 3. By fixing
the number of jobs to bem = 5, Fig. 9 shows that when the jobs are superexponential,
PS yields the heaviest asymptotics among all three scenarios; for subexponential jobs,
PS generates asymptotics with the same power law index as in FCFS, albeit with a
different constant factor.

Example 6 Limited queue: throughput versus overhead tradeoff. In practice, job and
buffer sizes are bounded and therefore the queuemaynever becomeunstable.However,
our results indicate that the queuemay lock itself in a ‘nearly unstable’ state, where it is
at its maximum size and the throughput is very low. Here, we would like to emphasize
that, unlike in the case of unlimited queue size, job fragmentation can be useful for
increasing the throughput and the efficiency of the system. In this case, one has to be
careful about the overhead cost of fragmentation. Basically, each fragment requires
additional information, called the ‘header’ in the context of communications, which
contains details on how it fits into the bigger job, for example, destination/routing
information in communication networks. Hence, if the fragments are too small, there
will be a lot of overhead and waste of resources. In view of this fact, one would like to
optimize the fragment sizes by striking a balance between throughput and utilization.

In this example, we demonstrate the tradeoff between throughput and generated
overhead, assuming limited queue size q∗. If the newly arriving job does not fit in the
queue, i.e., the number of jobs currently in the queue is equal to q∗, it is discarded.
We define throughput as the percentage of the jobs that complete service among all
jobs that arrive at the M/G/1 PS queue. It basically corresponds to the total work that
is carried out in the system. On the other hand, we define utilization as the useful
work that is served over the aggregated load in the system. Specifically, we consider

123



Queueing Syst

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10

20

30

40

50

60

70

80

90

100

Job size B

P
er

ce
nt

ag
e 

(%
)

Throughput
Utilization

Fig. 10 Example 6. Throughput versus utilization tradeoff

jobs that require a minimum size b, where b represents the overhead, for example,
the packet header, thread id, etc. The remaining job size, β − b, represents the useful
information.

We consider different job sizes β from 0.4 up to 5 bytes, with overhead b = 0.2.
We simulate the M/G/1 PS queue with maximum queue size q∗ = 10 jobs for a fixed
time T = 108 time units. The arrivals are Poisson with rate 1/10 and the failures are
exponential of the same rate. Clearly, in the case of fixed job sizes β, throughput γ

is lower bounded by the throughput of the system when it performs at the limit, i.e.,
when the queue is full. This state corresponds to the worst overall performance and can
be easily computed. On average, for a fixed period of time T , q∗ jobs will complete
service every E[Sq∗ ] time units, while the total jobs that arrive in the system is λT . In
this case, the lower bound for the throughput is given by

γ = q∗ T

E[Sq∗ ]
1

λT
= q∗

λE[Sq∗ ] ,

and in the particular case of exponential failures, using (3.5) we derive

γ = q∗

λμ−1(eμq∗β − 1)
.

Using this observation, throughput will be suboptimal when γ < 1. Thus, for job
sizes larger than β∗ = log(μq∗λ−1 + 1)/(μq∗), the throughput starts decreasing.

In Fig. 10, we observe that for small job sizes, the throughput is 100 % and it
deteriorates as the job size β increases. In particular, when the job size exceeds 1.5,
the throughput drops exponentially. Utilization exhibits a different behavior; it is low
when the job size is small, i.e., the useful job size is comparable to the overhead b, and
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reaches its peak at β ≈ 1.7. After this, it starts decreasing, following a similar trend
as the throughput. In this case, β − b ≈ 1.5 appears to be the optimal size for the job
fragments. This phenomenon of combining limited queue size with job fragmentation
may require further investigation.

7 Concluding remarks

Retransmissions/restarts represent a primary failure recovery mechanism in large-
scale engineering systems, as it was argued in the introduction. In communication
networks, retransmissions lie at the core of the network architecture, as they appear
in all layers of the protocol stack. Similarly, PS/DPS-based scheduling mechanisms,
due to their inherent fairness, are commonly used in computing and communication
systems. Such mechanisms allow for efficient and fair resource allocation, and thus
they are preferred in engineering system design.

However, our results show that, under mild conditions, PS/DPS scheduling in sys-
tems with retransmissions is always unstable. Furthermore, this instability cannot be
resolved by job fragmentation techniques or checkpointing. On the contrary, serving
one job at a time, for example, FCFS, can be stable and its performance can be fur-
ther enhanced with fragmentation. Interestingly, systems where jobs are served one
at a time can highly benefit from fragmentation and, in fact, their performance can
approach closely the corresponding system without failures.

Overall, using PS in combination with retransmissions in the presence of failures
deteriorates the system performance and induces instability. In addition, our findings
suggest that further examination of existing techniques is necessary in the failure-prone
environment with retransmission/restart failure recovery and sharing, for example, see
Example 6.
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17. Jelenković, P.R., Skiani, E.D.: Uniform approximation of the distribution for the number of retransmis-
sions of bounded documents. In: Proceedings of the 12thACMSIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS ’12,
pp. 101–112 (2012)
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