
Ann Oper Res (2009) 170: 133–159
DOI 10.1007/s10479-008-0432-0

Heavy-tailed limits for medium size jobs and comparison
scheduling

Predrag R. Jelenković · Xiaozhu Kang · Jian Tan

Published online: 13 September 2008
© Springer Science+Business Media, LLC 2008

Abstract We study the conditional sojourn time distributions of processor sharing (PS),
foreground background processor sharing (FBPS) and shortest remaining processing time
first (SRPT) scheduling disciplines on an event where the job size of a customer arriving in
stationarity is smaller than exactly k ≥ 0 out of the preceding m ≥ k arrivals. Then, condi-
tioning on the preceding event, the sojourn time distribution of this newly arriving customer
behaves asymptotically the same as if the customer were served in isolation with a server of
rate (1 − ρ)/(k + 1) for PS/FBPS, and (1 − ρ) for SRPT, respectively, where ρ is the traffic
intensity. Hence, the introduced notion of conditional limits allows us to distinguish the as-
ymptotic performance of the studied schedulers by showing that SRPT exhibits considerably
better asymptotic behavior for relatively smaller jobs than PS/FBPS.

Inspired by the preceding results, we propose an approximation to the SRPT discipline
based on a novel adaptive job grouping mechanism that uses relative size comparison of
a newly arriving job to the preceding m arrivals. Specifically, if the newly arriving job is
smaller than k and larger than m − k of the previous m jobs, it is routed into class k. Then,
the classes of smaller jobs are served with higher priorities using the static priority schedul-
ing. The good performance of this mechanism, even for a small number of classes m + 1,
is demonstrated using the asymptotic queueing analysis under the heavy-tailed job require-
ments. We also discuss refinements of the comparison grouping mechanism that improve
the accuracy of job classification at the expense of a small additional complexity.

Keywords Comparison scheduling · Scalability · Fairness · Adaptive thresholds · M/G/1
queue · Processor sharing · Shortest remaining processing time first · Foreground
background processor sharing · Asymptotic analysis · Heavy tails · Medium size jobs

This work is supported by NSF Grant 0615126.

P.R. Jelenković · X. Kang · J. Tan (�)
Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
e-mail: jiantan@ee.columbia.edu

P.R. Jelenković
e-mail: predrag@ee.columbia.edu

X. Kang
e-mail: xiaozhu@ee.columbia.edu

mailto:jiantan@ee.columbia.edu
mailto:predrag@ee.columbia.edu
mailto:xiaozhu@ee.columbia.edu

134 Ann Oper Res (2009) 170: 133–159

1 Introduction

It has been widely recognized that heavy-tailed distributions are suitable for modeling job
sizes in information service networks, e.g., see Jelenković and Momčilović (2003a, 2003b)
and the references therein. For heavy-tailed distributions, large jobs appear much more fre-
quently than for the light-tailed ones, which imposes very different constraints in terms of
optimizing the scheduling process as compared to the light-tailed scenarios. In particular,
schedulers that may assign the server exclusively to a very large job, e.g., first come first
serve (FIFO) discipline, can cause very large delays and, in general, suboptimal perfor-
mance, as shown by Anantharam (1999).

Hence, most of the practical schedulers utilize either the processor sharing (PS) and fore-
ground background processor sharing (FBPS) disciplines because of their inherent fairness,
or the shortest remaining processing time first (SRPT) discipline because of its known op-
timality under quite general conditions. In particular, it was shown by Schrage (1968) that
SRPT minimizes the number of customers in the G/G/1 queue over all work-conserving
disciplines. For early references on these and other scheduling disciplines see Kleinrock
(1976), Wolff (1989) and the references therein. Recently, the performance of these disci-
plines was revisited in the context of heavy tails; for a recent survey see Borst et al. (2003b).
For practical applications of SRPT-based scheduling to improving Web server performance
see Harchol-Balter et al. (2003), Rawat and Kshemkalyani (2003); also, for recent studies
that are applying FBPS to reducing the latency of short TCP flows see Rai et al. (2004,
2005).

It is well known that the sojourn time distributions under PS, FBPS and SRPT schedul-
ing disciplines are asymptotically equivalent for power law distributions (more precisely,
regularly or intermediately regularly varying distributions). This was originally proved by
Núñez-Queija (2000) and then later studied for regularly varying distributions in Theo-
rems 2.2, 2.5 and 2.6 of Borst et al. (2003b); see also Theorem 2.1 of Jelenković and
Momčilović (2003b) and Theorem 1 of Jelenković and Momčilović (2002). In other words,
for large jobs, the waiting time does not depend on the choice of a specific scheduling dis-
cipline among PS, FBPS and SRPT.

In this paper, we introduce a new notion of conditional waiting time distribution which
allows us to refine and distinguish the performance of PS/FBPS and SRPT schedulers for
medium size jobs. Informally, our first main result, stated in Theorem 2.2, shows that even
the relatively smaller jobs receive asymptotically the same residual capacity 1 − ρ as the
larger ones for SRPT discipline, while, for PS/FBPS schedulers, these smaller jobs share
the residual capacity equally with the larger jobs in the system. Hence, it appears that SRPT
provides much better and more uniform performance over a wide range of time scales. Fur-
thermore, the performance improvement for conditionally smaller jobs is not achieved at the
expense of larger jobs, i.e., SRPT is not only efficient but fair as well, which is in line with
similar recent findings in the context of mean value analysis by Bansal and Harchol-Balter
(2001), Wierman and Harchol-Balter (2003). To this end, we would like to point out that
contrary to our findings, in the light-tailed context, it was shown by Ramanan and Stolyar
(2001) that FIFO is optimal in terms of maximizing the decay rate of the waiting time dis-
tribution over all work conserving disciplines. For more recent results on the light-tailed
asymptotic analysis see Nuyens and Zwart (2006) and the references therein.

