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Abstract. Consider a sequence of stationary GI/D/N queues indexed by N ↑ ∞, with servers’ utiliza-
tion 1 − β/

√
N , β > 0. For such queues we show that the scaled waiting times

√
NWN converge

to the (finite) supremum of a Gaussian random walk with drift −β. This further implies a correspond-
ing limit for the number of customers in the system, an easily computable non-degenerate limiting de-
lay probability in terms of Spitzer’s random-walk identities, and

√
N rate of convergence for the latter

limit. Our asymptotic regime is important for rational dimensioning of large-scale service systems, for
example telephone- or internet-based, since it achieves, simultaneously, arbitrarily high service-quality and
utilization-efficiency.

Keywords: multi-server queue, GI/D/N , deterministic service time, heavy-traffic, Quality and Efficiency
Driven (QED) or Halfin–Whitt regime, telephone call or contact centers, economies of scale, Gaussian
random walk, Spitzer’s identities

AMS subject classification: 60K25, 60F17, 60K30

1. Introduction

The dimensioning of a shared-resource facility necessarily balances between efficiency
and quality, or more specifically between servers’ capacity-utilization and customers’
perceived service-quality: high utilization is typically achieved at the cost of fre-
quent and long delays. It is thus commonly accepted that high efficiency and service-
quality cannot coexist. But here economies-of-scale come to the rescue. Indeed,
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large-scale service systems can operate in a regime, to which we refer as Quality &
Efficiency Driven (QED), where both objectives are accomplished. The scaling that
leads to the QED regime is of importance for dimensioning systems with high server
costs where over provisioning is economically unacceptable. This is often the case
for large telephone call centers in which the main operating cost is agents’ (servers’)
salaries and wireless communication systems with inherently limited frequency spec-
trum.

Due to the desirable features of the QED regime, it has recently enjoyed consid-
erable attention in the literature. But in fact, the importance of this regime was recog-
nized as early as in Erlang’s 1923 paper, that appeared in [12] and which addresses both
Erlang-B (M/M/N /N) and Erlang-C (M/M/N) models. A precise characterization of the
asymptotic expansion of the blocking probability, for Erlang-B in the QED regime, was
given first in Jagerman [23]; see also [32]. However, the formal characterization of the
QED regime, as one which accommodates both high operational efficiency (many heav-
ily utilized servers) and high service level (a delay probability that is strictly between 0
and 1), was first recognized by Halfin and Whitt [20]. Specifically, they considered
the GI/M/N queue in the QED regime, analyzing the scaled number of customers in
both steady state and as a stochastic process. Convergence of this same scaled queue-
ing process, in the more general GI/PH/N setting, was established in [28]. Application
of QED queues to modelling and staffing of telephone call centers and communication
networks, taking into account customers’ impatience, can be found in [17] and [13],
respectively. The optimality of the QED regime, under revenue maximization or con-
straint satisfaction, is discussed in [1,2,7,26]. Readers are referred to sections 4 and 5.1.4
of [16] for a survey of the QED regime, both practically and academically. Very recent
references are [33,34].

In this paper, we consider a sequence of stationary first-come-first-served GI/D/N
queues, indexed by N ↑ ∞. For the N th system, the traffic intensity is 1−β/

√
N , β > 0,

which is equivalent to a staffing level N ≈ RN + β
√

RN ; here RN is its offered load,
namely the arrival rate multiplied by mean service time. As will be shown, such scaling
leads to the QED operational regime: traffic intensity increases to 1 (high efficiency) and
simultaneously congestion levels diminish (high service level).

In the next section we introduce a decomposition property of the GI/D/N queue
into N single-server queues. This yields convergence in distribution for the scaled wait-
ing time and queue length. In each case, the limit has an explicit representation as the
supremum of a Gaussian random walk with drift −β, and the two limits are related in a
very simple way. We also show that the above scaling is equivalent to a non-degenerate
limiting delay probability, and further establish the corresponding rate of convergence.
The distribution of the limiting waiting time is discussed in section 4, specifically its
asymptotics around the origin and the tail. The last section concludes with some possi-
ble generalizations, and comparisons of QED performance between GI/D/N and related
systems.
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2. Decomposition of GI/D/N into N single-server queues

A cyclic service discipline in an N-server queue is a scheduling policy under which
every N th customer is assigned to the same server. As will be shown, such policies
achieve “perfect load balancing” among servers when the service requirements equal to a
constant: the workloads of any two servers differ by at most a single service requirement.

