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Abstract

In this paper we consider the stochastic analysis of information ranking algorithms of
large interconnected data sets, e.g. Google’s PageRank algorithm for ranking pages on
the World Wide Web. The stochastic formulation of the problem results in an equation of
the form R

d= Q + ∑N
i=1 CiRi , where N, Q, {Ri}i≥1, and {C, Ci}i≥1 are independent

nonnegative random variables, the {C, Ci}i≥1 are identically distributed, and the {Ri}i≥1
are independent copies of R; ‘

d=’ stands for equality in distribution. We study the asymp-
totic properties of the distribution of R that, in the context of PageRank, represents the
frequencies of highly ranked pages. The preceding equation is interesting in its own right
since it belongs to a more general class of weighted branching processes that have been
found to be useful in the analysis of many other algorithms. Our first main result shows
that if E N E[Cα] = 1, α > 0, and Q, N satisfy additional moment conditions, then
R has a power law distribution of index α. This result is obtained using a new approach
based on an extension of Goldie’s (1991) implicit renewal theorem. Furthermore, when
N is regularly varying of index α > 1, E N E[Cα] < 1, and Q, C have higher moments
than α, then the distributions of R and N are tail equivalent. The latter result is derived
via a novel sample path large deviation method for recursive random sums. Similarly, we
characterize the situation when the distribution of R is determined by the tail of Q. The
preceding approaches may be of independent interest, as they can be used for analyzing
other functionals on trees. We also briefly discuss the engineering implications of our
results.
Keywords: Information ranking; stochastic recursion; stochastic fixed point equation;
weighted branching process; power law; regular variation; implicit renewal theory; large
deviation
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1. Introduction

We consider a problem of ranking large interconnected information (data) sets, e.g. ranking
pages on the World Wide Web (Web). A solution to this problem is given by Google’s PageRank
algorithm, the details of which are presented in Section 1.1. Given the large scale of these
information sets, we adopt a stochastic approach to the page ranking problem, e.g. Google’s
PageRank algorithm. The stochastic formulation naturally results in an equation of the form

R
d= Q +

N∑
i=1

CiRi, (1.1)
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where N, Q, {Ri}i≥1, and {C, Ci}i≥1 are independent nonnegative random variables, P(Q >

0) > 0, the {C, Ci}i≥1 are identically distributed, and the {Ri}i≥1 are independent copies
of R; ‘

d=’ stands for equality in distribution. We study the asymptotic properties of the
distribution of R that, in the context of PageRank, represents the frequencies of highly ranked
pages. In somewhat smaller generality, the preceding stochastic setup was first introduced and
analyzed in [36] for the PageRank algorithm; the formulation given in (1.1) was later studied
in [35].

The canonical representation given by recursion (1.1) is also of independent interest since it
belongs to a more general class of weighted branching processes (WBPs) [25], [27], [31]; the
connection to WBPs is discussed in more detail in Section 2.3. With a slight abuse of notation,
we also refer to our more restrictive processes as WBPs. These processes have been found to be
useful in the average-case analysis of many algorithms [32], e.g. the quicksort algorithm [15],
and, thus, our study of recursion (1.1) may be useful in these types of applications. Furthermore,
when Q = 1 and Ci ≡ 1, the steady state solution to (1.1) represents the total number of
individuals born in an ordinary branching process. Also, by letting N be a Poisson random
variable, and fixing Q = 1 and Ci ≡ 1, (1.1) reduces to the recursion that is satisfied by the busy
period of an M/G/1 queue. Similarly, selecting N = 1 yields the fixed point equation satisfied
by the first-order autoregressive process; see Section 2.3 for a more thorough discussion on
related processes.

In Section 2 we connect the iterations of recursion (1.1) to an explicit construction of a WBP
on a tree, such that the sum of all the weights of the first n generations of the tree are directly
related to the nth iteration of the recursion. Then, in Section 3 we present explicit estimates for
the moments of the total weight, Wn, of the nth generation in the corresponding WBP. Using
these moment estimates and the WBP representation, we show in Section 3.1 that, under mild
conditions, the iterations of (1.1) converge in distribution to a unique and finite steady state
random variable R. Hence, under the stated assumptions, this limiting distribution P(R ≤ x)

is the unique solution to (1.1). The steady state variable R represents the sum of all the weights
in the corresponding branching tree.

Studying the asymptotic tail properties of the constructed steady state solution R to (1.1)
represents the main focus of this paper. In particular, we study the possible causes that can
result in power tail asymptotics for P(R > x). We discover that the tail behavior of R can be
determined/dominated by the statistical properties of any of the three variables C, N , and Q.
The corresponding results are presented in Sections 4, 5, and 6, respectively. Our emphasis on
power law asymptotics is motivated by the well-established empirical fact that the number of
pages that point to a specific page (in-degree) on the Web, represented by N in recursion (1.1),
follows a power law distribution; other complex data sets, e.g. citations, are found to possess
similar power law properties as well.

Our first main result on the tail behavior of P(R > x) is presented in Theorem 4.2, showing
that if E N E[Cα] = 1, α > 0, and Q, N satisfy additional moment conditions, then R has a
power law distribution of index α, with an explicitly characterized constant of proportionality.
In particular, when α is an integer, the constant of proportionality of the power law distribution is
explicitly computable; see Corollary 4.1. This result is obtained by an extension of Goldie’s [16]
implicit renewal theorem that we present in Theorem 4.1. This extension may be of independent
interest since R and C in the statement of Theorem 4.1 can be any two independent random
variables that may satisfy a different recursion. In the context of the broader literature on WBPs,
our results are related to the studies in [31] (see Theorem 6) and, more recently, in [2], both
of which study recursion (1.1) using stable law methods when Q and {Ci} are deterministic
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constants. However, these deterministic assumptions fall outside the scope of this paper; for
more details, see the discussion in Section 2.3 and the remarks after Theorem 4.2. Outside of
these results, the majority of the work on WBPs considers the homogeneous equation (Q ≡ 0),
e.g. in [27] the behavior of the distribution of R was characterized using stable law distributions
for 0 < α ≤ 1. Also, related results for the homogeneous case (Q ≡ 0) and α > 1 can be
found in Theorem 2.2 of [28] and Proposition 7 of [18]. For additional comments on results
related to our Theorem 4.2, see the remarks following its statement. Furthermore, this result
may provide a new explanation of why power laws are so commonly found in the distribution of
wealth since weighted branching processes appear to be reasonable models for the total wealth
of a family tree.

In Section 5 we study the case when N is power law and dominates the tail behavior of R.
This is the case that more closely relates to the original formulation of PageRank and the
structure of the Web graph since the in-degree N is well accepted to be a power law. Our main
result in this case, stated in Theorem 5.1, shows that, when N is regularly varying of index
α > 1, E N E[Cα] < 1, and Q, C have higher moments than α, then the distribution of R

is tail equivalent to that of N . Our approach in deriving this result is based on a new sample
path heavy-tailed large deviation method for weighted recursions on trees. The key technical
result is given in Proposition 5.1 and provides a uniform bound (in n and x) on the distribution
of the total weight of the nth generation P(Wn > x). We would also like to point out that
Proposition 5.1 resembles, to some extent, a classical result by Kesten (see Lemma 7 of [5,
p. 149]), which provides a uniform bound for the sum of heavy-tailed (subexponential) random
variables. The main difference between the latter result and our uniform bound is that n refers
to the depth of the recursion in our case, while in Lemma 7 of [5], n is the number of terms
in the sum. This makes the derivation of Proposition 5.1 considerably more complicated, and
perhaps implausible, if it were not for the fact that we restrict our attention to regularly varying
distributions, as opposed to the general subexponential class.

In Section 6 we investigate a third possible source of heavy tails for R, namely that which
arises from the innovation, Q, being power law; see Theorem 6.1. For N = 1, this result is
consistent with a corresponding result for the first-order autoregressive process in Lemma A.3
of [29]. The proofs of more technical results are postponed to Section 7.

Finally, from a mathematical perspective, we would like to emphasize that our sample path
large deviation approach, as well as the extension of the implicit renewal theory, provides a
new set of tools that can be of potential use in other applications, as well as in studying a
broader class of recursions on trees, e.g. we can readily characterize the asymptotic behavior
of the distribution that solves R = Q + max1≤i≤N CiRi . Furthermore, from an engineering
perspective, our Theorem 5.1 shows that, for highly ranked pages, the PageRank algorithm
basically reflects the popularity vote given by the number of references N , implying that overly
inflated referencing may be advantageous. A more detailed discussion on the engineering
implications of the performance and design of ranking algorithms, e.g. PageRank, can be found
at the end of Section 5.

1.1. Google’s algorithm: PageRank

PageRank is an algorithm trademarked by Google, the Web search engine, to assign to each
page a numerical weight that measures its relative importance with respect to other pages. We
think of the Web as a very large interconnected graph where nodes correspond to pages. The
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Google trademarked algorithm PageRank defines the page rank as

R(pi) = 1 − d

n
+ d

∑
pj ∈M(pi)

R(pj )

L(pj )
, (1.2)

where, using Google’s notation, p1, p2, . . . , pn are the pages under consideration, M(pi) is
the set of pages that link to pi , L(pj ) is the number of outbound links on page pj , n is the
total number of pages on the Web, and d is a damping factor, usually d = 0.85. As noted in
the original paper by Brin and Page [11], PageRank ‘can be calculated using a simple iterative
algorithm, and corresponds to the principal eigenvector of the normalized link matrix of theWeb.
Also, a PageRank for 26 million web pages can be computed in a few hours on a medium size
workstation’. Other link-based ranking algorithms for web pages include the HITS algorithm,
developed by Kleinberg [24], and the TrustRank algorithm [17].

While, in principle, the solution to (1.2) reduces to the solution of a large system (possibly
billions) of linear equations, we believe that finding page ranks in such a way is unlikely to be
insightful. Specifically, if we obtain the principal eigenvector of the normalized link matrix,
it is hard to obtain from the solution qualitative insights about the relationship between highly
ranked pages and the in-degree/out-degree statistical properties of the graph.

In particular, the division by the out-degree, L(pj ) in (1.2), was meant to decrease the con-
tribution of pages with highly inflated referencing, i.e. those pages that basically point/reference
possibly indiscriminately to other documents. However, the stochastic approach (to be
described in the following sections) reveals that highly ranked pages are essentially insensitive
to the parameters of the out-degree distribution, implying that the PageRank algorithm may
not reduce the effects of overly inflated referencing (citations, voting) as originally intended,
i.e. it may lead to possibly unjustifiable highly ranked pages. An analytical explanation as to
why the tail of the rank distribution is dominated by N was first given in [35] and [36]. More
discussions on this topic are provided at the end of Section 5.

A stochastic approach to analyze (1.2) is to consider the recursion

R
d= γ + c

N∑
i=1

Ri

Di

, (1.3)

where γ, c > 0 are constants, c E[1/D] < 1, N is a random variable independent of the Ris
and Dis, the Dis are independent and identically distributed (i.i.d.) random variables satisfying
Di ≥ 1, and the Ris are i.i.d. random variables having the same distribution as R. In terms of
recursion (1.2), R is the rank of a random page, N corresponds to the in-degree of that node, the
Ris are the ranks of the pages pointing to it, and the Dis correspond to the out-degrees of each
of these pages. The experimental justification of these independence assumptions can be found
in [34]. This stochastic setup was first introduced in [36], where the process resulting from a
finite number of iterations of (1.3) was analyzed. More recently, in a follow up paper [35], the
more general recursion

R
d= Q +

N∑
i=1

CiRi

was analyzed via Tauberian theorems for the cases when N or Q dominate. In [35], dependency
between N and Q is allowed, but additional moment conditions are imposed. Recall that in
the setup considered here N, Q, {Ri}i≥1, and {C, Ci}i≥1 are independent nonnegative random
variables, P(Q > 0) > 0, the {C, Ci}i≥1 are identically distributed, and the {Ri}i≥1 are
independent copies of R.
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2. Model description

As outlined above, we study the sequence of random variables that are obtained by iterat-
ing (1.1). Specifically, we consider, for n ≥ 0,

R∗
n+1 = Qn +

Nn∑
i=1

Cn,iR
∗
n,i , (2.1)

where the {R∗
n,i}i≥1 are i.i.d. copies of R∗

n from the previous iteration, and {Nn}, {Cn,i}, and
{Qn} are mutually independent i.i.d. sequences of random variables, independent of the {Rn,i};
for n = 0, the R∗

0,i are i.i.d. copies of the initial value R∗
0 .