Overall, using the SRPT scheduling is beneficial for a broad range of conditions and
applications. However, as discussed in one of the very first papers on SRPT by Schrage and
Miller (1966), this discipline may be quite difficult to implement. Clearly, its complicated
preemptive nature requires keeping track of the remaining processing times for all jobs in

Ann Oper Res (2009) 170: 133–159 135

the queue which may be prohibitive for systems with large job volumes, e.g., Web servers.
In addition, Schrage and Miller (1966) show that the expected number of preemptions per
job is proportional to the load of the system, which can be quite large. Hence, even as early
as 1966, it was recognized by Schrage and Miller (1966) that one should try to approximate
SRPT with less complex schedulers. The most apparent option, as suggested by Schrage
and Miller (1966), is to design a threshold-based static priority approximation to SRPT.
Basically, the idea is to select a fixed number of thresholds m and then group jobs into m+1
classes depending on which pair of thresholds a job size happens to fall between. Then, these
classes are served according to the static priority discipline with higher priorities assigned
to classes with smaller jobs. Since then, there has been a lot of work on threshold-based
scheduling policies. For example, it was shown by Bansal and Gamarnik (2006) that even
with a single threshold, one can obtain the performance comparable to SRPT up to a constant
factor in terms of the mean sojourn time for M/M/1 queue as well as for M/G/1 queue with
finite variance Pareto service distribution.

Although it is encouraging that one can achieve a provably very good approximation
of M/G/1/SRPT queue even with a very small number of static thresholds (only one in
the paper by Bansal and Gamarnik 2006), these solutions are likely not to perform well
in practice since the traffic characteristics are often nonstationary, highly correlated (long
range dependent) and very bursty (e.g., batch arrivals, etc.); see Park and Willinger (2000),
Squillante et al. (1999). In order to overcome these difficulties, we propose a novel adaptive
job classification (grouping) mechanism that is based on relative size comparison of a newly
arriving job to the previous m arrivals; this scheduler is inspired by our conditional limit
results. Specifically, if an arriving job is smaller than k and larger than m− k of the previous
m jobs, it is routed into class k. We also discuss refinements of the comparison grouping
mechanism that improve the accuracy of the classification for both light-tailed and correlated
job arrivals at the expense of a small (fixed) additional complexity in Sect. 3.1.1.

The good performance of our comparison classification mechanism is demonstrated us-
ing the asymptotic queueing analysis under the heavy-tailed job sizes in Sect. 3.2. First, in
Sect. 3.2.1 we study the queueing behavior of a class k process in isolation and show that
the workload distribution decays faster for larger k. More precisely, for regularly varying
(power law) service distribution, the tail of the workload distribution P[W(k) > x] of a class
k process, as implied by Theorem 3.1, is of the order of x(P[B > x])k+1, where B is the
service requirement of a typical job before the comparison splitting. Hence, our comparison
splitting procedure provides a proper ordering of jobs. Furthermore, in Sect. 3.2.2 we study
the joint queueing behavior of all classes under the static priority (SP) discipline, with higher
priorities assigned to classes with “smaller” jobs. Theorem 3.2 shows that the workload dis-
tribution of a class with a smaller index k (i.e., larger jobs) has the same queueing behavior
as if it were served in isolation with the system capacity reduced by the mean arrival rates of
the classes with smaller jobs. Roughly speaking, this is a similar behavior as seen in Theo-
rem 2.2 for the SRPT discipline and, thus, the SP scheduling with our comparison splitting
should provide a reasonable approximation to the SRPT discipline. Furthermore, in regard
to the analysis, we would like to point out that the main technical difficulty is that the split
processes are individually and mutually correlated. This statistical correlation makes other
types of analyses, outside of the heavy-tailed context, possibly difficult.

In addition, we would like to point out that a preliminary version of this paper has ap-
peared earlier in Jelenković et al. (2007) as part of the conference proceedings, which con-
tains sketches of the proofs as well as the extensive simulation experiments. Those experi-
ments demonstrated the good performance of our adaptive scheduler that, in particular, out-
performs the static threshold policies when the arrival processes are statistically correlated

136 Ann Oper Res (2009) 170: 133–159

and time varying. However, in contrast to the previous focus on simulations in Jelenković et
al. (2007), this paper provides the rigorous details of the proofs.

The rest of this paper is structured as follows. In the next section, we introduce the new
notion of conditional waiting time distribution that refines and differentiates the performance
of PS/FBPS and SRPT schedulers for medium size jobs. Based on the conditional asymp-
totic result of the sojourn time distribution (stated in Theorem 2.2), we propose a novel
comparison grouping scheme and its refined version in Sect. 3.1. To demonstrate its good
performance, we conduct the asymptotic queueing analysis under heavy-tailed job sizes in
Sect. 3.2. In the end, Sect. 4 summarizes our contributions.

2 Heavy-tailed limits for medium size jobs with popular schedulers

2.1 Definitions and preliminary results

In this section we introduce the necessary notation and describe the existing and preliminary
results. Let Bi and Vi denote the job size and the waiting time of the customer arriving at time
Ti , respectively, where {Bi}i>−∞ are i.i.d. random variables. The arrival points {Ti}i>−∞ are
assumed to be Poisson with rate λ and independent of job requirements {Bi}i>−∞. Hence,
without loss of generality, in view of the PASTA property, we set T0 = 0. The waiting time of
a customer is defined as the amount of time between its arrival and departure, also referred to
as sojourn time in the queuing literature. To present our main results, we need the following
definitions.