Cyclic scheduling policies play a central role in establishing our main results. They
have already been used for analyzing multi server queues. Indeed, in [36] they were
utilized to establish stochastic upper bound for the performance of first-come-first-served
multi-server system, while in [31] to obtain an alternative proof of the existence of the
stationary queue length and waiting time distributions. Recently, cyclic policies for the
M/D/N queue enabled analysis in steady state [14] and in transience [15].

Consider an N-server queue under cyclic scheduling. Let V
(n)
k be the workload of

the kth server just before the nth arrival. It is assumed that the customers are assigned
to servers upon their arrival. The following lemma, besides its load balancing property,
states that the individual server workloads adhere to a cyclic permutation property.

Lemma 1. Assume that all subscripts are mod N . For an arbitrary arrival sequence of
customers, with unit service requirements (for convenience), if V

(1)
N − V

(1)
1 � 1 and

V
(1)

1 � V
(1)

2 � · · · � V
(1)
N ,

then V
(n)
n−1 − V (n)

n � 1 and

V (n)
n � · · · � V

(n)
N � V

(n)

1 � · · · � V
(n)

n−1, n � 1.

Proof. The proof is by induction; assume that the lemma holds for some n > 1. Let
τn+1 be the interarrival time between the nth and (n + 1)st customers. After the arrival
of the (n + 1)st customer, by induction hypothesis, the smallest workload becomes the
largest. Next, due to the cyclic policy we have V (n+1)

n = (V (n)
n + 1 − τn+1)

+, while the
rest of the workloads V

(n+1)
k = (V

(n)
k − τn+1)

+, k �= n. Then

V (n+1)
n − V

(n+1)
n+1 �

(
V (n)

n + 1 − τn+1
)+ − (

V
(n)
n+1 − τn+1

)+

� V (n)
n + 1 − V

(n)

n+1

� 1. �

The next lemma establishes equivalence between the first-come-first-served and
cyclic multi-server queue, assuming that service times are deterministic. It is an easy
consequence of the preceding lemma and, as such, it is a sample-paths result that does
not require any probabilistic structure of the arrival sequence, e.g., being renewal. The
relationship between the two scheduling policies was first documented in [22].

Lemma 2. Consider two, initially empty, multi-server systems with first-come-first-
served and cyclic service disciplines. Suppose that both cater to the same arrival se-
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quence and provide a common fixed service time. Then both systems give rise to the
same sequences of customer waiting times.

An intuitive explanation of the lemma is as follows. Constant service times and
first-come-first-served service discipline lead to the fact that customers depart in the
order of their arrival. In other words, no customer can overtake any other customer.
Therefore, upon arrival, a customer can be assigned to the same server that the N th
prior customer received service from (without causing any extra idleness relative to a
work-conserving first-come-first-served discipline).

3. Main results

Consider a sequence of GI/D/N queues, indexed by N , with arrival rates λN → ∞ as
N → ∞. For the N th queue, the arrival process is a renewal process with interarrival
times equal in distribution to τN , where EτN = λ−1

N and σ 2
N � λ2

N Var(τN) → σ 2 < ∞,
as N → ∞. Denote by τN,n the interarrival time between the (n − 1)th and nth cus-
tomers; WN,n stands for the waiting time of the nth customer. We assume that service
requirements are constant and equal to m > 0.1 Then the offered load is RN = λNm.

Let the number of servers in the N th system be �RN + β
√

RN	, for some β > 0.
The traffic intensity ρN � RN/N then approaches 1 from below, as N → ∞. (More
precisely,

√
N(1 − ρN) = β + O(1/

√
N), as N → ∞.) Finally, we note that all

stationary performance measures exist by the classical work of [24].
Denote by Sn the sum of n i.i.d. normal random variables with mean −β and vari-

ance σ 2 equal to the asymptotic squared coefficient of variation of the interarrival times.
Assume by convention that S0 = 0. We use 
⇒ for convergence in distribution. Our
first main result concerns waiting time asymptotics.

Theorem 1. The stationary waiting time WN satisfies, as N → ∞,

√
N

WN

m

⇒ W � sup

n�0
Sn.