In this section we will discuss the weak convergence of R∗
n to a finite random variable R,

independently of the initial condition R∗
0 . In other words, R is the unique solution to (1.1)

under the assumptions of Lemma 3.4. In particular, we will construct a process R(n) on a tree
that converges almost surely (a.s.) to R. These convergence results may be of practical interest
as well since ranking algorithms are implemented recursively. The actual proofs are postponed
until Section 3.1.

2.1. Construction of R on a tree

To better understand the dynamics of our recursion, we give below a sample path construction
of the random variable R on a tree. First we construct a random tree T . We use the notation
∅ to denote the root node of T , and An, n ≥ 0, to denote the set of all individuals in the nth
generation of T , A0 = {∅}. Let Zn be the number of individuals in the nth generation, that
is, Zn = |An|, where | · | denotes the cardinality of a set; in particular, Z0 = 1. We iteratively
construct the tree as follows. Let N(0) be the number of individuals born to the root node ∅,
and let N(0), {N(n)

i1,...,in
}n≥1 be i.i.d. copies of N . Define

A1 = {i : 1 ≤ i ≤ N(0)},
An = {(i1, i2, . . . , in) : (i1, . . . , in−1) ∈ An−1, 1 ≤ in ≤ N

(n−1)
i1,...,in−1

}.
Then the number of individuals Zn = |An|, n ≥ 1, in the nth generation satisfies the branching
recursion

Zn =
∑

(i1,...,in−1)∈An−1

N
(n−1)
i1,...,in−1

.

Suppose now that individual (i1, . . . , in) in the tree has a weight C(n)
i1,...,in

defined via the
recursion

C(1)
i1

= C
(1)
i1

, C(n)
i1,...,in

= C
(n)
i1,...,in−1,in

C(n−1)
i1,...,in−1

, n ≥ 2,

whereC(0) = 1 is the weight of the root node and the random variables {C(n)
i1,...,in

: n ≥ 0, ik ≥ 1}
are i.i.d. with the same distribution as C. Note that C(n)

i1,...,in
is equal to the product of all the

weights C
(·)· along the branch leading to node (i1, . . . , in), as depicted in Figure 1. Now define

the process
Wn =

∑
(i1,...,in)∈An

Q
(n)
i1,...,in

C(n)
i1,...,in

, n ≥ 0,

where An is the set of all individuals in the nth generation and {Q(n)
i1,...,in

}n≥0 is a sequence of
i.i.d. random variables, independent of everything else, having the same distribution as Q (see
Figure 1).

Observe that when C
(·)· ≡ 1 and Q

(·)· ≡ 1, Wn is equal to the number of individuals in the nth
generation of the corresponding branching process, and, in particular, Zn = Wn. Otherwise, Wn
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Figure 1: Construction on a tree.

represents the sum of the weights of all the individuals in the nth generation. Related processes
known as weighted branching processes have been considered in the existing literature [25],
[27], [31] and are discussed in more detail in Section 2.3. With a slight abuse of notation, we
also refer to our more restrictive processes as WBPs.

Define the process {R(n)}n≥0 according to

R(n) =
n∑

k=0

Wk, n ≥ 0,

that is, R(n) is the sum of the weights of all the individuals on the tree. Clearly, when Q· ≡ 1
and C

(·)· ≡ 1, R(n) is simply the number of individuals in a branching process up to the nth
generation. We define the random variable R according to

R := lim
n→∞ R(n) =

∞∑
k=0

Wk. (2.2)

Furthermore, it is not hard to see that R(n) satisfies the recursion

R(n) =
N(0)∑
j=1

C
(1)
j R

(n−1)
j + Q(0) (2.3)

for n ≥ 1, where the {R(n−1)
j } are independent copies of R(n−1) corresponding to the tree

starting with individual j in the first generation and ending on the nth generation; note that
R

(0)
j = Q

(1)
j .

Moreover, since the tree structure repeats itself after the first generation, Wn satisfies

Wn =
∑

(i1,...,in)∈An

Q
(n)
i1,...,in

C(n)
i1,...,in

=
N(0)∑
k=1

C
(1)
k

∑
(k,...,in)∈An

Q
(n)
k,...,in

n∏
j=2

C
(j)
k,...,ij

d=
N∑

k=1

CkWn−1,k,
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where N , Ck , and Wn−1,k are independent of each other and of all other random variables, and
Wn−1,k has the same distribution as Wn−1.

2.2. Connection between R∗
n and R(n)

We now connect the two processes R∗
n and R(n), the process obtained by iterating (1.1) and

the process obtained from the tree construction, respectively. To do this, define

Wn(R
∗
0) =

∑
(i1,...,in)∈An

R∗
0,(i1,...,in)C

(n)
i1,...,in

,

where the R∗
0,(·) are i.i.d. copies, independent of everything else, of the initial condition R∗

0 , and
the weights C(n)· are those defined in Section 2.1. In words, Wn(R0) is the sum of all the weights
in the nth generation of the tree with the coefficients Q

(n)· substituted by the corresponding R∗
0,(·).

It can be verified that
R∗

n
d= R(n−1) + Wn(R

∗
0);

see [20] for additional details. Since R(n−1) → R a.s., it follows from Slutsky’s theorem (see
Theorem 1 of [12, p. 254]) that if Wn(R

∗
0)

d−→ 0 then

R∗
n

d−→ R,

where ‘
d−→’ denotes convergence in distribution. The proof of this convergence and that of

the finiteness of R are given in Section 3.1. Understanding the asymptotic properties of the
distribution of R, as defined by (2.2), is the main objective of this paper.

2.3. Related processes

As mentioned earlier, the stochastic equation defined in (1.1) leads to the analysis of a process
known in the literature as a weighted branching process (WBP). WBPs were introduced by
Rösler [31] in a construction that is more general than ours. More precisely, each individual
in the tree has potentially an infinite number of offspring, and each offspring inherits a certain
(nonnegative) weight from its parent and multiplies it by a factor Ti , where the index i refers to
its birth order (i.e. a first born multiplies his/her inheritance by T1, a second born by T2, etc.).
Each individual branches independently, using an independent copy of the sequence T1, T2, . . . .

However, within the sequence, T1, T2, . . . can be dependent. Only individuals whose weights
are different than 0 are considered to be alive. The construction we give in this paper would
correspond to having

Ti = Ci 1{N≥i} .

The definition of a WBP described above leads to a stochastic recursion for the total weight of
the nth generation of the form

Wn
d=

∞∑
i=1

TiWn−1,i (2.4)

and a corresponding nonhomogeneous fixed point equation of the form

R
d=

∞∑
i=1

TiRi + Q. (2.5)

In the construction given in [31], the {Ti} and Q are allowed to be dependent as well.
We now briefly describe some of the existing literature on WBPs, most of which considers

the homogeneous equation, i.e. Q ≡ 0. The nonhomogeneous equation has only been studied
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for the special case when Q and the {Ti} are deterministic constants. In particular, Rösler [31,
Theorem 5] analyzed the solutions to (2.5) when Q and the {Ti} are nonnegative deterministic
constants, which implies that Ti ≤ 1 for all i and

∑
i T α

i log Ti ≤ 0 for all α > 0, falling outside
the scope of this paper. More results about the solutions to (2.5) for the case when Q and the
Tis are real-valued deterministic constants were derived in [2].

Regarding the homogeneous equation, in [31], the martingale structure of Wn/mn (m =
E[∑i Ti]) was used to point out the existence of W = limn→∞ Wn/mn, and it was shown that
positive stable distributions with α ∈ (0, 2) arise when E[∑i T α

i ] = 1 and some additional
moment conditions are satisfied. Furthermore, for a detailed analysis of the case when W

follows a positive stable distribution (0 < α ≤ 1), see [27]. The convergence of Wn/mn

to W was studied in [33], and conditions for W to belong to the domain of attraction of an
α-stable law (1 < α < 2) were given in [33], along with an analysis of the rate of convergence.
A generalization of the WBP described in [31] to a random environment was given in [25], where
necessary and sufficient conditions for W to be nondegenerate were derived. The existence of
moments of W was studied in [1]. The power law tail of W for the critical case E[∑N

i=1 Ci] = 1
and α > 1 was derived in Theorem 2.2 of [28] and Proposition 7 of [18]. For an even longer
list of references to WBPs and related work, see [2] and [25].

From the discussion above, it is clear that the prior literature on WBPs is extensive, but
we point out that the more specific structure of our model, given by (1.1), as well as our
novel analysis via implicit renewal theory, allows us to characterize the asymptotic power law
behavior of the distribution of R for all α > 0 when the {Ci} dominate the tail. In addition,
we study the nonhomogeneous equation (2.5), while the preceding work primarily focuses on
the homogeneous case (2.4). The case when N dominates the tail, which is important for the
page ranking problem, has not been considered until very recently in [35] and [36]. In reference
to the latter work, our analysis is based on a new sample path approach, while the studies in [35]
and [36] use transforms and Tauberian theorems as well as somewhat different assumptions.
We will provide more details on these connections throughout the paper in remarks after the
corresponding theorems.

From a different mathematical perspective, our model also constitutes a generalization of
several important types of processes. For instance, by setting N ≡ 1, (2.1) reduces to an
autoregressive process of order 1. Also, by letting N be a Poisson random variable and fixing
Ci ≡ 1 and Q ≡ 1, (1.1) becomes the recursion that the number of customers in a busy period
of an M/G/1 queue satisfies. Recursion (1.2) and its connection to the busy period when the
weights Di are equal to a deterministic constant was exploited in [26].

It is worth noting that probabilistic sample path approaches for the busy period (Ci ≡ 1,
Q ≡ 1) were developed in [7], [19], and [37]; the work in [19] and [37] also relies on the
theory of cycle maximum [3]. However, for our more general model (random Cis), it is not
clear if there is a tractable way of generalizing this analysis. Instead of pursuing the preceding
directions, we develop a direct sample path large deviation analysis for recursive random sums
that provides greater generality.

3. Moments of Wn

In this section we provide explicit estimates for the moments of the total weight, Wn, of the
nth generation that will be used throughout the paper. In particular, we apply these estimates
in Section 3.1 to prove that R∗

n

d−→ R, where R < ∞ a.s. Our estimates may be of independent
interest due to their explicit nature.
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A simple calculation shows that, provided E[N ], E[Q], and E[C] < ∞, E[Wn] < ∞ and is
given by

E[Wn] = E[N ] E[C] E[Wn−1] = (E[N ] E[C])n E[W0] = (E[N ] E[C])n E[Q].
We give below upper bounds on the general moments of Wn.

Throughout the paper, we will use K to denote a large positive constant that may be different
in different places, say K = K/2, K = K2, etc.

Lemma 3.1. Suppose that E[Qβ ] E[N ] E[Cβ ] < ∞ for 0 < β ≤ 1. Then

E[Wβ
n ] ≤ (E[Cβ ] E[N ])n E[Qβ ]

for all n ≥ 0.

Proof. Simply note that

E[Wβ
n ] = E

[( N∑
i=1

CiWn−1,i

)β]
,

and use the well-known inequality (
∑k

i=1 yi)
β ≤ ∑k

i=1 y
β
i for 0 < β ≤ 1, yi ≥ 0 (see, e.g.

Exercise 4.2.1 of [12, p. 102]).

The lemma for moments greater than 1 is given below.

Lemma 3.2. Suppose that E[Qβ ] < ∞, E[Nβ ] < ∞, and E[N ] max{E[Cβ ], E[C]} < 1 for
some β > 1. Then, there exists a constant Kβ > 0 such that

E[Wβ
n ] ≤ Kβ(E[N ] max{E[Cβ ], E[C]})n

for all n ≥ 0.