Definition 2.1 A nonnegative random variable X or its distribution function (d.f.) F is
called intermediately regularly varying, X ∈ I R, if

lim
η↑1

lim
x→∞

P[X > ηx]
P[X > x] = 1.

Regularly varying distributions Rα are the best-known examples from I R.

Definition 2.2 A nonnegative random variable X or its d.f. F is called regularly varying
with index α, X ∈ Rα (F ∈ Rα), if

F(x) = 1 − l(x)

xα
, α ≥ 0,

where l(x): R+ → R+ is slowly varying, i.e., limx→∞ l(ηx)/ l(x) = 1, η > 1.

The preceding class includes the well-known power law distributions, e.g., F(x) =
1 − 1/xα, x ≥ 1, α > 0.

Let B̃i ,1 ≤ i ≤ m be the order statistics of B−i ,1 ≤ i ≤ m with the convention B̃0 = ∞
and B̃m+1 = 0. To make the notation uniform, we assume that B̃0 = ∞, B̃1 = 0 for m = 0,
and when it is necessary to emphasize the total number of random variables, we write ex-
plicitly B̃

(m)
i ≡ B̃i .

Definition 2.3 Let A(m)
k � {B̃(m)

k+1 ≤ B0 < B̃
(m)
k } for m ≥ k ≥ 0.

Ann Oper Res (2009) 170: 133–159 137

The asymptotic behavior of the sojourn time distribution for PS, FBPS and SRPT has
been extensively studied under heavy-tails, e.g., see Zwart and Boxma (2000), Núñez-Queija
(2000), Borst et al. (2003b), Jelenković and Momčilović (2002, 2003b) and the references
therein. We summarize these results for intermediately regularly varying distributions in the
following theorem, which follows directly from our more general/refined result presented in
Theorem 2.2 in the following section. In order to ease the notation we simply write B ≡ B0

and V ≡ V0.
For the rest of the paper, we assume that the system has reached stationarity. Also, we

use H to denote a sufficiently large positive constant. The value of H is generally different
in different places, for example, H/2 = H , H 2 = H , H + 1 = H , etc. Furthermore, we
use the following standard notation. For any two real functions a(t) and b(t) and fixed t0 ∈
R ∪ {∞} we will use a(t) ∼ b(t) as t → t0 to denote limt→t0 [a(t)/b(t)] = 1. Similarly, we
say that a(t) � b(t) as t → t0 if lim inft→t0 a(t)/b(t) ≥ 1; a(t) � b(t) has a complementary
definition. In addition, we say that a(t) = o(b(t)) as t → t0 if limt→t0 a(t)/b(t) = 0. When
t0 = ∞, we often simply write a(t) = o(b(t)) without explicitly stating t → ∞ in order to
simplify the notation.

Theorem 2.1 If B ∈ I R and EBα < ∞ for some α > 1, then, under the PS, FBPS or SRPT
discipline, we have, as x → ∞,

P [V > x] ∼ P [B > (1 − ρ)x] .

The preceding asymptotic insensitivity of the sojourn (waiting) time distribution on the
scheduling discipline was first derived in Theorems 5.2.3, 5.2.4 and 5.2.5 of Núñez-Queija
(2000) under somewhat more restrictive conditions; see also Theorems 2.2, 2.5 and 2.6
of Borst et al. (2003b). For PS, this result was proved in Theorem 2.1 of Jelenković and
Momčilović (2003b) using a novel sample path approach that allows further extension of the
result to moderately heavy distributions, e.g., lognormal, see Theorem 3.1 of Jelenković and
Momčilović (2003b). Furthermore, as noted in Appendix B of Jelenković and Momčilović
(2002), this sample path approach extends directly to SRPT and FBPS scheduling disci-
plines. Our proof of Theorem 2.2 in this paper relies directly on the arguments developed by
Jelenković and Momčilović (2002), Jelenković and Momčilović (2003b).

2.2 Conditional limits

The following theorem represents our first main result, which implies Theorem 2.1 by un-
conditioning on event A(m)

k , i.e., summing over all k, 0 ≤ k ≤ m.

Theorem 2.2 If B ∈ I R and EBα < ∞ for some α > 1, then, under either PS or FBPS
discipline, we have for fixed k, as x → ∞,

P

[
V > x, A(m)

k

]
∼ P

[
B >

(1 − ρ)x

(1 + k)
, A(m)

k

]
∼ 1

k + 1

(
m

k

)
P

[
B >

(1 − ρ)x

k + 1

]k+1

, (2.1)

and under the SRPT discipline,

P

[
V > x, A(m)

k

]
∼ P

[
B > (1 − ρ)x, A(m)

k

]
∼ 1

k + 1

(
m

k

)
P [B > (1 − ρ)x]k+1. (2.2)

138 Ann Oper Res (2009) 170: 133–159

Remark 1 These results can be easily extended to GI/GI/1 queue under the FBPS dis-
cipline, and possibly under the SRPT as well using the recent studies on SRPT by Nuyens
et al. (2008). In order to provide a unified framework, we omit such possible extensions here
and restrict ourselves to the M/G/1 framework. Furthermore, our focus in the second part
of the paper is to exploit this idea of relative job comparisons to design adaptive and efficient
approximation of SRPT, which we term comparison scheduling.