Proof. By lemma 2 it suffices to investigate the system under cyclic scheduling. Fur-
thermore, by symmetry, one needs to consider only a single server queue. Then, the
evolution of the waiting times in a single server is governed by Lindley’s recursion

WN,N(n+1) =
(

WN,Nn + 1 −
N(n+1)∑
i=Nn+1

τN,i

)+
(1)

1 All the results will be stated for a general m > 0, yet in the proofs, for notational simplicity and without
loss of generality, we let m = 1.
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and, thus,

√
NWN

d= sup
n�0

{
n
√

N −
nN∑
i=1

√
NτN,i

}
,

where
d= denotes equality in distribution. Next, easy algebraic steps and the CLT for

triangular arrays (e.g., see [5, p. 359]) yield

√
N −

N∑
i=1

√
NτN,i =

√
N

λN

λN − ∑�λN +β
√

λN 	
i=1 λNτN,i√

λN


⇒ S1,

as N → ∞. Finally, the result follows from [6, p. 207], theorem 1. �

Let �(·) be the standard normal distribution function. In this paper, C denotes a
sufficiently large positive constant; at different places, values of C are generally different
as well, i.e., C2 = C or C + C = C. The following corollary relates the probability of
delay and the number of servers.

Corollary 1. The probability of delay has a nondegenerate limit

lim
N→∞ P[WN > 0] = α, 0 < α < 1,

if and only if

lim
N→∞

(1 − ρN)
√

N = β, 0 < β < ∞,

in which case

α � α

(
β

σ

)
= 1 − e− ∑∞

n=1(1/n)�(−(β/σ )
√

n)

and

lim
N→∞ E

[√
N

WN

m

]
=

∞∑
n=1

[
σ√
2πn

e−β2n/(2σ 2) − β�

(
−β

√
n

σ

)]
.

Proof. Given that zero is not a point of continuity of the distribution function of W ,
we first establish P[WN = 0] → P[W = 0], as N → ∞. The fact that P [W = 0]
= 1 − α follows from Spitzer’s identity (see [11, section 8.5]). If Sn(N) � n

√
N −∑nN

i=1

√
NτN,i then the expression for the supremum of the negative drift random walk

(see [11, p. 291]), Fatou’s lemma and the CLT yield

lim
N→∞

P[WN = 0] = lim
N→∞

e− ∑∞
n=1(1/n)P[Sn(N)>0] � e− ∑∞

n=1(1/n)P[Sn>0]

= e− ∑∞
n=1(1/n)�(−(β/σ )

√
n) = P[W = 0]. (2)
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On the other hand, by the right-continuity of P[W � x] and theorem 1, for any x > 0

lim
N→∞ P[WN = 0] � P[W � x]

and after x → 0 one has

lim
N→∞

P[WN = 0] � P[W = 0]. (3)

Now combining (2) and (3) implies the desired result.
To verify that the probability of delay α is in (0, 1), note that the sum in its exponent

must be finite and positive, which indeed follows from �(−x) = (
√

2πx)−1e−x2/2(1 +
o(1)) as x → ∞. Alternatively, this can be seen from P[W > 0] = P[W + S1 > 0] =
E�((W − β)/σ ) < 1, where the first equality follows from W

d= (W + S1)
+ and the

latter strict inequality is a consequence of W < ∞, almost surely. To prove that there
is convergence in L1, given the convergence in distribution (theorem 1), one must verify
(see theorem 4.5.2 in [11]) that

sup
N

√
NEWN < ∞.

To this end, Lindley’s recursion renders for WN independent of τN,i

WN
d=

(
WN + 1 −

N∑
i=1

τN,i

)+
,

which after raising to the square power, taking expectation on both sides and noting that
by theorem 2.1 of [3, p. 184] EW 2

N < ∞ yields

EWN � E(1 − ∑N
i=1 τN,i)

2

2(1 − ρN)
� C√

N
.