The proof of Lemma 3.2 is given in Section 7.1.

Remarks. (i) Recall that when C ≡ 1 and Q ≡ 1, E[Wβ
n ] is the β-moment of a subcritical

branching process Zn and our result reduces to E[Zβ
n ] ≤ Kβ(E[N ])n, which is in agreement

with the classical results from branching processes, e.g. see Corollary 1 of [6, p. 18]. Moreover,
from the proof of the integer β case (given in Section 7.1), it is clear that E[Wβ

n ] scales as ρβn if
ρβ > ρβ and as ρn

β if ρβ < ρβ , where ρ = E[N ] E[C] and ρβ = E[N ] E[Cβ ]. Note that this is
not quite the same as our upper bounds, and the reason we choose the geometric term (ρ ∨ρβ)n

instead is that it makes the proofs simpler and is sufficient for our purposes. Similar techniques
to those used in proving the preceding lemmas can yield, with some additional work, lower
bounds for the β-moments of Wn, showing that the correct leading term is (ρβ ∨ ρβ)n.

(ii) More technical results dealing with the existence of the β-moments of W := limn→∞Wn/ρ
n

can be found in [1]. There, necessary and sufficient conditions are given for the finiteness of
E[WβL(W)] when β ≥ 1 and L(·) is slowly varying (see Theorems 1.2 and 1.3). In particular,
the approach the authors took was to first normalize the process so that ρ = E[W1] = 1,
and then impose a condition that in our case reduces to ρβ = E[N ] E[Cβ ] < 1, that is, they
precluded the situation where W

β
n might scale as ρn

β when ρβ < ρβ . An example where E[Wβ
n ]

scales as ρn
β is when N ≡ 1, since then W

β
n

d=Qβ
∏n

i=1 C
β
i .
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(iii) Furthermore, observe that when ρ = 1 and ρβ < 1 for β > 1, our proof of the lemma
shows that lim supn→∞ E[Wβ

n ] < ∞, but it does not converge to 0, which is in agreement
with [1]. However, since we study R, it is necessary to have ρ < 1 for the finiteness of
E[Rβ ]. Otherwise, if ρ = 1 and ρβ < 1, β > 1, then E[R(n)] = n E[Q], which, by monotone
convergence and (2.2), implies that E[R] = ∞, and, therefore, by convexity, E[Rβ ] = ∞.

3.1. Convergence of R∗
n and finiteness of R

As discussed in Section 2.2, there are two issues regarding the process R∗
n that remain to be

addressed. One is the proof that

R∗
n

d−→ R =
∞∑

k=0

Wk

for any initial condition R∗
0 ; the other issue is the finiteness of R. The lemma below shows that

R < ∞ a.s.

Lemma 3.3. Suppose that E[Qβ ] < ∞, E[Nβ ] < ∞, and either E[N ] E[Cβ ] < 1 for some
0 < β < 1 or E[N ] max{E[C], E[Cβ ]} < 1 for some β ≥ 1. Then, E[Rγ ] < ∞ for all

0 < γ ≤ β, and, in particular, R < ∞ a.s. Moreover, if β ≥ 1, R(n)
Lβ−→ R, where Lβ

stands for convergence in the (E | · |β)1/β norm.

Proof. Let

η =
{

E[N ] E[Cβ ] if β < 1,

E[N ] max{E[C], E[Cβ ]} if β ≥ 1.

Then, by Lemmas 3.1 and 3.2,
E[Wβ

n ] ≤ Kηn

for some K > 0. Suppose that β ≥ 1. Then, by monotone convergence and Minkowski’s
inequality,

E[Rβ ] = E

[
lim

n→∞

( n∑
k=0

Wk

)β]

= lim
n→∞ E

[( n∑
k=0

Wk

)β]

≤ lim
n→∞

( n∑
k=0

E[Wβ
k ]1/β

)β

≤ K

( ∞∑
k=0

ηk/β

)β

< ∞.

This implies that R < ∞ a.s. When 0 < β < 1, use the inequality (
∑n

k=0 yk)
β ≤ ∑n

k=0 y
β
k

for any yi ≥ 0 instead of Minkowski’s inequality. Furthermore, for any 0 < γ ≤ β,

E[Rγ ] = E[(Rβ)γ/β ] ≤ (E[Rβ ])γ /β < ∞.

That R(n)
Lβ−→R whenever β ≥ 1 follows from noting that E[|R(n) − R|β ] = E[(∑∞

k=n+1 Wk)
β ]

and applying the same arguments used above to obtain the bound E[|R(n) − R|β ] ≤ Kηn+1

× (1 − η1/β)−β .
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Next, by monotone convergence in (2.3), it can be verified that R must solve

R
d=

N∑
i=1

CiRi + Q,

where the {Ri}i≥1 are i.i.d. copies of R, independent of N , Q, and {Ci}.
We now turn our attention to the proof of the convergence of R∗

n to R. Recall from Section 2.2
that

R∗
n

d= R(n−1) + Wn(R
∗
0), (3.1)

where
Wn(R

∗
0) =

∑
(i1,...,in)∈An

R∗
0,(i1,...,in)C

(n)
i1,...,in

.

The following lemma shows that R∗
n

d−→ R for any initial condition R∗
0 satisfying a moment

assumption.

Lemma 3.4. For any R∗
0 ≥ 0, if E[Qβ ] < ∞, E[(R∗

0)β ] < ∞, and E[N ] E[Cβ ] < 1 for some
0 < β ≤ 1, then

R∗
n

d−→ R,

with E[Rβ ] < ∞. Furthermore, under these assumptions, the distribution of R is the unique
solution with finite β-moment to recursion (1.1).

Proof. In view of (3.1), and since R(n) → R a.s., the result follows from Slutsky’s theo-
rem (see Theorem 1 of [12, p. 254]) once we show that Wn(R

∗
0)

d−→ 0. Recall that Wn(R
∗
0) is

the same as Wn if we substitute the Qi1,...,in by the R∗
0,(i1,...,in). Fix ε > 0. Then

P(Wn(R
∗
0) > ε) ≤ ε−β E[Wn(R

∗
0)β ]

≤ ε−β(E[Cβ ] E[N ])n E[(R∗
0)β ] (by Lemma 3.1).

Since, by assumption, the right-hand side converges to 0 as n → ∞, then R∗
n

d−→ R. Further-
more, E[Rβ ] < ∞ by Lemma 3.3. Clearly, the distribution of R represents the unique solution
with finite β-moment to (1.1), since any other possible solution would have to converge to the
same limit.

Remarks. (i) Note that when E[N ] < 1, the branching tree is a.s. finite and no conditions on
the Cs are necessary for R < ∞ a.s. This corresponds to the second condition in Theorem 1
of [10].

(ii) In view of the same theorem from [10], we could possibly establish the convergence of
R∗

n

d−→ R < ∞ under milder conditions. However, since the conditions that we will impose on
N , Q, and C in the main theorems will be stronger, this lemma is not restrictive. Furthermore,
the initial values, R∗

0 , are typically small (e.g. constant in applications), and, thus, the polynomial
moment condition imposed on R∗

0 is general enough.

4. The case when the Cs dominate: implicit renewal theory

In this section we study the power law phenomenon that arises from the multiplicative effects
of the weights {Ci} in (1.1).
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4.1. Implicit renewal theorem on trees

One observation that will help gain some intuition about (2.3) is to consider the case when
N ≡ 1. The process {R(n)} then reduces to a (random coefficient) autoregressive process of
order 1, whose steady state solution satisfies

R
d= Q + CR,

where R is independent of C and Q. This is precisely one of the stochastic recursions considered
in [16] (see also [23]), where it was shown that, under the assumption that E[Cα] = 1 and some
other technical conditions on the distribution of C and Q, we have

P(R > x) ∼ Hx−α

for some (computable) constant H > 0 (see Theorem 4.1 of [16]). The fact that the index of
the power law depends on the distribution of the weights is already promising in terms of our
goal of identifying other sources of power law behavior.

Informally speaking, the recursions studied in [16] are basically multiplicative away from the
boundary. However, (1.1) always has an additive component given by

∑N
i=1 CiRi regardless

of how far from the boundary one may be. Fortunately, due to the heavy-tailed nature of R, our
intuition says that it is only one of the additive CiRi components that determines the behavior
of (1.1); thus, the sum will behave as the maximum term, simplifying to

P

(
Q +

N∑
i=1

CiRi > x

)
∼ E[N ] P(CR > x), (4.1)

assuming that Q has a light enough tail. This heuristic suggests the following generalization
of Theorem 2.3 of [16].

Here, we would like to emphasize that R and C in the following theorem can be any two
independent random variables that satisfy the stated conditions, i.e. they do not have to be
related by recursion (1.1). Hence, the theorem may be of potential use in other applications.
Note that we prove the theorem for a general constant m, which in our application refers to
E[N ], as suggested by (4.1).

Theorem 4.1. Suppose that C ≥ 0 a.s., 0 < E[Cα log C] < ∞ for some α > 0, and that
the conditional distribution of log C given C 
= 0 is nonarithmetic. Suppose further that R is
independent of C, m E[Cα] = 1, and that E[Rβ ] < ∞ for any 0 < β < α. If∫ ∞

0
|P(R > t) − m P(CR > t)|tα−1 dt < ∞ (4.2)

then
P(R > t) ∼ Ht−α, t → ∞,

where H ≥ 0 is given by

H = 1

m E[Cα log C]
∫ ∞

0
vα−1(P(R > v) − m P(CR > v)) dv.

The proof of this theorem follows the same steps as Theorem 2.3 of [16], and is presented
in Section 7.2.
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Remarks. (i) As pointed out in [16], the statement of the theorem has content only when R

has infinite moment of order α, since otherwise the constant H = (α E[N ] E[Cα log C])−1

(E[Rα] − E[N ] E[(CR)α]) will be 0 by independence of R and C.

(ii) Note that some of the assumptions of Theorem 4.1 are different than the corresponding
assumptions of Theorem 2.3 of [16]. In particular, it is no longer the case that convexity
implies that E[Cα log C] > 0 whenever α solves m E[Cα] = 1 and E[Cα log C] < ∞, since
if m > 1, it is possible to construct counterexamples; hence, the need to include this as an
assumption. Another difference is our requirement that E[Rβ ] < ∞ for any 0 < β < α. In the
case of applying Theorem 4.1 to (1.1), the condition on E[Rβ ] is not restrictive since we readily
obtain the moments of R for 0 < β < α from the computed moments of Wn from Section 3.

(iii) A similar result for the case when log C is lattice valued can be derived using the corre-
sponding renewal theorem.

In what follows we will use the preceding theorem to derive the asymptotic behavior of
P(R > x), where R, as given by (2.2), satisfies recursion (1.1). Here, the main difficulty will
be to show that condition (4.2) holds. For brevity, we use x ∨ y to denote max{x, y} and x ∧ y

to denote min{x, y}.
Theorem 4.2. Suppose that 0 < E[Cα log C] < ∞ for some α > 0, that the conditional
distribution of log C given C 
= 0 is nonarithmetic, and that C and R are independent, where
R is defined by (2.2). Assume that E[N ] E[Cα] = 1, 0 < E[Qα] < ∞, and E[Nα∨(1+ε)] < ∞
for some 0 < ε < 1; if α > 1, assume further that E[N ] E[C] < 1. Then

P(R > t) ∼ Ht−α, t → ∞,

where

H = 1

E[N ] E[Cα log C]
∫ ∞

0
vα−1(P(R > v) − E[N ] P(CR > v)) dv

= E[(∑N
i=1 CiRi + Q)α − ∑N

i=1(CiRi)
α]

α E[N ] E[Cα log C] .

Remarks. (i) Note that the second expression for H is more suitable for actually computing
it, especially in the case of α being an integer, as will be stated in the forthcoming corollary.

(ii) When α is not an integer, we can derive an explicit bound on H by using the forthcoming
Lemma 4.3 and (4.4).