Remark 2 Note that on A(m)
k , the distribution of B has a much lighter tail of the order of

P [B > x]k+1 and, thus, A(m)
k partitions the probability space into jobs of decreasing sizes as

k increases. Interestingly, the result shows that, for the SRPT discipline, even the relatively
much smaller job receives the entire long-term residual capacity 1 − ρ, while, for PS/FBPS,
this smaller job shares equally the residual capacity with the k larger ones. Hence, SRPT
outperforms PS/FBPS for medium size jobs and therefore provides much better and more
uniform performance over a wide range of time scales, i.e., it appears that SRPT generates
extra capacity. Informally, we believe that the explanation for this comes from the combined
effect of the SRPT prioritization mechanism and the fact that jobs of “different” sizes occur
on different time scales. Hence, the medium size jobs are basically not affected by the larger
ones because of the higher priority assigned to them and the larger jobs are not impacted by
the smaller ones due to the time scale separation.

In order to prove this theorem, we define the class of heavy-tailed distributions L that
contains subexponential distributions and, in particular, the intermediately regularly varying
class I R, and establish the following two preliminary lemmas.

Definition 2.4 A nonnegative random variable X or its d.f. F is called heavy-tailed X ∈ L
(or F ∈ L) if, for any fixed y ∈ R,

lim
x→∞

P[X > x − y]
P[X > y] = 1.

Lemma 2.1 Let {Xi}0�i�m be i.i.d. random variables with X0 ∈ L and, denote the order
statistics of X1,X2, . . . ,Xm by X̃1 � X̃2 � · · · � X̃m with X̃0 = ∞ and X̃m+1 = 0, then, for
any m ≥ k ≥ 0, as x → ∞, we have

P[X0 > x, X̃k+1 ≤ X0 < X̃k] ∼ P[X0 > x,X0 < X̃k]

∼ 1

k + 1

(
m

k

)
(P[X0 > x])k+1. (2.3)

Remark 3 This result holds for all continuous distributions without the assumption X0 ∈ L.
However, the assumption X0 ∈ L is necessary in general since the result may not hold for
light-tailed lattice valued distributions. Here, easy calculations show that the lemma does
not hold for geometric distribution P[Xi = j] = pj (1 − p), j ≥ 0, where we obtain for
m = k = 1 and positive integer x ∈ N

P[X1 > X0 > x] = E
[
1{X0 > x}pX0+1

] = p

1 + p
(P[X0 > x])2.

Lemma 2.2 If two arrival processes {(Ti,B1i)}i>−∞ and {(Ti,B2i)}i>−∞, satisfying
B1i = 0 for i < 0, B10 = B20, and either B1i = B2i or B1i = 0 for i > 0, are served with

Ann Oper Res (2009) 170: 133–159 139

SRPT discipline, then, the corresponding sojourn times V1 and V2 for the customer arriving
at T0 satisfy V2 ≥ V1.

The proofs of Lemmas 2.1 and 2.2 are presented in the Appendix.

Proof of Theorem 2.2 Label the customer that arrives at time T0, and define function R0(t) ≡
RB0(t) for t ≥ 0 to be the amount of remaining work of the labeled customer at time t . Let
Lm be the number of customers in the system just before time T−m. For all the customers
arriving between T−m and T0, define B0

−i to be the remaining service time of B−i ,1 ≤ i ≤ m

at time t = 0. For all the customers arriving before time T−m, define B
(e)
i (m),1 ≤ i ≤ Lm to

be the remaining service time at time T−m and B
(e)
i (0) the remaining service time at time

t = 0. Denote x ∧ y ≡ min(x, y).
1. Processor sharing discipline. Similarly as in Jelenković and Momčilović (2003b), we

have the following min-plus identity

V0 = B0 +
m∑

i=1

B0
−i ∧ B0 +

Lm∑
i=1

B
(e)
i (0) ∧ B0 +

N(V0)∑
i=1

Bi ∧ R0(Ti). (2.4)

First, we establish an upper bound for (2.1). Observing that the residual service B0
−i for

customer −i at time 0 is upper bounded by its original job size and using B
(e)
i (0) ≤ B

(e)
i (m)

as well as R0(Ti) ≤ B0, we derive on set A(m)
k

V0 ≤ B0 +
m∑

i=1

B−i ∧ B0 +
Lm∑
i=1

B
(e)
i (m) ∧ B0 +

N(V0)∑
i=1

Bi ∧ B0

≤ (k + 1)B0 + (m − k)B̃
(m)

k+1 +
Lm∑
i=1

B
(e)
i (m) ∧ B0 +

N(V0)∑
i=1

Bi ∧ B0,

where B̃
(m)

m+1 ≡ 0 for m = k. Then, for 0 < δ < 1 − ρ, we have

P

[
V0(1 − ρ − δ) > x, A(m)

k

]
≤ P

[
(k + 1)B0 > (1 − δ)x, A(m)

k

]

+ P

[
(m − k)B̃

(m)

k+1 >
δx

3
, A(m)

k

]

+ P

[
W

ρ+δ

B∧B0
>

δx

3
, A(m)

k

]

+ P

[
Lm∑
i=1

B
(e)
i (m) ∧ B0 >

δx

3
, A(m)

k

]

� I1(x) + I2(x) + I3(x) + I4(x), (2.5)

where W
ρ+δ

B∧B0
denotes the stationary workload in a queue with job sizes {Bi ∧ B0}i≥1 and

service capacity ρ + δ. Now, Lemma 2.1 implies

I1(x) = P

[
(k + 1)B0 > (1 − δ)x, A(m)

k

]
∼ 1

k + 1

(
m

k

)(
P

[
B0 >

(1 − δ)x

k + 1

])k+1

. (2.6)

140 Ann Oper Res (2009) 170: 133–159

Then, denote the order statistics of {B−i}0�i�m by {B̃(m+1)
i }0�i�m. For k = m, we have