Hence, E
√

NWN → EW ; the first moment of W can be represented as [11, p. 287]

EW =
∞∑

n=1

1

n
E

[
S+

n

]

and the “if” statement now follows.
As far as the “only if” statement is concerned, we make use of the fact that for a

given arrival sequence the probability of delay is non-increasing function in the number
of servers. As in [20], if (1 − ρN)

√
N → 0 then for any β > 0

lim
N→∞ P[WN > 0] � α

(
β

σ

)
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and, hence, the probability of delay converges to one. On the other hand, if (1 −
ρN)

√
N → ∞ then for any β > 0

lim
N→∞ P[WN > 0] � α

(
β

σ

)

and, hence, the probability of delay converges to zero. Finally, if (1 − ρN)
√

N fails to
converge to any limit, then there exist two subsequences that converge to different limits
and the above applies to each of the subsequences. Since α(·) is strictly decreasing, the
subsequences converge to different limits and the original sequence does not converge. �

Next, we turn our attention to QN , the number of customers in the system. The
distribution of QN cannot be derived by localizing to individual servers, as done with
WN . Yet, it equals to the number of arrivals during WN +m time periods, by the Distrib-
utional Little’s Law [19], which enables one to deduce the asymptotics of QN from that
of WN .

Corollary 2. For the stationary number of customers QN in the N th system, we have

QN − N√
N


⇒ Q � sup
n�1

Sn,

as N → ∞, with the limiting variable satisfying W
d= Q+.

Note that the quantity (QN −N)/
√

N describes the scaled queue length if positive,
and the scaled number of idle servers if negative. The latter converges to Q−.

Proof. Let 	N(·) be the number of arrivals in (0, ·) of a stationary renewal point
process with interarrival times equal in distribution to τN (the first arrival time τN,1 has
the excess distribution of τN ). Then, since customers depart in the order of arrival and the
waiting time of a customer is independent of future arrivals, by the Distributional Little’s

Law [19] one has QN
d= 	N(1 + WN), where WN is independent of 	N . Therefore,

P

[
QN − N√

N
> x

]
= P

[
	N(1 + WN) �

⌈
N + x

√
N

⌉]

= P

[�N+x
√

N	∑
i=1

τN,i � 1 + WN

]

= P

[∑�N+x
√

N	
i=1 λNτN,i − �N + x

√
N	√

N + x
√

N

� λNWN + λN − �N + x
√

N	√
N + x

√
N

]
,
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where the second equality follows from {	N(t) � n} = {∑n
i=1 τN,i � t}. Next, the CLT

for triangular arrays, theorem 1 and the independence of WN and {τN,i} (see [11, p. 92])
lead to

lim
N→∞ P

[
QN − N√

N
> x

]
= P[S1 + W � x] = P[S1 + W > x],

where S1 and W are independent; the last equality holds since the distribution of S1 +W

is absolutely continuous. The definition of W and the preceding relationship yield the
statement of the corollary. �

The next result provides the rate of convergence for the probability of wait
P[WN > 0].

Theorem 2. If sup λNEτ 3
N < ∞ and |σ −σN | � C/

√
N , then the relative error satisfies

|P[WN = 0] − P[W = 0]|
P[W = 0] � C√

N
.

Proof. Let Sn(N) = n
√

N − ∑nN
i=1

√
NτN,i . Using the expression for the supremum

of the negative-drift random walk (see [11, p. 291]) one obtains

|P[WN = 0] − P[W = 0]|
P[W = 0] =

∣∣∣∣∣
∞∏

n=1

e(1/n)(P[Sn(N)>0]−P[Sn>0]) − 1

∣∣∣∣∣
�

∞∏
n=1

e(1/n)|P[Sn(N)>0]−P[Sn>0]| − 1. (4)

Next, let kN = (N − λN)/
√

N and note that

{
Sn(N) > 0

} =
{

nN − ∑nN
i=1 λNτN,i√
nN

> kN

√
n

}
.

The difference of probabilities in (4) can be represented in the following way:

P
[
Sn(N) > 0

] − P[Sn > 0] = P

[∑nN
i=1(1 − λNτN,i)

σN

√
nN

>
kN

√
n

σN

]
− �

(
−kN

√
n

σN

)

+ �

(
−kN

√
n

σN

)
− �

(
−β

√
n

σ

)
� f1(n,N) + f2(n,N). (5)

A bound on the absolute value of the first term in the preceding equation is due to the
Berry–Esseen theorem

∣∣f1(n,N)
∣∣ � sup

x�0

∣∣∣∣P
[∑nN

i=1(1 − λNτN,i )

σN

√
nN

� x

]
− �(x)

∣∣∣∣ � C√
nN

.
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The term f2 is bounded as follows:

∣∣f2(n,N)
∣∣ � 1√

2π

∫ (kN
√

n/σN)∨(β
√

n/σ)