(iii) For the homogeneous equation (Q ≡ 0) and α > 1, closely related results to our theorem
can be found in Theorem 2.2 of [28] and Proposition 7 of [18]. The approach in [28] transforms
the recursion W

d= ∑N
i=1 CiWi for the critical case, E[W ] = 1 and E[∑N

i=1 Ci] = 1, to a
first-order difference (autoregressive) equation on a different probability space; see Lemma 4.1
of [28]. Note that the tail behavior of W does not imply that of R. Furthermore, it appears that
the method in [28] does not extend to the nonhomogeneous case since the proof of Lemma 4.1
of [28] critically depends on having both E[W ] = 1 and E[∑N

i=1 Ci] = 1, which is only possible
when Q ≡ 0. For 0 < α ≤ 1, the homogeneous equation was studied in [27] using stable laws.

(iv) Related results for the nonhomogeneous equation with deterministic constants Q, {Ci}, and
N = ∞, have been considered in [31] (see Theorem 5), and more recently in [2], also using
stable laws.
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(v) Moreover, the results obtained in the references cited above appear to be less explicit in the
expression for H than the statement of Theorem 4.2, as Corollary 4.1 below illustrates.

(vi) Furthermore, Theorem 4.1 and the preceding technique of Theorem 4.2 can be adapted to
analyze other, possibly nonlinear, recursions on trees, e.g. we can characterize the asymptotic
behavior of P(R > x) that solves

R = Q + max
1≤i≤N

CiRi.

We also want to point out that we can obtain the logarithmic asymptotics of R, that is, the
behavior of log P(R > x), much easier and under less restrictive conditions, e.g. log Ci needs
not be nonarithmetic (this condition is required because of the use of the renewal theorem). An
upper bound can be obtained from Lemma 3.3 and Markov’s inequality. For the lower bound,
using the notation from Section 2.1, we obtain

P(R > x) ≥ P(Wn > x)

≥ P
(

max
1≤i≤N

CiWn−1,i > x
)

= E[(1 − P(CWn−1 ≤ x)N)]
≥ E[N P(CWn−1 ≤ x)N ] P(CWn−1 > x),

where in the last step we used the relation 1 − tm ≥ mtm(1 − t) for 0 ≤ t ≤ 1. Now we use
the fact that P(CWn−1 ≤ x) ≥ P(R ≤ x) for all x to show that

P(R > x) ≥ E[N P(R ≤ x)N ] P(CWn−1 > x)

≥ E[N P(R ≤ x)N ] P
(
C1 max

1≤i≤N
C2,iWn−2,i > x

)
≥ E[N P(R ≤ x)N ] E[N P(C1C2Wn−2 ≤ x)N ] P(C1C2Wn−2 > x),

which, by using P(C1C2Wn−2 ≤ x) ≥ P(R ≤ x) for all x, yields

P(R > x) ≥ (E[N P(R ≤ x)N ])2 P(C1C2Wn−2 > x).

Next, by continuing this inductive argument we obtain

P(R > x) ≥ (E[N P(R ≤ x)N ])n P

(
Q

n∏
i=1

Ci > x

)
.

Finally, for any 0 < ε < 1, we can choose x0 such that E[N P(R ≤ x0)
N ] ≥ (1 − ε) E[N ],

implying that, for all n ≥ 0 and x ≥ x0,

P(R > x) ≥ (1 − ε)n(E[N ])n P

(
Q

n∏
i=1

Ci > x

)

≥ P

(
Q >

1

log x

)
(1 − ε)n(E[N ])n P

( n∏
i=1

Ci > x log x

)
.

Now define Sn = log C1 + · · · + log Cn, κ(θ) = log E[Cθ ], and choose α to be the solution to
κ(α) = −log E[N ] (i.e. E[N ] E[Cα] = 1). The logarithmic asymptotics can be obtained by
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choosing n = n(x) = log(x log x)/µα , where µα = κ ′(α) = E[Cα log C]/ E[Cα] > κ ′(0) =
E[log C] by convexity of κ(·). Then, by Theorem 2.1 of [4, Chapter XIII],

lim inf
x→∞

log P(R > x)

log x
≥ log((1 − ε) E[N ])

µα

+ lim inf
x→∞

log P(Sn(x) > µαn(x))

µαn(x)

= log(1 − ε)

µα

− α.

Hence, we can derive with a considerably smaller effort the following theorem.

Theorem 4.3. Suppose that 0 < E[Cα log C] < ∞ for some α > 0, and that R is given
by (2.2). Assume that E[N ] E[Cα] = 1, 0 < E[Qα] E[Nα] < ∞; if α > 1, assume further that
E[N ] E[C] < 1. Then

log P(R > t) ∼ −α log t, t → ∞.

Therefore, the majority of the work in proving Theorem 4.2 goes into the derivation of
the exact asymptotic. Furthermore, it is worth noting that the logarithmic approach, although
less precise, can be obtained in a more general setting. For example, we can have C

(·)· to
be dependent across different generations, as in the so-called WBP in a random environment.
Here, we could derive the asymptotics of log P(R > x) if E[(∏n

i=1 C
(n)
(1,1,...,1))

α] satisfies the
polynomial-type Gärtner–Ellis conditions that were recently considered in [21].

Corollary 4.1. For an integer α ≥ 1, and under the same assumptions as Theorem 4.2, the
constant H can be explicitly computed as a function of E[Rk], E[Ck], and E[Qk], 0 ≤ k ≤
α − 1. In particular, for α = 1,

H = E[Q]
E[N ] E[C log C] ,

and, for α = 2,

H = E[Q2] + 2 E[Q] E[C] E[N ] E[R] + E[N(N − 1)](E[C] E[R])2

2 E[N ] E[C2 log C] ,

E[R] = E[Q]
1 − E[N ] E[C] .

Proof. The proof follows directly from multinomial expansions of the second expression
for H in Theorem 4.2.

Before giving the proof of Theorem 4.2 we state the following three preliminary lemmas. The
proof of Lemma 4.2 is given in Section 7.1 and the proof of Lemma 4.3 is given in Section 7.2.

Lemma 4.1. Suppose that 0 < E[Cα log C] < ∞ for some α > 0 and E[N ] E[Cα] = 1; if
α > 1, suppose further that E[N ] E[C] < 1. Assume also that E[Qα] < ∞ and E[Nα∨1] < ∞.
Then

E[Rβ ] < ∞
for all 0 < β < α.

Proof. The derivative condition 0 < E[Cα log C] < ∞ and E[N ] E[Cα] = 1 imply that
E[N ] E[Cβ ] < 1 for all β < α that are sufficiently close to α. Hence, the conclusion of the
result follows from Lemma 3.3.
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Let x� be the smallest integer greater than or equal to x.

Lemma 4.2. Let β > 1, and let p = β� ∈ {2, 3, 4, . . .}. For any sequence of nonnegative
i.i.d. random variables {Y, Yi}i≥1 and any k ∈ {1, 2, 3, . . .}, we have

E

[( k∑
i=1

Yi

)β

−
k∑

i=1

Y
β
i

]
≤ kβ E[Yp−1]β/(p−1).

Lemma 4.3. Suppose that {C, Ci} and {R, Ri} are i.i.d. sequences of nonnegative random
variables independent of each other and of N . Assume that E[Cα] < ∞, E[N1+ε] < ∞ for
some 0 < ε < 1, and E[Rβ ] < ∞ for any 0 < β < α. Then

0 ≤
∫ ∞

0

(
E[N ] P(CR > t) − P

(
max

1≤i≤N
CiRi > t

))
tα−1 dt

= 1

α
E

[ N∑
i=1

(CiRi)
α −

(
max

1≤i≤N
CiRi

)α
]

< ∞.

Proof of Theorem 4.2. By Lemma 4.1 we know that E[Rβ ] < ∞ for any 0 < β < α. The
statement of the theorem with the first expression for H will follow from Theorem 4.1 once we
prove condition (4.2) for m = E[N ]. Define

R∗ =
N∑

i=1

CiRi + Q.

Then

|P(R > t) − E[N ] P(CR > t)| ≤
∣∣∣P(R > t) − P

(
max

1≤i≤N
CiRi > t

)∣∣∣
+

∣∣∣P(
max

1≤i≤N
CiRi > t

)
− E[N ] P(CR > t)

∣∣∣.
Since R

d= R∗ ≥ max1≤i≤N CiRi , the first absolute value disappears. For the second absolute
value, note that, by the union bound,

E[N ] P(CR > t) − P
(

max
1≤i≤N

CiRi > t
)

= E[N P(CR > t) − 1 + P(CR ≤ t)N ] ≥ 0.

It follows that

|P(R > t) − E[N ] P(CR > t)| ≤ P(R > t) − P
(

max
1≤i≤N

CiRi > t
)

+ E[N ] P(CR > t) − P
(

max
1≤i≤N

CiRi > t
)
.

Note that we need to only verify that∫ ∞

0

(
P(R > t) − P

(
max

1≤i≤N
CiRi > t

))
tα−1 dt < ∞,
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since ∫ ∞

0

(
E[N ] P(CR > t) − P

(
max

1≤i≤N
CiRi > t

))
tα−1 dt < ∞

by Lemma 4.3. To see this, note that R
d= R∗ and 1{R∗>t} − 1{max1≤i≤N CiRi>t} ≥ 0; thus, by

Fubini’s theorem we have∫ ∞

0

(
P(R > t) − P

(
max

1≤i≤N
CiRi > t

))
tα−1 dt = 1

α
E
[
(R∗)α −

(
max

1≤i≤N
CiRi

)α]
. (4.3)

If 0 < α ≤ 1, we apply the inequality (
∑k

i=1 xi)
β ≤ ∑k

i=1 x
β
i for 0 < β ≤ 1 and xi ≥ 0, to

obtain

E
[
(R∗)α −

(
max

1≤i≤N
CiRi

)α]
≤ E

[
Qα +

N∑
i=1

(CiRi)
α −

(
max

1≤i≤N
CiRi

)α
]
,

which is finite by Lemma 4.3 and the assumption that E[Qα] < ∞. If α > 1, we use the
well-known inequality (

∑k
i=1 xi)

α ≥ ∑k
i=1 xα

i , xi ≥ 0 (see Exercise 4.2.1 of [12, p. 102]), to
split the expectation as

E
[
(R∗)α −

(
max

1≤i≤N
CiRi

)α]
= E

[
(R∗)α −

N∑
i=1

(CiRi)
α

]

+ E

[ N∑
i=1

(CiRi)
α −

(
max

1≤i≤N
CiRi

)α
]
,

which can be done since both expressions inside the expectations on the right-hand side are
nonnegative. The second expectation is again finite by Lemma 4.3. To see that the first
expectation is finite, let S = ∑N

i=1 CiRi and note that R∗ = S + Q, where S and Q are
independent. Let p = α�, and note that 1 ≤ p − 1 < α. Then, by Lemma 4.2,

E

[
(R∗)α −

N∑
i=1

(CiRi)
α

]
= E[(S + Q)α − Sα] + E

[( N∑
i=1

CiRi

)α

−
N∑

i=1

(CiRi)
α

]

≤ E[(S + Q)α − Sα] + E[Nα](E[(CR)p−1])α/(p−1).

The second expectation is finite since, by Lemma 3.3, E[Rβ ] < ∞ for any 0 < β < α. For the
first expectation, we use the inequality

(x + t)κ ≤
{

xκ + tκ , 0 < κ ≤ 1,

xκ + κ(x + t)κ−1t, κ > 1,

for any x, t ≥ 0. We apply the second expression p − 1 times and then the first expression to
obtain

(x + t)α ≤ xα + α(x + t)α−1t

≤ · · ·

≤ xα +
p−2∑
i=1

αixα−i t i + αp−1(x + t)α−p+1tp−1

≤ xα + αptα + αp

p−1∑
i=1

xα−i t i .
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We conclude that

E[(S + Q)α − Sα] ≤ αp E[Qα] + αp

p−1∑
i=1

E[Sα−i] E[Qi], (4.4)

where E[Sα−i] ≤ E[(R∗)α−i] < ∞ for any 1 ≤ i ≤ p − 1 by Lemma 3.3.
Finally, applying Theorem 4.1 gives

P(R > t) ∼ Ht−α,

where H = (E[N ] E[Cα log C])−1
∫ ∞

0 vα−1(P(R > v) − E[N ] P(CR > v)) dv.
The second expression for H follows by Fubini’s theorem, similarly as we have done in (4.3).