I2(x) = 0. And, for 0 � k � m − 1, we obtain, from Lemma 2.1 and B0 ∈ I R,

I2(x) = P

[
(m − k)B̃

(m)

k+1 >
δx

3
, A(m)

k

]
� P

[
B̃

(m+1)

k+2 >
δx

3(m − k)

]

∼
(

m + 1

k + 2

)(
P

[
B0 >

δx

3(m − k)

])k+2

= o(I1(x)). (2.7)

Following the same technique that was developed by Jelenković and Momčilović
(2003b), we have

I3(x) = P

[
W

ρ+δ

B∧B0
>

δx

3
, A(m)

k

]

≤ P

[
B0 > δ2x, A(m)

k

]
P

[
W

ρ+δ

B >
δx

3

]
+ P

[
W

ρ+δ

B∧δ2x
>

δx

3

]
,

which, by Lemma 3.2 (i) in Jelenković and Momčilović (2003b), implies that for δ small
enough,

I3(x) = o

(
P

[
B >

x

k + 1

]k+1
)

= o(I1(x)). (2.8)

Again, similarly as in Jelenković and Momčilović (2003b), for any integer n0, we have

I4(x) = P

[
Lm∑
i=1

B
(e)
i (m) ∧ B0 >

δx

3
, A(m)

k

]

=
∞∑

n=1

(1 − ρ)ρn
P

[
n∑

i=1

B
(e)
i (m) ∧ B0 >

δx

3
, A(m)

k

]

� n0P

[
n0∑
i=1

B
(e)
i (m) ∧ B0 >

δx

3
, A(m)

k

]
+

∞∑
n=n0

(1 − ρ)ρn
P

[
B0 >

δx

3n
, A(m)

k

]

� I41 + I42. (2.9)

Here, it is easy to see that

I41 � n2
0P

[
B

(e)

1 (m) >
δx

3n0
, A(m)

k

]
P

[
B0 >

δx

3n0
, A(m)

k

]

= o
(
P

[
B0 > x, A(m)

k

])
. (2.10)

Furthermore, since

s � sup
x∈[0,∞)

P[B0 > x, A(m)
k]

P[B0 > 2x, A(m)
k] < ∞,

we obtain that, for any ε > 0, n ≥ 1, there exists Kε > 0 such that

P

[
B0 >

δx

3n
, A(m)

k

]
� s�log2(n)

P

[
B0 >

δx

3
, A(m)

k

]
� Kε(1 + ε)n

P

[
B0 >

δx

3
, A(m)

k

]
,

Ann Oper Res (2009) 170: 133–159 141

which, by choosing ε small enough with η � ρ(1 + ε) < 1, yields

∞∑
n=n0

(1 − ρ)ρn
P

[
B0 >

δx

3n
, A(m)

k

]
�

∞∑
n=n0

(1 − ρ)ρnKε(1 + ε)n
P

[
B0 >

δx

3
, A(m)

k

]

� (1 − ρ)Kεη
n0

1 − η
P

[
B0 >

δx

3
, A(m)

k

]
. (2.11)

By combining (2.9), (2.10) and (2.11), and then passing n0 → ∞, we obtain

I4(x) = o

(
P

[
B >

x

k + 1

]k+1
)

= o(I1(x)),

which, in conjunction with (2.5), (2.6), (2.7), (2.8), and by passing δ → 0, yields

P

[
V0 > x, A(m)

k

]
� P

[
B0 >

(1 − ρ)x

k + 1
, A(m)

k

]
. (2.12)

Next, we prove a lower bound for (2.1). Observe that within A(m)
k , we have

V0 � B0 +
m∑

i=1

B0
−i ∧ B0 +

N(V0)∑
i=1

Bi ∧ R0(Ti)

≥ (k + 1)B0 + mT−m +
N(V0)∑
i=1

Bi ∧ R0(Ti), (2.13)

where in the last inequality we applied (x −y)∧ z ≥ x ∧ z−y for any x, y, z � 0; recall that
T−m < 0. Then, using the same arguments as in equation (3.11) in the proof of Theorem 2.1
in Jelenković and Momčilović (2003b), and the properties of A(m)

k , for B0 ∈ I R, we have

P

[
V0(1 − ρ) > x, A(m)

k

]
� P

[
B0 >

x

k + 1
, A(m)

k

]
. (2.14)

Combining (2.12) and (2.14) completes the proof of (2.1) for PS.
2. FBPS discipline. The proof is based on the sojourn time identity for FBPS

V0 = B0 + WB∧B0(T0) +
N(V0)∑
i=1

Bi ∧ B0,

where WB∧B0(Tn) denotes the stationary workload at Tn in a queue with Poisson arrival job
sizes equal to {Bi ∧ B0}−∞<i<n and capacity 1; recall that T0 = 0.

First, we establish an upper bound. Observe that within the set A(m)
k ,

V0 ≤ (k + 1)B0 + (m − k)B̃
(m)

k+1 + WB∧B0(T−m) +
N(V0)∑
i=1

Bi ∧ B0,

which, for 0 < δ < 1 − ρ, implies

142 Ann Oper Res (2009) 170: 133–159

P

[
V0(1 − ρ − δ) > x, A(m)

k

]
≤ P

[
(k + 1)B0 > (1 − δ)x, A(m)

k

]

+ P

[
(m − k)B̃

(m)

k+1 >
δx

3
, A(m)

k

]

+ P

[
WB∧B0(T−m) >

δx

3
, A(m)

k

]
+ P

[
W

ρ+δ

B∧B0
>

δx

3
, A(m)

k

]

� I1(x) + I2(x) + I3(x) + I4(x). (2.15)

Using the same arguments as in the proof of the upper bound for the PS case, we obtain

I1(x) ∼ 1

k + 1

(
m

k

)(
P

[
B0 >

(1 − δ)x

k + 1

])k+1

, (2.16)

and similarly as in (2.7), (2.8), it follows that I2(x) = o(I1(x)), I3(x) = o(I1(x)), I4(x) =
o(I1(x)). Therefore, by (2.15) and (2.16), we have

P

[
V0 > x, A(m)

k

]
� P

[
B0 >

(1 − ρ)x

k + 1
, A(m)

k

]
. (2.17)

For a lower bound, within A(m)
k , we obtain

V0 ≥ (k + 1)B0 + T−m +
N(V0)∑
i=1

Bi ∧ B0,

which is further lower bounded by the righthand side of (2.13). Combining (2.14) and (2.17)
completes the proof of (2.1) for FBPS.