(kN

√
n/σN)∧(β

√
n/σ)

e−x2/2 dx

�
∣∣∣∣βσ − kN

σN

∣∣∣∣C√
n e−n/C � C

√
n

N
e−n/C,

where the second inequality follows from σN → σ and kN → β, while the last inequality
is due to ∣∣∣∣βσ − kN

σN

∣∣∣∣ � C|βσN − kNσ | � C|σ − σN | + C|kN − β| � C√
N

,

by the assumption |σ − σN | � C/
√

N and |kN − β| � C/
√

N since N = �λ + β
√

λ	.
Substituting the bounds on f1 and f2 in (5) and (4) concludes the proof of the theorem,
namely

|P[WN = 0] − P[W = 0]|
P[W = 0] � e(C/

√
N)

∑∞
n=1(n

−3/2+n−1/2e−n/C) − 1 � eC/
√

N − 1 � C√
N

. �

4. On the distribution of W

The distribution of W is determined, in principle, by either the following Spitzer’s iden-
tity [11, p. 286]

EeitW = exp

{ ∞∑
n=1

1

n

(
E

[
eitS+

n
] − 1

)}
,

or the Wiener–Hopf (ladder heights) method that can be found in [3, chapter 7]. In this
section we are mainly exploring two aspects of this distribution: its tail and its atom at
the origin. The later is important, being the characterizing performance measure of the
QED regime. The tail turns out to be exponential, with parameter that coincides with that
of the exponential distribution that arised in conventional heavy-traffic [3, section 8.6].
However, in contrast to conventional heavy-traffic, W is not exponentially distributed.
Primary reference on Gaussian random walk is [10].

4.1. The tail of W

The distribution of W is stochastically bounded by an exponential distribution with rate
2β/σ 2. To see that, denote by B(t) a Brownian motion with drift −β, variance coeffi-
cient σ 2 and B(0) = 0. Then the following bound prevails:

P[W > x] = P

[
sup
n�0

B(n) > x
]

� P

[
sup
t�0

B(t) > x
]

= e−2(β/σ 2)x,

where the last equality follows from [21, p. 15]. In general, note that W is the limit
of a Lindley process in discrete time [3, pp. 80–81]. Consequently, W = (W + S1)

+
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in distribution (W and S1 are taken independent), which can be used to show that W

cannot be exponential. However, it is straightforward to show that −1/x log P[W >

x] → 2β/σ 2 as x → ∞. Indeed, the upper bound given above is complemented with
the lower bound

P[W > x] � P
[
S�x/β� > x

]
= 1 − �

(
x + β�x/β�
σ

√�x/β�
)

= σ

2
√

2πβx
e−2β/σ 2√x/(x−β)x

(
1 + o(1)

)
, as x → ∞.

More precise analysis yields the exact asymptotics. To this end, Wald’s likelihood
ratio identity results in

P[W > x] = ξ

(
β

σ
,
x

σ

)
e−2β/σ 2x

with the expression for ξ(·, ·) given in [30, p. 13]. Then, in [10] it is shown that
ξ(β/σ, x/σ ) converges to ν(β/σ ), as x → ∞, exponentially fast over 0 � β/σ � 2

√
π ,

where

ν

(
β

σ

)
= exp

{
β

σ

√
2

π

∞∑
n=0

ζ(1/2 − n)

n!(2n + 1)

(−β2

2σ 2

)n
}

,

and ζ(·) is the Riemann zeta function. In fact, for all β/σ > 0, the exact asymptotics is of
the form κe−2β/σ 2x (when 0 < β/σ � 2

√
π one has κ = ν(β/σ )), where κ is a constant

that depends on the ladder height distributions, e.g., see theorem 5.3 in [3, chapter 12].
Finally, we note that there exists a body of literature on Gaussian random walks

that is only tangentially related to our work here. Readers are referred to the following
and references therein. Using the Wiener–Hopf factorization method in [25], the author
explores the excess distribution of boundary crossing for Gaussian random walks. The
sample path difference (instead of the difference in steady-state considered here) be-
tween a Brownian motion and its embedded Gaussian random walk was studied in [4].
Correction terms for the diffusion approximation to one- and two-barrier crossing prob-
lems were examined in [29]. In the context of option pricing, a corresponding relation-
ship between the continuous and discrete-time models was investigated in [8,9].