5. The case when N dominates

We now turn our attention to the distributional properties of R(n) and R when N has a heavy-
tailed distribution (in particular, regularly varying) that is heavier than the potential power law
effect arising from the multiplicative weights {Ci}. This case is particularly important for
understanding the behavior of Google’s PageRank algorithm since the Cis are smaller than 1
and the in-degree distribution of the Web graph is well accepted to be a power law. We start
this section by stating the corresponding lemma that describes the asymptotic behavior of R(n).
The main technical difficulty of extending this lemma to steady state (R = R(∞)) is to develop
a uniform bound for R − R(n), which is enabled by our main technical result of this section,
Proposition 5.1. The proofs of the following lemmas follow from a standard application of
Breiman’s theorem and asymptotics of random power law sums as those found in Lemmas 3.7
and 4.2 of [22]; see [20] for details.

Before stating the lemmas, let us recall that a function L : [0, ∞) → (0, ∞) is slowly
varying if L(λx)/L(x) → 1 as x → ∞ for any λ > 0. We then say that the function x−αL(x)

is regularly varying with index α.

Lemma 5.1. Suppose that P(N > x) = x−αL(x) with L(·) slowly varying, α > 1, and
E[Qα+ε] < ∞, E[Cα+ε] < ∞ for some ε > 0. Let ρ = E[N ] E[C] and ρα = E[N ] E[Cα].
Then, for any fixed n ∈ {1, 2, 3, . . .},

P(R(n) > x) ∼ (E[C] E[Q])α
(1 − ρ)α

n∑
k=0

ρk
α(1 − ρn−k)α P(N > x) (5.1)

as x → ∞, where R(n) was defined in Section 2.1.

Lemma 5.2. Suppose that P(N > x) = x−αL(x) with L(·) slowly varying, α > 1, and
E[Qα+ε] < ∞, E[Cα+ε] < ∞ for some ε > 0. Let ρ = E[N ] E[C] and ρα = E[N ] E[Cα].
Then, for any fixed n ∈ {1, 2, 3, . . .},

P(Wn > x) ∼ (E[C] E[Q])α
n−1∑
k=0

ρk
αρ(n−1−k)α P(N > x)

as x → ∞, where Wn was defined in Section 2.1.
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From this result, provided ρ ∨ ρα < 1, it is to be expected that a bound of the form

P(Wn > x) ≤ Kηn P(N > x)

might hold for all n and x ≥ 1, for some ρ ∨ ρα < η < 1. Such a bound will provide the
necessary tools to ensure that R − R(n) is negligible for large enough n, allowing the exchange
of limits in Lemma 5.1. Proving this result is the main technical contribution of this section; the
actual proof is given in Section 7.3. This bound may be of independent interest for computing
the distributional properties of other recursions on branching trees, e.g. it is straightforward to
apply our method to study the solution to

R = Q + max
1≤i≤N

CiRi,

and similar recursions.

Proposition 5.1. Suppose that P(N > x) = x−αL(x) with L(·) slowly varying, α > 1, and
E[Cα+ν] < ∞, E[Qα+ν] < ∞ for some ν > 0, and let E[N ] max{E[Cα], E[C]} < η < 1.
Then, there exists a constant K = K(η, ν) > 0 such that, for all n ≥ 1 and all x ≥ 1,

P(Wn > x) ≤ Kηn P(N > x). (5.2)

We would also like to point out that a bound of type (5.2) resembles a classical result by
Kesten (see Lemma 7 of [5, p. 149]) stating that the sum of heavy-tailed (subexponential)
random variables satisfies

P(X1 + · · · + Xn > x) ≤ K(1 + ε)n P(X1 > x)

uniformly for all n and x, for any ε > 0 (see also [14] for more recent work). The main difference
between this result and (5.2) is that while n above refers to the number of terms in the sum, in
(5.2) it refers to the depth of the recursion. This makes the derivation of (5.2) considerably more
complicated, and perhaps implausible if it were not for the fact that we restrict our attention to
regularly varying distributions, as opposed to the general subexponential class.

In view of (5.2), we can now prove the main theorem of this section.

Theorem 5.1. Suppose that P(N > x) = x−αL(x) with L(·) slowly varying and α > 1. Let
ρ = E[N ] E[C] and ρα = E[N ] E[Cα]. Assume that ρ ∨ ρα < 1, and that E[Cα+ε] < ∞ and
E[Qα+ε] < ∞ for some ε > 0. Then,

P(R > x) ∼ (E[C] E[Q])α
(1 − ρ)α(1 − ρα)

P(N > x)

as x → ∞, where R was defined by (2.2).

Remarks. (i) A related result that also allows Q and N to be dependent was derived very
recently in [35] using transform methods and Tauberian theorems under the moment conditions
E[Q] < 1 and E[C] = (1 − E[Q])/ E[N ].
(ii) Note that this result implies the classical result on the busy period of an M/G/1 queue
derived in [13]. Specifically, the total number of customers in a busy period B satisfies the
recursion B

d= 1 + ∑N(S)
i=1 Bi , where the Bis are i.i.d. copies of B, N(t) is a Poisson process

of rate λ, and S is the service distribution; {Bi}, N(t), and S are mutually independent, and
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ρ = E[N(S)] < 1. Now, the recursion for B is obtained from our theorem by setting C ≡ 1
and Q ≡ 1, implying that P(B > x) ∼ P(N(S) > x)/(1 − ρ)α+1. Next, we can obtain
the asymptotics for the length of the busy period P by using the identity B = N(P ). This
can be easily derived, in spite of the fact that N(t) and P are correlated, since N(t) is highly
concentrated around its mean. For recent work on the power law asymptotics of the GI/GI/1
busy period, see [37].

(iii) In view of Lemma 5.1, the theorem shows that the limits limx→∞ limn→∞ P(R(n) >

x)/ P(N > x) are interchangeable.

Proof of Theorem 5.1. Fix 0 < δ < 1 and n0 ≥ 1. Choose ρ ∨ ρα < η < 1, and use
Proposition 5.1 to obtain, for some constant K0 > 0,

P(Wn > x) ≤ K0η
n P(N > x)

for all n ≥ 1 and all x ≥ 1. Let H
(n)
α = (E[C] E[Q])α(1 − ρ)−α

∑n
k=0 ρk

α(1 − ρn−k)α and
Hα = H

(∞)
α . Then

|P(R > x) − Hα P(N > x)| ≤ |P(R > x) − P(R(n0) > x)| (5.3)

+ |P(R(n0) > x) − H(n0)
α P(N > x)| (5.4)

+ |H(n0)
α − Hα| P(N > x). (5.5)

By Lemma 5.1, there exists a function ϕ(x) ↓ 0 as x → ∞ such that

|P(R(n0) > x) − H(n0)
α P(N > x)| ≤ ϕ(x)Hα P(N > x).

To bound (5.3), let β = η1/(2α+2) < 1 and note that

|P(R > x) − P(R(n0) > x)|
≤ P(R(n0) + (R − R(n0)) > x, R − R(n0) ≤ δx) − P(R(n0) > x) + P(R − R(n0) > δx)

≤ P(R(n0) > (1 − δ)x) − P(R(n0) > x) + P

( ∞∑
n=n0+1

Wn > δx

)

≤ P(R(n0) > (1 − δ)x) − H(n0)
α P(N > (1 − δ)x) + H(n0)

α P(N > x) − P(R(n0) > x)

+ H(n0)
α P(N > (1 − δ)x) − H(n0)

α P(N > x) +
∞∑

n=n0+1

P(Wn > δx(1 − β)βn−n0−1)

≤
{

2ϕ((1 − δ)x)
P(N > (1 − δ)x)

P(N > x)
+

(
P(N > (1 − δ)x)

P(N > x)
− 1

)}
Hα P(N > x)

+
∞∑

n=n0+1

K0η
n P(N > δx(1 − β)βn−n0−1),

where in the last inequality we applied the uniform bound from Proposition 5.1. The expression
in curly brackets is bounded by

2ϕ((1 − δ)x)(1 − δ)−α L((1 − δ)x)

L(x)
+

(
(1 − δ)−α L((1 − δ)x)

L(x)
− 1

)
→ (1 − δ)−α − 1

as x → ∞. By Potter’s theorem (see Theorem 1.5.6(ii) of [8, p. 25]), there exists a constant
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A = A(1) > 1 such that

∞∑
n=n0+1

K0η
n P(N > δx(1 − β)βn−n0−1)

≤ K0A

∞∑
n=n0+1

ηn(δ(1 − β)βn−n0−1)−α−1 P(N > x)

= K0A(δ(1 − β))−α−1(1 − η1/2)−1ηn0+1 P(N > x)

≤ Kδ−α−1ηn0 P(N > x).

Next, for (5.5), simply note that

1

Hα

|H(n0)
α − Hα|

= (1 − ρα)

( ∞∑
k=0

ρk
α −

n0∑
k=0

ρk
α(1 − ρn0−k)α

)

= (1 − ρα)

n0∑
k=0

ρk
α(1 − (1 − ρn0−k)α) + (1 − ρα)

∞∑
k=n0+1

ρk
α

≤ (1 − ρα)

n0∑
k=0

ρk
ααρn0−k + ρn0+1

α

≤ [α(1 − ρα)(n0 + 1) + ρα](ρα ∨ ρ)n0

≤ Kηn0 .

Finally, by replacing the preceding estimates in (5.3)–(5.5), we obtain

lim
x→∞

∣∣∣∣ P(R > x)

Hα P(N > x)
− 1

∣∣∣∣ ≤ (1 − δ)−α − 1 + Kδ−α−1ηn0 .

Since the right-hand side can be made arbitrarily small by first letting n0 → ∞ and then δ ↓ 0,
the result of the theorem follows.

5.1. Engineering implications

Recall that, for Google’s PageRank algorithm, the weights are given by Ci = c/Di < 1,
where 0 < c < 1 is a constant related to the damping factor and the number of nodes in the
Web graph, and Di corresponds to the out-degree of a page. We point out that dividing the
ranks of neighboring pages by their out-degree has the purpose of decreasing the contribution
of pages with highly inflated referencing. However, Theorem 5.1 reveals that the page rank
is essentially insensitive to the parameters of the out-degree distribution, which means that
PageRank basically reflects the popularity vote given by the number of references N . This
same observation was previously made in [35].

Furthermore, Theorem 4.1 clearly shows that the choice of weights Ci in the ranking
algorithm can determine the distribution of R as well. Note that, for the PageRank algorithm,
the weights Ci = c/Di < 1 can never dominate the asymptotic behavior of R when N is a
power law. Therefore, Theorem 4.1 suggests a potential development of new ranking algorithms
where the ranks will be much more sensitive to the weights.



1078 P. R. JELENKOVIĆ AND M. OLVERA-CRAVIOTO

6. The case when Q dominates

This section of the paper treats the case when the heavy-tailed behavior of R arises from the
{Qi}, known in the autoregressive processes literature as innovations. The results presented
here are very similar to those in Section 5, and so are their proofs. We will therefore only
present the statements of the results and skip most of the proofs. We start with the equivalents
of Lemmas 5.1 and 5.2 in this context; similarly as in Section 5, the proofs are standard and
can be found in the preprint version of this paper [20].

Lemma 6.1. Suppose that P(Q > x) = x−αL(x) with L(·) slowly varying, α > 1, and
E[Nα+ε] < ∞, E[Cα+ε] < ∞ for some ε > 0; let ρα = E[N ] E[Cα] . Then, for any fixed
n ∈ {1, 2, 3, . . .},

P(R(n) > x) ∼
n∑

k=0

ρk
α P(Q > x)

as x → ∞, where R(n) was defined in Section 2.1.

As for the case when N dominates the asymptotic behavior of R, we can here expect that

P(R > x) ∼ (1 − ρα)−1 P(Q > x),

and the technical difficulty is justifying the exchange of limits. The same techniques used in
Section 5 can be used in this case as well. Therefore, we give a sketch of the arguments in
Section 7.4 but omit the proof. The following is the equivalent of Lemma 5.2.