3. SRPT discipline. A similar sojourn time identity as in (2.4) can be derived for SRPT,

V0 = B0 +
Lm∑
i=1

B
(e)
i (0)1{B(e)

i (0) ≤ B0} +
m∑

i=1

B0
−i1{B0

−i ≤ B0} +
N(V0)∑
i=1

Bi1{Bi < R0(Ti)},

where we use the convention that the jobs with earlier arrivals are served first in the case of
equal remaining service times.

First, we prove a lower bound. For l > 0, define Bli = 0 for i < 0, and Bl0 = B0, Bli =
Bi1(Bi � l) for i > 0. For the new queueing system with the arrival process {(Ti,Bli)},
denote by {Wl(t)}t�0 the workload in the system without the labeled customer. Now, define
the stopping time Tl0 � inf{t : R0(t) � l} and the corresponding residual capacity without
the labeled customer C(t) = ∫ t

0 1(Wl(s) = 0)ds. Clearly,

E[C(t)] ∼ (1 − ρl) t as t → ∞, (2.18)

where ρl = λE[B1(B ≤ l)] = limt→∞ P[Wl(t) > 0]. When B0 > l, all the arrivals after time
T0 = 0 have shorter job requirements than the remaining service time of the labeled customer
before time Tl0, and thus, the labeled customer can only receive service when there are no
other customers present in the queue except itself. Therefore, conditional on {B0 > l}, we
have

C(Tl0) = B0 − l. (2.19)

Ann Oper Res (2009) 170: 133–159 143

Next, by the standard queueing stability result and (2.18), we have, for ε > 0,

Z � sup
t≥0

(C(t) − (1 − ρl + ε)t) < ∞.

From (2.19), Vl0 � Tl0 and the monotonicity of C(t), we obtain, conditional on {B0 > l},
Z � C(Vl0) − (1 − ρl + ε)Vl0 � B0 − l − (1 − ρl + ε)Vl0,

which, for large x, implies

P

[
Vl0 > x, A(m)

k

]
� P

[
B0 > l,B0 − l − Z > (1 − ρl + ε)x, A(m)

k

]

� P

[
B0 − l > (1 + ε)(1 − ρl + ε)x, A(m)

k

]

− P [Z > ε(1 − ρl + ε)x] . (2.20)

Furthermore, since the service requirements {Bli}i�1 are bounded by l, the busy period dis-
tribution of the corresponding workload Wl(t) is exponentially bounded (e.g., see Nuyens
and Zwart 2006; Palmowski and Rolski 2006), implying that there exists δ > 0, such that
P[Z > x] = O(e−δx). This bound and (2.20), combined with Lemma 2.2 and B ∈ I R, yield

lim
x→∞

P[V0 > x, A(m)
k]

P[B0 > (1 − ρ)x, A(m)
k] � lim

x→∞
P[B0 > (1 + ε)(1 − ρl + ε)x, A(m)

k]
P[B0 > (1 − ρ)x, A(m)

k] .

Passing l → ∞, ε → 0 in the preceding inequality, we obtain the lower bound for SRPT.
For an upper bound, since the number of customers in system for SRPT at any time is

not larger than the number of customers in system for any other rule applied on the same
sequence of arrivals and service requirements, as shown by Schrage (1968), we use the
stationary number of customers L(PS)

m at time T−m in the corresponding PS queue to upper
bound Lm. Furthermore, the workload W observed at time T−m is an upper bound for the
residual work Ri of a customer at time T−m. Therefore,

V0 ≤ B0 +
L

(PS)
m∑
i=1

W ∧ B0 +
m∑

i=1

B−i1{B−i � B0 − T−m} +
N(V0)∑
i=1

Bi ∧ B0,

which, for any 0 < δ < 1 − ρ, yields

P

[
V0(1 − ρ − δ) > x, A(m)

k

]
� P

[
B0 > (1 − δ)x, A(m)

k

]

+ mP

[
B−11{B−1 � B0 − T−m} >

δx

3m
, A(m)

k

]

+ P

⎡
⎣

L
(PS)
m∑
i=1

W ∧ B0 >
δx

3m
, A(m)

k

⎤
⎦

+ P

[
W

ρ+δ

B∧B0
>

δx

3
, A(m)

k

]

� I1(x) + I2(x) + I3(x) + I4(x). (2.21)

144 Ann Oper Res (2009) 170: 133–159

Similarly as in the proof of the upper bound for PS, we have

I1(x) ∼ 1

k + 1

(
m

k

)
(P [B0 > (1 − δ)x])k+1 (2.22)

and

I3(x) = o(I1(x)), I4(x) = o(I1(x)). (2.23)

The only difference, as compared to the PS case, is to evaluate I2(x). Noting that A(m)
k is

a subset of

{B0 � B̃k} =
⋃

1�i1<···<ik�m

{B−i1 � B0, · · · ,B−ik � B0},

we obtain

I2(x)

m
� P

[
B−1 >

δx

3m
,B0 � B̃k,B−1 < B0

]