4.2. Approximation of the delay probability α

As seen from corollary 1, the probability of wait is expressed in terms of an infinite
sum of Gaussian functions. While the sum converges fast for moderately large β/σ (say
β/σ > 1), it has particularly slow rate of convergence for small values of β/σ (for
small β/σ the first O(σ/β) elements in the sum behave roughly as 1/n). Hence, it is
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of interest to derive a simple approximation for small values of β/σ , which we now do.
Consider the infinite sum of Gaussian functions

∞∑
n=1

1

n
�

(
−β

√
n

σ

)
=

k∑
n=1

1

n
�

(
−β

√
n

σ

)
+

∫ ∞

k

1

u
�

(
−β

√
u

σ

)
du + O

(
k−1)

= 1

2

k∑
n=1

1

n
+ O

(
β
√

k

σ

)
+ 2

∫ ∞

β
√

k/σ

z−1�(−z) dz + O
(
k−1). (6)

Next, we evaluate the last integral using integration by parts∫ ∞

x

z−1�(−z) dz = −�(−x) log x +
∫ ∞

x

log z√
2π

e−z2/2 dz

= −�(−x) log x − γ + log 2

4
+

∫ x

0

log z√
2π

e−z2/2 dz

= − log x

2
− γ + log 2

4
+ o(1), as x ↓ 0, (7)

where γ is Euler’s constant, the second equality follows from equation (3.481) in [18,
p. 387] and the last equality is due to x log x → 0, as x ↓ 0. By replacing the approxi-
mation log k + γ for the harmonic number and (7) in (6), one obtains

∞∑
n=1

1

n
�

(
−β

√
n

σ

)

= log k

2
+ γ

2
+ o(1) + O

(
β
√

k

σ

)
− γ

2
− log 2

2
− log

β
√

k

σ
+ O

(
k−1

)
= − log

√
2
β

σ
+ o(1), as

β

σ
↓ 0.

Finally, substituting the preceding expression in corollary 1 yields

α

(
β

σ

)
= 1 − √

2
β

σ

(
1 + o(1)

)
, as

β

σ
↓ 0.

However, one can further refine the approximation. Indeed, Chang and Peres in [10]
obtained the following expansion for 0 < β/σ � 2

√
π (see their theorem 1.1 and (5)):

α

(
β

σ

)
= 1 − √

2
β

σ
exp

{
β/σ√

2π

∞∑
n=0

ζ(1/2 − n)

n!(2n + 1)

(
−β/σ

2

)n
}

,

where ζ(·) is the Riemann zeta function. This expansion easily yields, as β/σ ↓ 0,

α

(
β

σ

)
= 1 − √

2
β

σ
− ζ(1/2)√

π

(
β

σ

)2

− ζ 2(1/2)

2
√

2π

(
β

σ

)3
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Figure 1. Approximations of the limiting probability of wait α(β/σ ). The approximation Pk includes
elements with up to the kth power of β/σ , i.e., P1 = 1 − √

2β/σ , etc.

−
(

−ζ(−1/2)

6
√

π
+ ζ 3(1/2)

12π
√

π

)(
β

σ

)4

− o

((
β

σ

)4)

with ζ(1/2) ≈ −0.5826
√

2π and ζ(−1/2) ≈ −0.0829
√

2π . In figure 1 we provide a
graphical illustration of the approximation.

5. Extensions and comparisons

In this concluding section we first discuss some possible extensions of our results and
then compare them to others reported in the literature for related systems.

5.1. Interarrival times

Our primary result, theorem 1, is easily generalizable. Indeed, in view of theorem 1,
p. 207 of [6], it applies to dependent (non-renewal) arrival sequences, as long as the
process {nm

√
N − ∑1

i=−nN

√
NτN,i, n � 1} converges in distribution, as N → ∞, to

an appropriate limit.
For theorem 1 to hold, one needs the finiteness of the scaled second moment of

the interarrival times, e.g., λN Var(τN) → σ 2 < ∞. For infinite second moments, one
may resort to Stable laws in order to obtain the appropriate scaling of the system. Due
the higher variability in the arrival pattern, one needs more than “square-root” extra
servers to get the probability of wait in (0, 1). In particular, if for 1/2 < H < 1,
N ≈ RN + β(RN)H , β > 0, and for a nondegenerate Y with a negative mean −β,

Nm − ∑N
i=1 NτN,i

mNH

⇒ Y,
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as N → ∞, then the stationary waiting time WN satisfies, as N → ∞,

N1−H WN

m

⇒ sup

n�0

n∑
i=1

Yi,

where {Yi} are i.i.d. copies of Y . The proof closely follows the steps of the proof of
theorem 1. We omit the details and note that such dimensioning of the system, based on
the infinite server approximation, is discussed in [35, chapter 10].