Lemma 6.2. Suppose that P(Q > x) = x−αL(x) with L(·) slowly varying, α > 1, and
E[Nα+ε] < ∞, E[Cα+ε] < ∞ for some ε > 0; let ρα = E[N ] E[Cα]. Then, for any fixed
n ∈ {1, 2, 3, . . .},

P(Wn > x) ∼ ρn
α P(Q > x)

as x → ∞, where Wn was defined in Section 2.1.

The corresponding version of Proposition 5.1 is given below.

Proposition 6.1. Suppose that P(Q > x) = x−αL(x) with L(·) slowly varying, α > 1, and
E[Cα+ν] < ∞, E[Nα+ν] < ∞ for some ν > 0, and let E[N ] max{E[Cα], E[C]} < η < 1.
Then, there exists a constant K = K(η, ν) > 0 such that, for all n ≥ 1 and all x ≥ 1,

P(Wn > x) ≤ Kηn P(Q > x).

A sketch of the proof can be found in Section 7.4.
Finally, we present the main theorem of this section. The proof again greatly resembles that

of Theorem 5.1 and is therefore omitted.

Theorem 6.1. Suppose that P(Q > x) = x−αL(x) with L(·) slowly varying and α > 1. Let
ρ = E[N ] E[C] and ρα = E[N ] E[Cα]. Assume that ρ ∨ ρα < 1, and that E[Cα+ε] < ∞ and
E[Nα+ε] < ∞ for some ε > 0. Then

P(R > x) ∼ (1 − ρα)−1 P(Q > x)

as x → ∞, where R was defined by (2.2).
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Compare this result with Lemma A.3 of [29], where the autoregressive process of order 1
with regularly varying innovations is shown to be tail equivalent to Q. In particular, if we set
N ≡ 1 in Theorem 6.1 and let Ak = ∏k−1

i=1 Ci , our result reduces to

P

( ∞∑
k=0

AkQk > x

)
∼

∞∑
k=0

E[Aα
k ] P(Q > x),

which is in line with the commonly accepted intuition about heavy-tailed large deviations where
large sums are due to one large summand Qk .

7. Proofs

This section contains the proofs to most of the technical results presented in the paper,
together with some auxiliary lemmas that are needed along the way. The section is divided into
four subsections, each corresponding to the content of Sections 3, 4, 5, and 6, respectively.

7.1. Moments of Wn

Here we give the proof of the moment bound for the β-moment, β > 1, of the sum of the
weights, Wn of the nth generation. As an intermediate step, we present a lemma for the integer
moments of Wn, but first we give the proof of Lemma 4.2.

Proof of Lemma 4.2. Let p = β� ∈ {2, 3, . . .} and γ = β/p ∈ (0, 1]. Define Ap(k) =
{(j1, . . . , jk) ∈ Z

k : j1 + · · · + jk = p, 0 ≤ ji < p}. Then( k∑
i=1

yi

)β

=
( k∑

i=1

yi

)pγ

=
( k∑

i=1

y
p
i +

∑
(j1,...,jk)∈Ap(k)

(
p

j1, . . . , jk

)
y

j1
1 · · · yjk

k

)γ

≤
k∑

i=1

y
pγ

i +
( ∑

(j1,...,jk)∈Ap(k)

(
p

j1, . . . , jk

)
y

j1
1 · · · yjk

k

)γ

,

where, for the last step, we used the well-known inequality (
∑k

i=1 xi)
γ ≤ ∑k

i=1 x
γ

i for 0 <

γ ≤ 1 and xi ≥ 0 (see the proof of Lemma 3.1). We now use Jensen’s inequality to obtain

E

[( k∑
i=1

Yi

)β

−
k∑

i=1

Y
β
i

]
≤ E

[( ∑
(j1,...,jk)∈Ap(k)

(
p

j1, . . . , jk

)
Y

j1
1 · · · Y jk

k

)γ ]

≤
(

E

[ ∑
(j1,...,jk)∈Ap(k)

(
p

j1, . . . , jk

)
Y

j1
1 · · · Y jk

k

])γ

=
( ∑

(j1,...,jk)∈Ap(k)

(
p

j1, . . . , jk

)
E[Y j1

1 · · · Y jk

k ]
)γ

.

Since the {Yi} are i.i.d., we have

E[Y j1
1 · · · Y jk

k ] = ‖Y‖j1
j1

· · · ‖Y‖jk

jk
,

where ‖Y‖κ = E[|Y |κ ]1/κ for κ ≥ 1 and ‖Y‖0 := 1. Since ‖Y‖κ is increasing for κ ≥ 1, it
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follows that ‖Y‖ji

ji
≤ ‖Y‖j1

p−1. Furthermore, it follows that

‖Y‖j1
j1

· · · ‖Y‖jk

jk
≤ ‖Y‖p

p−1,

which in turn implies that

E

[( k∑
i=1

Yi

)β

−
k∑

i=1

Y
β
i

]
≤

( ∑
(j1,...,jk)∈Ap(k)

(
p

j1, . . . , jk

)
‖Y‖p

p−1

)γ

= ‖Y‖β
p−1(k

p − k)γ

≤ ‖Y‖β
p−1k

β.

Lemma 7.1. Suppose that E[Qp] < ∞, E[Np] < ∞, and E[N ] max{E[Cp], E[C]} < 1 for
some p ∈ {2, 3, . . .}. Then, there exists a constant Kp > 0 such that

E[Wp
n ] ≤ Kp(E[N ] max{E[C], E[Cp]})n

for all n ≥ 0.

Proof. Let Y = CWn−1, where C is independent of Wn−1, and let {Yi} be independent
copies of Y . We will give an induction proof in p. For p = 2, we have

E[W 2
n ] = E

[( N∑
i=1

Yi

)2]

= E[N ] E[Y 2] + E[N(N − 1)](E[Y ])2

= E[N ] E[C2] E[W 2
n−1] + E[N(N − 1)](E[C] E[Wn−1])2.

Using the preceding recursion, letting ρ = E[N ] E[C] and ρ2 = E[N ] E[C2], and noting that

E[Wn−1] = ρn−1 E[Q],
we obtain

E[W 2
n ] = ρ2 E[W 2

n−1] + Kρ2(n−1), (7.1)

where K = E[N(N − 1)](E[C] E[Q])2. Now, iterating (7.1) gives the result for p = 2.
For any p ∈ {2, 3, . . .}, the result can be obtained inductively using Lemma 4.2 and standard

algebra, and, thus, we present the details in the preprint version of this paper [20].

The proof for the general β-moment, β > 1, is given below.

Proof of Lemma 3.2. Set p = β� ≥ β > 1. Since the result when p = β follows from
Lemma 7.1, we assume that p > β. Let Y = CWn−1, where C is independent of Wn−1, and
let {Yi} be independent copies of Y . Also, recall that ρ = E[N ] E[C] and ρβ = E[N ] E[Cβ ].
Then, by Lemma 4.2,

E[Wβ
n ] = E

[( N∑
i=1

Yi

)β]

=
∞∑

k=1

E

[( k∑
i=1

Yi

)β]
P(N = k)

=
∞∑

k=1

(
E

[( k∑
i=1

Yi

)β

−
k∑

i=1

Y
β
i

]
+ E

[ k∑
i=1

Y
β
i

])
P(N = k)
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≤
∞∑

k=1

(kβ E[Yp−1]β/(p−1) + k E[Yβ ]) P(N = k)

= E[Nβ ](E[Cp−1])β/(p−1)(E[Wp−1
n−1 ])β/(p−1) + ρβ E[Wβ

n−1].
Then, by Lemma 7.1,

E[Wβ
n ] ≤ ρβ E[Wβ

n−1] + E[Nβ ](E[Cp−1])β/(p−1)(Kp−1(ρp−1 ∨ ρ)n−1)β/(p−1)

= ρβ E[Wβ
n−1] + K(ρp−1 ∨ ρ)(n−1)γ ,

where γ = β/(p − 1) > 1. Finally, iterating the preceding bound n − 1 times gives

E[Wβ
n ] ≤ ρn

β E[Wβ
0 ] + K

n−1∑
i=0

ρi
β(ρ ∨ ρp−1)

γ (n−1−i)

≤ E[Wβ
0 ](ρ ∨ ρβ)n + K

n−1∑
i=0

(ρ ∨ ρβ)γ (n−1−i)+i

= E[Qβ ](ρ ∨ ρβ)n + K(ρ ∨ ρβ)n−1
n−1∑
i=0

(ρ ∨ ρβ)(γ−1)i

≤ Kβ(ρ ∨ ρβ)n.

This completes the proof.

7.2. The case when the Cs dominate: implicit renewal theory

In this section we state a lemma that is used in the proof of Theorem 4.1, and we give the
proofs to Theorem 4.1 and Lemma 4.3.

Lemma 7.2. Let α, β > 0 and H ≥ 0. Suppose that
∫ t

0 vα+β−1 P(R > v) dv ∼ Htβ/β as
t → ∞. Then

P(R > t) ∼ Ht−α, t → ∞.

Proof. This lemma is a special case of the monotone density theorem; see Theorem 1.7.5
(also Exercise 1.11.14) of [8]. However, for completeness, we give a direct proof here, similar
to that of Lemma 9.3 of [16]. By assumption, for any b > 1, ε ∈ (0, 1), and sufficiently large t ,

P(R > t)tα+β bα+β − 1

α + β
≥

∫ bt

t

vα+β−1 P(R > v) dv

≥ H − ε

β
(bt)β − H + ε

β
tβ

≥ tβ

β
(H(bβ − 1) − ε(1 + bβ)).

Since ε was arbitrary, we can take the limit as ε → 0 and obtain

lim inf
t→∞ P(R > t)tα ≥ H(α + β)(bβ − 1)

β(bα+β − 1)
→ H, b ↓ 1.

Similarly, we can prove that lim supt→∞ P(R> t)tα ≤H starting from
∫ t

bt
vα+β−1 P(R> v) dv

with 0 < b < 1.
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Proof of Theorem 4.1. For any k ∈ N, define k = ∏k
i=1 Ci and Vk = ∑k

i=1 log Ci , with
0 = 1 and V0 = 0, where the Cis are independent copies of C. Then, for any t ∈ R,

P(R > et ) =
n∑

k=1

(mk−1 P(k−1R > et ) − mk P(kR > et )) + mn P(nR > et )

=
n∑

k=1

(mk−1 P(eVk−1R > et ) − mk P(eVk−1CkR > et )) + mn P(eVnR > et )

=
n−1∑
k=0

mk

∫ ∞

−∞
(P(R > et−v) − m P(CR > et−v)) P(Vk ∈ dv)

+ mn P(eVnR > et ).

Next, define

νn(dt) = eαt
n∑

k=0

mk P(Vk ∈ dt), g(t) = eαt (P(R > et ) − m P(CR > et )),

r(t) = eαt P(R > et ), and δn(t) = mn P(eVnR > et ).

Then, for any t ∈ R and n ∈ N,

r(t) = (g ∗ νn−1)(t) + δn(t).