+ P

[
B0+ | T−m |� B−1 >

δx

3m
,B0 � B̃k,B−1 � B0

]

� P1 + P2, (2.24)

where P1 is derived by upper bounding the indicator function in I2(x) by 1. To estimate P1,
we use

P1 �
(

m − 1

k

)
P

⎡
⎣B−1 >

δx

3m
,B0 > B−1,

⋂
2�i�k+1

{B−i � B0}
⎤
⎦

�
(

m − 1

k

)(
P

[
B−1 >

δx

3m

])k+2

= o (I1(x)) . (2.25)

Next, for y � δx/(3m), it is easy to see

P2 �
(

m − 1

k − 1

)
P

⎡
⎣B0+ | T−m |� B−1 > y,

⋂
1�i�k

{B−i � B0}
⎤
⎦ ,

where the preceding probability is further bounded by

P
[
B−1 > y,B0 � B−1 � B0 + √

y
]
P
[
B0 � y − √

y
]k−1 + P[| T−m |> √

y]
�

(
P[B−1 � y,B−1 � B0 + √

y] − P[B−1 � y,B−1 < B0]
)

×P
[
B0 � y − √

y
]k−1 + me−λ

√
y/m. (2.26)

Since B0,B−1 ∈ I R and P[B−1 � y,B−1 � B0 + √
y] � P[B0 � y]2 ∼ P[B−1 � y,B−1 <

B0], the right-hand side of inequality (2.26) is asymptotically equal to

o
(
P
[
B0 � y

]k+1
)

= o(I1(x)),

Ann Oper Res (2009) 170: 133–159 145

which, in conjunction with (2.25) and (2.24), implies I2(x) = o(I1(x)). Finally, by replacing
(2.22), (2.23) and the preceding estimation of I2(x) in (2.21), and then passing δ → 0, we
finish the proof. �

3 Adaptive and scalable comparison scheduling

Motivated by our conditional limits presented in Sect. 2, we propose a novel adaptive and
scalable comparison scheduling scheme.

3.1 Comparison splitting

In this section, we describe a new adaptive job classification mechanism that we term com-
parison splitting. The classification is based on relative size comparison of the arriving job
to the previous m arrivals, m ≥ 1. Specifically, if an arriving job is smaller than k and larger
than m − k of the previous m jobs, it is routed into class k, 0 � k � m.

More formally, upon the arrival of job i ≥ 0, we define B̃i1 ≥ B̃i2 ≥ · · · ≥ B̃im to be
the order statistics of {Bi−m,Bi−m+1, . . . ,Bi−1} with B̃i0 = ∞ and B̃i(m+1) = 0. Then, if
B̃i(k+1) ≤ Bi < B̃ik , the new arrival Bi is routed to class k,0 ≤ k ≤ m and the ith arrival in
class k is denoted as B

(k)
i . In order to initiate the comparison splitting process, assume that

Bi,−m � i � −1 are already known; otherwise, one can simply set Bi ≡ 0,−m � i � −1.
Here, we exemplify our splitting mechanism for m = 3 by dividing jobs into four classes

S (small), M (medium), L (large) and XL (extra large) with the following rule,

Bi ∈

⎧⎪⎪⎨
⎪⎪⎩

S if Bi < B̃i3,

M if B̃i3 ≤ Bi < B̃i2,

L if B̃i2 ≤ Bi < B̃i1,

XL if B̃i1 ≤ Bi;
this example is depicted in Fig. 1(A).

Now, we argue that our comparison splitting actually does order jobs into classes that
contain smaller jobs for larger class indexes. Indeed, when B ∈ L, Lemma 2.1 yields

P

[
B

(k)

1 > x
]

∼ 1

k + 1

(
m

k

)
P[B > x]k+1 as x → ∞, (3.1)

which implies a decreasing distribution tail when k increases. Since the preceding expression
is only an asymptotic result, it does not provide information on the possible ordering of the
distributions P[B(k)

1 > x] for finite x. We address this question in the following example.

Example 1 In this example we simulate the performance of the comparison splitter for m =
3 (4 classes). Assume that the job sizes are distributed as power law F(x) = 1 − 1/xα with
α = 1.44, which is the empirically measured file distribution by Jelenković and Momčilović
(2003a); see Fig. 1 on p. 577 therein. For a sample of 107 trials, we plot the simulated
distributions of jobs for each class in Fig. 1(B). From the figure, it can be observed that the
distributions P[B(k)

1 > x] are properly ordered for all values of x and k, not only for the
asymptotic ones.

Based on the previous analysis and simulation example, we can see that our comparison
splitter has the following advantages:

146 Ann Oper Res (2009) 170: 133–159

(A) Comparison splitter

(B) Job size distributions

Fig. 1 A comparison splitter with m = 3 and job size distributions for four different classes

• it is adaptive since the comparing thresholds are defined by the preceding m arrivals;
• it is scalable because the system only needs to know the sizes of the previous m jobs;
• it provides accurate job classification as shown by (3.1) and Fig. 1(B).

Although our comparison splitter is very likely to provide a satisfactory ordering of distri-
butions P[B(k)

1 > x], it may make errors on a sample path basis. Namely, it can occasionally
classify smaller jobs into classes of smaller indexes and vice versa, and thus, possibly give a
less accurate classification than a splitting mechanism that uses fixed thresholds. However,
this possible small loss of accuracy is a fundamental tradeoff to gain the adaptability that is
highly desirable in practice.