5.2. Comparison of M/D/N and M/M/N

For a meaningful comparison, both systems serve customers with mean service require-
ments m arriving according to a Poisson process while operating in the QED regime,
namely

√
N(1 − ρN) → β, as N → ∞. We note that in the M/M/N case the waiting

time satisfies [20]

lim
N→∞ P

[
WM/M/N

N > 0
] = (

1 + √
2πβ�(β)eβ2/2

)−1
. (8)

Observe that the preceding relationship implies

lim
N→∞

P[WN > 0] = 1 −
√

π

2
β + o(β),

as β ↓ 0. Recalling the linear expansion for the M/D/N queue 1 − √
2β + o(β) (since

σ 2 = 1), one concludes that in the latter the probability of delay decreases faster in the
neighborhood of β = 0, as β increases. The probabilities of wait for the two systems, as
a function of the parameter β, are shown in figure 2. As seen, the two probabilities are
quite close. To compare them in a more insightful way we define

γ (β) � lim
N→∞

P[WM/M/N
N > 0]

P[WM/D/N
N > 0] ,

numerically evaluate it by (8) and corollary 1, and plot it in figure 3. Observe that
the ratio is bounded by 1.15 for all positive β. Using the well-known approximation
�(−x) = (

√
2πx)−1e−x2/2(1 + o(1)), as x → ∞, one can easily show that γ (β) → 1

when β → ∞. The same limit trivially holds for β → 0.
To compare the expected waiting times we note that, in the M/M/N system, the

wait, given that it is positive, is exponentially distributed with parameter N(1 − ρN)/m,
implying

E
[√

NWM/M/N
N |WM/M/N

N > 0
] → mβ−1, as N → ∞.

Similarly to the case of the probabilities of wait, we also consider the ratio of the two
quantities given by

η(β) = lim
N→∞

E[WM/M/N
N | WM/M/N

N > 0]
E[WM/D/N

N | WM/D/N
N > 0] .
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Figure 2. Limiting probability of wait in the corresponding M/D/N (solid line) and M/M/N (dashed line)
queues, as a function of the parameter β.

Figure 3. Ratio of limiting probabilities of wait in the corresponding M/M/N and M/D/N queues, as a
function of the parameter β.

The numerical findings are shown in figures 4 and 5; they are consistent with the simu-
lation study [27]. By using the previously mentioned approximation for �(·), one can
get that the ratio of two expected delays tends to 1 as β → ∞. Applying L’Hospital’s
rule twice and using elementary, but somewhat tedious, calculations one can also verify
that

lim
β↓0

η(β) = lim
β↓0

( ∞∑
n=1

β3

√
n

8π
e−β2n/2

)−1

= 2.
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Figure 4. Limiting expected wait given wait in the corresponding M/D/N (solid line) and M/M/N (dashed
line) queues, as a function of the parameter β.

Figure 5. Ratio of limiting expected waits given wait in the corresponding M/M/N and M/D/N queues, as
a function of the parameter β.

5.3. Comparison of GI/D/N and GI/D/1

Finally, we compare WGI/DN
N with the waiting time of the GI/D/1 queue in conventional

heavy traffic. Denote by B(t) a Brownian motion with drift −β, variance coefficient σ 2

and B(0) = 0. When the capacity of the GI/D/1 queue is N (service duration equals
1/N) and its utilization is 1−β/

√
N , the stationary waiting time W

GI/D/1
N satisfies ([35],

chapter 9), as N → ∞,

√
N

W
GI/D/1
N

m

⇒ sup

t�0
B(t).

Therefore, the preceding limit and the first part of section 4 imply that the waiting time
in the multi-server queue is stochastically smaller than the exponential one in the corre-
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sponding single server queue. However, one must keep in mind that the sojourn time in
the GI/D/N system is O(1) while that in the single server case is only O(1/

√
N).
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