Next, for any β > 0, define the smoothing operator

f̆ (t) =
∫ t

−∞
e−β(t−u)f (u) du

and note that

r̆(t) =
∫ t

−∞
e−β(t−u)(g ∗ νn−1)(u) du + δ̆n(t)

=
∫ t

−∞
e−β(t−u)

∫ ∞

−∞
g(u − v)νn−1(dv) du + δ̆n(t)

=
∫ ∞

−∞

∫ t

−∞
e−β(t−u)g(u − v) duνn−1(dv) + δ̆n(t)

=
∫ ∞

−∞
ğ(t − v)νn−1(dv) + δ̆n(t)

= (ğ ∗ νn−1)(t) + δ̆n(t). (7.2)

Next, we will show that we can pass n → ∞ in the preceding identity. To this end, let
η(du) = eαum P(log C ∈ du), and note that this measure places no mass at −∞. Also, by
assumption, η(·) is a nonarithmetic measure on R. Moreover,∫ ∞

−∞
η(du) = m E[eα log C] = m E[Cα] = 1

and ∫ ∞

−∞
uη(du) = m E[eα log C log C] = m E[Cα log C] = mµ
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imply that η(·) is a probability measure with mean 0 < mµ < ∞. Furthermore,

ν(dt) =
∞∑

k=0

mkeαt P(Vk ∈ dt)

is its renewal measure since ν(dt) = ∑∞
n=0 η∗n(dt). Since mµ > 0, then (|f | ∗ ν)(t) < ∞

for all t whenever f is directly Riemann integrable. From (4.2) we know that g ∈ L1, so, by
Lemma 9.2 of [16], ğ is directly Riemann integrable, resulting in (|ğ|∗ν)(t) < ∞ for all t . Thus,
(|ğ| ∗ ν)(t) = E[∑∞

k=0 mkeαVk |ğ(t − Vk)|] < ∞. By Fubini’s theorem, E[∑∞
k=0 mkeαVk ğ(t −

Vk)] exists and

(ğ ∗ ν)(t) = E

[ ∞∑
k=0

mkeαVk ğ(t − Vk)

]
=

∞∑
k=0

E[mkeαVk ğ(t − Vk)] = lim
n→∞(ğ ∗ νn)(t).

Now, by assumption we can choose β in the definition of the smoothing operator such that
0 < β < α and m E[Cβ ] < 1. We show below that, for such β, we have δ̆n(t) → 0 as n → ∞
for all fixed t , since

δ̆n(t) =
∫ t

−∞
e−β(t−u)mn P(eβVnRβ > eβu) du

= e−βtmn

β

∫ eβt

0
P(eβVnRβ > v) dv

≤ e−βt

β
E[Rβ ](m E[Cβ ])n

→ 0 as n → ∞.

Hence, the preceding arguments allow us to pass n → ∞ in (7.2), and obtain

r̆(t) = (ğ ∗ ν)(t).

Now, by the key renewal theorem for two-sided random walks in [5],

e−βt

∫ et

0
vα+β−1 P(R > v) dv = r̆(t) → 1

mµ

∫ ∞

−∞
ğ(u) du =: H

β
, t → ∞.

Clearly, H ≥ 0 since the left-hand side of the preceding equation is positive, and, thus, by
Lemma 7.2,

P(R > t) ∼ Ht−α, t → ∞.

Finally,

H = β

mµ

∫ ∞

−∞

∫ u

−∞
e−β(u−t)g(t) dt du

= 1

mµ

∫ ∞

−∞
g(t) dt

= 1

mµ

∫ ∞

0
vα−1(P(R > v) − m P(CR > v)) dv.

We end this section with the proof of Lemma 4.3.
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Proof of Lemma 4.3. That the integral is positive follows from the union bound. That∫ ∞

0

(
E[N ] P(CR > t) − P

(
max

1≤i≤N
CiRi > t

))
tα−1 dt

= 1

α
E

[ N∑
i=1

(CiRi)
α −

(
max

1≤i≤N
CiRi

)α
]

follows from similar arguments to those used to derive the alternative expression for H in the
proof of Theorem 4.2 found in the preprint version of this paper [20]. The rest of the proof
shows that the integral is finite.

Clearly,∫ 1

0

(
E[N ] P(CR > t) − P

(
max

1≤i≤N
CiRi > t

))
tα−1 dt ≤ E[N ]

∫ 1

0
tα−1 dt < ∞.

Hence, it remains to prove that the remaining part of the integral (
∫ ∞

1 · · · dt) is finite. To do
this, we start by letting Y = CR and F(y) = P(Y ≤ y). Then

E[N ] P(CR > t) − P
(

max
1≤i≤N

CiRi > t
)

=
∞∑

k=1

(F (t)k − 1 + kF (t)) P(N = k)

= E[(1 − F(t))N − 1 + NF(t)].
Use the inequality 1 − x ≤ e−x for x ≥ 0 to obtain

E[(1 − F(t))N − 1 + NF(t)] ≤ E[e−F(t)N − 1 + NF(t)].
Choose 0 < δ < αε/(1+ε) (recall that 0 < ε < 1), and let β = α−δ. By Markov’s inequality
and Lemma 3.3,

F(t) ≤ t−β E[Yβ ] = t−β E[Rβ ] E[Cβ ] =: ct−β < ∞
for any t > 0. Note that the function h(x) = e−x − 1 + x is increasing on [0, ∞), so

h(NF(t)) ≤ h(cNt−β).

Thus, by Fubini’s theorem (the integrand is nonnegative),∫ ∞

1

(
E[N ] P(CR > t) − P

(
max

1≤i≤N
CiRi > t

))
tα−1 dt

≤ E

[∫ ∞

1
(e−cNt−β − 1 + cNt−β)tα−1 dt

]
.

Using the change of variable u = cNt−β gives∫ ∞

1
(e−cNt−β − 1 + cNt−β)tα−1 dt = (cN)α/β

β

∫ cN

0
(e−u − 1 + u)u−α/β−1 du

≤ (cN)α/β

β

∫ ∞

0
(e−u − 1 + u)u−α/β−1 du.
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Our choice of β = α−δ guarantees that 1 < α/β < 1+ε, so E[(cN)α/β ] < ∞. It only remains
to show that the last (nonrandom) integral is finite. To see this, note that e−x − 1 + x ≤ x2/2
and e−x − 1 ≤ 0 for any x ≥ 0, so

∫ ∞

0
(e−u − 1 + u)u−α/β−1 du ≤ 1

2

∫ 1

0
u1−α/β du +

∫ ∞

1
u−α/β du

= 1

2(2 − α/β)
+ 1

α/β − 1

< ∞.

This completes the proof.

7.3. The case when N dominates

This section contains the proof of Proposition 5.1. We also present in Lemma 7.3 a result
for sums of i.i.d. truncated random variables that may be of independent interest in the context
of heavy-tailed asymptotics, since it provides bounds that do not depend on the distribution of
the summands. Most of the work involved in the proof of Proposition 5.1 goes into obtaining a
bound for one iteration of the recursion satisfied by Wn, and, for the convenience of the reader,
it is presented separately in Lemma 7.4.

Lemma 7.3 below is based on traditional heavy-tailed techniques based on Chernoff’s
inequality for truncated random variables, such as those used in [9] and [30], to name some
references. The reason why we cannot simply use existing results is our need to guarantee
that the bounds do not depend on the distribution of the summands, which will be key when
we apply them to Wn. Hence, special care goes into accounting for the constants explicitly;
see [20] for the proof. The corollary that we obtain from this lemma will be used in the proof
of Lemma 7.4.

Lemma 7.3. Suppose that Y1, Y2, . . . are nonnegative i.i.d. random variables with the same
distribution as Y , where E[Yβ ] < ∞ for some β > 0. Fix 0 < ε < 1. Then

1. for 0 < β < 1, 1 ≤ k ≤ xβ/ E[Yβ ], and x ≥ exp[(Ke)1/(1−β)],

P

( k∑
i=1

Yi > x, max
1≤i≤k

Yi ≤ x

log x

)

≤ exp

[
−(1 − β)(log x)(log log x)

(
1 − log(eK)

(1 − β) log log x

)]
,

2. for β > 1, 1 ≤ k ≤ (1 − ε)x/(E[Y ] ∨ E[Yβ ]), and x ≥ e ∨ (Ke/ε)2/(β−1),

P

( k∑
i=1

Yi > x, max
1≤i≤k

Yi ≤ x

log x

)

≤ exp

[
−ε(β − 1)(log x)2

(
1 − log log x

log x
− log(Ke/ε)

(β − 1) log x

)
+ e5(β − 1)2

]
,

where K = K(β) > 1 is a constant that does not depend on ε, k, or the distribution of Y .

As an immediate corollary to the preceding lemma, we obtain the following result.
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Corollary 7.1. Suppose that Y1, Y2, . . . are nonnegative i.i.d. random variables with the same
distribution as Y , where E[Yβ ] < ∞ for some β > 0. Then, for any κ > 0, there exists a
constant x0 > 0 that does not depend on the distribution of Y such that

sup
1≤k≤mβ(x)

P

( k∑
i=1

Yi > x, max
1≤i≤k

Yi ≤ x

log x

)
≤ x−κ

for all x ≥ x0, where

mβ(x) =

⎧⎪⎪⎨
⎪⎪⎩

xβ

E[Yβ ] , 0 < β < 1,

(1 − ε)x

E[Y ] ∨ E[Yβ ] , β > 1, 0 < ε < 1.

Lemma 7.4 below gives a bound for the distribution of Wn+1 in terms of that of Wn. This
lemma can also be used to prove the corresponding uniform bound for Wn in the case when
Q dominates recursion (1.1). In the statement of the lemma we assume that 1/L(x) is locally
bounded on [1, ∞).

Lemma 7.4. Suppose that P(N > x) ≤ x−αL(x), with α > 1 and L(·) slowly varying, and that
E[N ] max{E[Cα], E[C]} < η < 1. Then, for any c > 0, 0 < ε < 1, and 0 < δ < 1 ∧ (α−1)/2,
there exist constants K = K(δ, ε, c, η) > 0 and x0 = x0(δ, ε, c, η) > 0, which do not depend
on n, such that, for all 1 ≤ n ≤ c log x/|log η| and all x ≥ x0,

P(Wn+1 > x) ≤ Kη(2∧(α−δ))nx−αL(x) + E[N ] P(CWn > (1 − ε)x),

where C and Wn are independent.

Remark. Note that the condition E[N ] max{E[Cα], E[C]} < 1 is natural since it is needed
for the finiteness of E[Rβ ] for any β < α. It is also in agreement with Lemma 5.1 in the
sense that it is a necessary condition for the convergence (as n → ∞) of the sum appearing
in (5.1). The choice of η is also suggested by the fact that, for β < α, we can obtain a
weaker uniform bound by applying the moment estimate on E[Wβ

n ] from Lemma 3.2, i.e.
P(Wn > x) ≤ E[Wβ

n ]x−β ≤ Kβ(E[N ] max{E[C], E[Cβ ]})nx−β .

Before presenting the proof, we would like to emphasize that special care goes into making
sure that K and x0 in the statement of the lemma do not depend on n. This is important since
Lemma 7.4 will be applied iteratively in the proof of Proposition 5.1, where we do not want K

and x0 to grow from one iteration to the next.

Proof of Lemma 7.4. By convexity of f (θ) = E[Cθ ], max{E[Cα], E[C]} ≥ max{E[Cα−δ],
E[C]}, implying that

ε := η

E[N ] max{E[Cα−δ], E[C]} − 1 > 0.

Next, recall that Wn+1
d= ∑N

i=1 CiWn,i , where the Wn,i are i.i.d. copies of Wn, and let Y
d= Yi =

CiWn,i and β = α − δ > 1. Note that, by Lemma 3.2, there exists a constant K1 > 0 (that
does not depend on n) such that

E[Yβ ] = E[Cβ ] E[Wβ
n ] ≤ K1(E[N ] max{E[Cα−δ], E[C]})n = K1(1 + ε)−nηn, (7.3)

where the last equality comes from the definition of ε. Since E[Y ] = E[Q](E[N ] E[C])n ≤
E[Q](E[N ] max{E[Cα−δ], E[C]})n, then

E[Yβ ] ∨ E[Y ] ≤ K2(1 + ε)−nηn (7.4)
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for some constant K2 > 0 that does not depend on n. With the intent of applying Corollary 7.1,
we define

y := εx and mβ(x) :=
⌊

ε2x

E[Yβ ] ∨ E[Y ]
⌋
.

Let M
(i)
k be the ith order statistic of {Y1, . . . , Yk}, with M

(k)
k being the largest. Then

P(Wn+1 > x) = P

( N∑
i=1

Yi > x

)

≤ P

( N∑
i=1

Yi > x, N ≤ mβ(x)

)
+ P(N > mβ(x))

≤ P

( N∑
i=1

Yi > x, M
(N)
N ≤ (1 − ε)x, N ≤ mβ(x)

)

+ P(M
(N)
N > (1 − ε)x, N ≤ mβ(x)) + P(N > mβ(x))

≤ P

( N∑
i=1

Yi > x, M
(N)
N ≤ (1 − ε)x, M

(N−1)
N ≤ y

log y
, N ≤ mβ(x)

)
(7.5)

+ P

(
M

(N−1)
N >

y

log y
, N ≤ mβ(x)

)
(7.6)

+ P(M
(N)
N > (1 − ε)x, N ≤ mβ(x)) + P(N > mβ(x)). (7.7)

Note that the term in (7.5) can be bounded as follows:

P

( N∑
i=1

Yi > x, M
(N)
N ≤ (1 − ε)x, M

(N−1)
N ≤ y

log y
, N ≤ mβ(x)

)

≤ P

( N∑
i=1

Yi − M
(N)
N > y, M

(N−1)
N ≤ y

log y
, N ≤ mβ(x)

)

≤ P

( N∑
i=1

Yi > y, M
(N)
N ≤ y

log y
, N ≤ mβ(x)

)

≤ P

(mβ(x)∑
i=1

Yi > y, max
1≤i<mβ(x)

Yi ≤ y

log y

)
.

Fix ν = α + δ + c(α − δ). Then, by Corollary 7.1, there exists a constant x1 ≥ e, which does
not depend on the distribution of Y (and, therefore, does not depend on n), such that

P

(mβ(x)∑
i=1

Yi > y, max
1≤i<mβ(x)

Yi ≤ y

log y

)
≤ y−ν

= ε−νηc(α−δ) log x/|log η|x−α−δ

≤ ε−νη(α−δ)nx−α−δ
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= ε−ν x−δ

L(x)
ηβnx−αL(x)

≤ ε−ν sup
t≥1

t−δ

L(t)
ηβnx−αL(x)

for all y ≥ x1, where the second inequality follows from the assumption that n ≤
c log x/|log η|, and in the second equality we used the definition β = α − δ. To bound (7.6),
we condition on N :

P

(
M

(N−1)
N >

y

log y
, N ≤ mβ(x)

)
=

mβ(x)∑
k=1

P

(
M

(k−1)
k >

y

log y

)
P(N = k)

≤
mβ(x)∑
k=1

(
k

2

)
P

(
Y >

y

log y

)2

P(N = k)

≤ E[N2 1{N≤mβ(x)}] P

(
Y >

y

log y

)2

≤ E[N2∧β ]mβ(x)(2−β)+ P

(
Y >

y

log y

)2

,

where in the last inequality we used N ≤ mβ(x) in case N does not have a second moment.
Now, by Markov’s inequality and the definition of mβ(x),

mβ(x)(2−β)+ P

(
Y >

y

log y

)2

≤ mβ(x)(2−β)+
(

E[Yβ ](log y)β

yβ

)2

≤
(

E[Yβ ]
E[Yβ ] ∨ E[Y ]

)(2−β)+
ε(2−β)+ E[Yβ ]2∧β(log y)2β

y2β∧(3β−2)

≤ ε(2−β)+ E[Yβ ]2∧β(log y)2β

y2β∧(3β−2)

≤ ε(2−β)+(K1(1 + ε)−nηn)2∧β(log y)2β

y2β∧(3β−2)
(by (7.3)).

Our choice of δ guarantees that 2β ∧ (3β − 2) > α + δ and β = α − δ > 1, and, therefore,

P

(
M

(N−1)
N >

y

log y
, N ≤ mβ(x)

)
≤ K3

η(2∧β)n

(1 + ε)(2∧β)n
x−α−δ

≤ K3
x−δ

L(x)
η(2∧β)nx−αL(x)

≤ K3 sup
t≥1

t−δ

L(t)
η(2∧β)nx−αL(x)

for all x ≥ x2 = ε−1e, where

K3 = K3(ε, δ) = E[N2∧β ]ε(2−β)+−α−δK
2∧β
1 sup

t≥e

(log t)2β

t2β∧(3β−2)−α−δ
.
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To bound the second term in (7.7), we first note that, by Potter’s theorem (see Theorem 1.5.6(ii)
of [8, p. 25]), there exists a constant x3 = x3(ε, δ) such that, for all x ≥ x3,

P(N > mβ(x)) ≤ (mβ(x))−αL(mβ(x))

x−αL(x)
x−αL(x)

≤ (1 + ε) max

{(
mβ(x)

x

)−α+δ

,

(
mβ(x)

x

)−α−δ}
x−αL(x)

= (1 + ε) max

{(
E[Yβ ] ∨ E[Y ]

ε2

)α−δ

,

(
E[Yβ ] ∨ E[Y ]

ε2

)α+δ}
x−αL(x)

≤ 1 + ε

ε2(α+δ)
(E[Yβ ] ∨ E[Y ])βx−αL(x)

≤ K
β
2

ε2(α+δ)

ηβn

(1 + ε)βn−1 x−αL(x) (by (7.4))

≤ K4η
βnx−αL(x).

Finally, for the first term in (7.7),

P(M
(N)
N > (1 − ε)x, N ≤ mβ(x)) ≤ P(M

(N)
N > (1 − ε)x)

≤ E[N ] P(Y > (1 − ε)x).

Combining the preceding bounds for (7.5)–(7.7), and setting x0 = max{x1, x2, x3} and K =
(ε−ν + K3) supt≥1 t−δ/L(t) + K4 completes the proof.

Finally, we give the proof of Proposition 5.1, the main technical contribution of Section 5.

Proof of Proposition 5.1. Note that it is enough to prove the proposition for all x ≥ x0 for
some x0 = x0(η, ν) > 1, since, for all 1 ≤ x ≤ x0 and n ≥ 1,

P(Wn > x) = P(Wn > x)

ηn P(N > x)
ηn P(N > x)

≤ E[Q](E[N ] E[C])nx−1

ηn P(N > x)
ηn P(N > x) (by Markov’s inequality)

≤ sup
1≤t≤x0

E[Q]
t P(N > t)

ηn P(N > x).

Next, choose 0 < ε < 1 such that

E[N ] E[Cα]((1 − ε)−α−1 + 2ε) ≤ η, (7.8)

define c = ν/2,

γ = 1

|log η| log

(
η

E[N ] max{E[Cα], E[C]}
)

,

and select 0 < δ < min{1, (α − 1)/2, cγ }. Now, by Lemma 7.4, there exist constants K1,

x1 > 0 (that do not depend on n) such that

P(Wn+1 > x) ≤ K1η
(2∧(α−δ))n P(N > x) + E[N ] P(CWn > (1 − ε)x) for all x ≥ x1.
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Hence, by defining n0 = (2 ∧ (α − δ) − 1)−1(log η)−1 log(ε E[N ] E[Cα]), we obtain

P(Wn+1 > x) ≤ K1 E[N ] E[Cα]εηn P(N > x) + E[N ] P(CWn > (1 − ε)x) (7.9)

for all n ≥ n0 and all x ≥ x1.
Next, in order to derive an explicit bound for P(Wn > x), we need the two estimates, (7.10)

and (7.11), below. In this regard, choose x0 ≥ 1 ∨ x1 such that

P(CN > (1 − ε)x) ≤ E[Cα](1 − ε)−α−1 P(N > x) (7.10)

for all x ≥ x0. This is possible since, by Lemma 4.2 of [22], P(CN > (1 − ε)x) ∼ E[Cα](1 −
ε)−α P(N > x). Also, by Markov’s inequality we have, for all 1 ≤ n ≤ c log x/|log η|,

P

(
C >

(1 − ε)x

x0

)
≤ E[Cα+ν](1 − ε)−α−νxα+ν

0 x−α−ν

= E[Cα+ν]xα+ν
0

(1 − ε)α+νxν/2L(x)
x−ν/2 P(N > x)

≤ E[Cα+ν]xα+ν
0

(1 − ε)α+νxν/2L(x)
ηn P(N > x), (7.11)

where in the second inequality we used x−ν/2 = x−c = ηc log x/|log η| ≤ ηn. Now, define

K2 = max

{
1, K1, sup

x≥x0

E[Cα+ν]xα+ν
0

ε E[Cα](1 − ε)α+νxν/2L(x)

}
.

Now we proceed to derive bounds for P(Wn > x) for different ranges of n. For all 1 ≤ n ≤ n0
and all x ≥ x0, by Lemma 5.1, there exists a constant K0 ≥ K2 such that

P(Wn > x) ≤ K0η
n P(N > x). (7.12)

Next, for the values n0 ≤ n ≤ c log x/|log η|, we proceed by induction using (7.9). To this
end, suppose that (7.12) holds for some n in the specified range. Then, note that, by (7.11) and
the induction hypothesis (7.12), we have, for all x ≥ x0,

P(CWn > (1 − ε)x)

≤ P

(
CWn > (1 − ε)x, C ≤ (1 − ε)x

x0

)
+ P

(
C >

(1 − ε)x

x0

)

≤
∫ (1−ε)x/x0

0
P

(
Wn >

(1 − ε)x

y

)
P(C ∈ dy) + K2 E[Cα]εηn P(N > x)

≤ K0η
n

∫ ∞

0
P

(
N >

(1 − ε)x

y

)
P(C ∈ dy) + K2 E[Cα]εηn P(N > x)

= K0η
n P(CN > (1 − ε)x) + K2 E[Cα]εηn P(N > x)

≤ K0 E[Cα]((1 − ε)−α−1 + ε)ηn P(N > x),

where in the last inequality we used (7.10) and K0 ≥ K2. Then, by replacing the preceding
bound in (7.9) and using (7.8), we derive

P(Wn+1 > x) ≤ K0 E[N ] E[Cα]((1 − ε)−α−1 + 2ε)ηn P(N > x)

≤ K0η
n+1 P(N > x)

for all x ≥ x0 and all 1 ≤ n ≤ c log x/|log η|.
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Finally, for n ≥ c log x/|log η|, we follow a different approach that comes from our moment
estimates for Wn. Let

ε = η

E[N ] max{E[Cα], E[C]} − 1 > 0,

and note that, by convexity,

E[N ] max{E[Cα−δ], E[C]} ≤ E[N ] max{E[Cα], E[C]} = (1 + ε)−1η.

Then, by Markov’s inequality and Lemma 3.2, we have

P(Wn > x) ≤ E[Wα−δ
n ]x−α+δ

≤ Kα−δ(E[N ] max{E[Cα−δ], E[C]})nx−α+δ

= Kα−δ(1 + ε)−nηnx−α+δ

≤ Kα−δx
−log(1+ε)c/|log η|ηnx−α+δ (7.13)

for all x > 0. Note that the preceding bound,

log(1 + ε)

|log η| = 1

|log η| log

(
η

E[N ] max{E[Cα], E[C]}
)

= γ,

and (7.13) yield
P(Wn > x) ≤ Kα−δη

nx−cγ−α+δ

≤ Kα−δη
nx−α+δ−cγ

= Kα−δη
n xδ−cγ

L(x)
P(N > x)

≤ Kα−δ sup
t≥1

tδ−cγ

L(t)
ηn P(N > x)

for all x ≥ 1; recall that δ < cγ . Thus, setting K = max{K0, Kα−δ supt≥1 tδ−cγ (L(t))−1}
completes the proof.

7.4. The case when Q dominates

We end the paper with a sketch of the proof of Proposition 6.1. As mentioned before, the
proofs of the other results presented in Section 6 have been omitted since they are very similar
to those from Section 5.

Sketch of the proof of Proposition 6.1. By Markov’s inequality,

P(N > x) ≤ E[Nα+ν]x−α−ν

for all x > 0. Use Lemma 7.4 to obtain

P(Wn+1 > x) ≤ K1 E[N ] E[Cα]εηn P(Q > x) + E[N ] P(CWn > (1 − ε)x)

for all n0 ≤ n ≤ κ log x and all x ≥ x1 (for suitably chosen constants ε, n0, and κ). Choose
x0 ≥ 1 ∨ x1 such that

P(CQ > (1 − ε)x) ≤ E[Cα](1 − ε)−α−1 P(Q > x).

The rest of the proof continues as in Proposition 5.1 with some modifications.
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