3.1.1 Refined splitting

From the description of the comparison splitter, we can see that its adaptive thresholds are
determined by the order statistics of the previous m arrivals. Thus, it is reasonable to expect
that, at least for a stationary input, the accuracy of the classification will increase if we
obtain these thresholds using a longer history (than the preceding m arrivals). However, the
increase of history may reduce the adaptability and add to the complexity of the algorithm.

Ann Oper Res (2009) 170: 133–159 147

Here, we describe one such improved comparison splitter that is based on the order sta-
tistics of the preceding ml, l ≥ 1 arrivals and parameterized by (m, l). Among other reasons,
we continue to use the order statistics since the ordered list is easy to maintain dynamically.
The splitter works as follows. At the time of arrival of a new job i, the algorithm main-
tains the job sizes of the previous ml arrivals, and orders them as B̃i1 ≥ B̃i2 ≥ · · · ≥ B̃(i,ml);
when needed, we use the notation B̃(i,j) ≡ B̃ij for improved clarity. We pick the subsequence
B̃(i,j l),1 � j � m as the thresholds with B̃(i,0) = ∞, B̃(i,(m+1)l) = 0, and then, the new arrival
is grouped into class k if its size lies in [B̃(i,kl), B̃(i,(k−1)l)), 1 � k � m + 1.

In terms of engineering applications, this refined splitting algorithm is appealing because
it can improve the accuracy for other types of arrivals, such as dependent processes and
concentrated discrete distributions of job sizes. In order to measure how well the refined
splitter classifies the input sequence, we compare the output of the refined splitter with a
perfectly ordered input sequence. Denote the input sequence by {Bi}1�i�n, the output of the
refined splitter by {Oi}1�i�n, and the increasing order of {Bi} by {Si}1�i�n. The output of
the refined splitter {Oi} is obtained by concatenating sequentially class j + 1 after class j

for all 1 � j � m − 1. Now, define the error rate to be

η(n) � 1

n

n∑
i=1

1{Oi �= Si}.

Lemma 3.1 For any fixed 0 < ε < 1, fixed m large enough, and an i.i.d. input sequence
{Bi}1�i�n taking finite number of values P[B1 = bj] = pj ,1 � j � v with the splitter ini-
tialized by ml i.i.d. random copies of B1 that are independent of {Bi}1�i�n, there exists
Hε, ξε > 0, such that

P[η(n) > ε] � Hεe
−ξε min(l,n).

The proof of Lemma 3.1 is presented in the appendix.

3.2 Queueing analysis

In this section, we study the queueing performance of our comparison based scheduler as-
suming that jobs arrive according to a stationary renewal process {Tn}, T−1 < 0 ≤ T0 with

finite mean E[T] < ∞, where T
d= T1 − T0. The job sizes {Bn} before the splitting are i.i.d.

and independent of {Tn}. To simplify the notation and analysis in this section, we say that
the ith arrival to class k is equal to B

(k)
i = Bi1{B̃i(k+1) ≤ Bi < B̃ik}. This notation takes into

account all the original arrival points even if Bi1{B̃i(k+1) ≤ Bi < B̃ik} = 0. The addition of
zero size jobs in each class has no impact on queueing, but simplifies the exposition.

In Theorem 3.1, we characterize the workload asymptotics when each class is served in
isolation. Then, in Theorem 3.2, we study the workload asymptotics of each individual class
assuming that all the classes are served jointly according to a static priority discipline.

3.2.1 Queueing in isolation

We first study the queueing characteristics of each class k when it is served in isolation with
capacity ck , 0 ≤ k ≤ m. We use W(k) to denote the stationary workload of class k and define

B(k) d= B
(k)

1 .

148 Ann Oper Res (2009) 170: 133–159

Theorem 3.1 If P[B > x] = l(x)/xα ∈ Rα, α > 1 and E[B(k)] < ckE[T], then, as x → ∞,

P
[
W(k) > x

] ∼ 1

ckE[T] − E[B(k)]
∫ ∞

x

P
[
B(k) > u

]
du

∼ 1

(k + 1)(ckE[T] − E[B(k)])
(

m

k

)
l(x)k+1

xαk+α−1
.

Remark 4 Note that this theorem indicates that the workload distribution decays faster for
larger k. To be more specific, the tail of the workload distribution for class k decays as
x(P[B > x])k+1 and, thus, the jobs will have the waiting time distribution of the same order
if served under FIFO. If, for example, each class were served according to PS/FBPS, one
can expect that the waiting times will be of the same order as (P[B > x])k+1, as in our
Theorem 2.2. However, this is much more difficult to prove because of the dependency in
{B(k)

n }.

Remark 5 Note that the result of Theorem 3.1 is of the same form as the one derived by
Pakes (1975) for the GI/GI/1 queue. However, Pakes’s result does not apply directly to
our case since {B(k)

n } is m-dependent. For generalizations of Pakes’s result to dependent
processes see Jelenković and Lazar (1998), Asmussen et al. (1999). Note that, in principle,
the approach from Asmussen et al. (1999) can be applied to prove our theorem. Instead, we
present a direct proof that may be of independent interest.

In order to prove this theorem, we need the following definitions and lemmas. Define the
partial sum of a stationary process {Xn}n∈N, where Xn ∈ Rα , as follows, S0 = 0,

Sn =
n∑

i=1

Xi, n ≥ 1. (3.2)

Definition 3.1 For a stationary process {Xn}n∈N and m ∈ N, we say the process is m-
dependent if Xn is independent of {Xi}i<n−m for all n.

Lemma 3.2 If we define

S(m)
n �

� n
m �∑

i=0

Xim+1,

then

P

[
sup
n≥0

Sn > x

]
� mP

[
sup
n≥0

S(m)
n >

x

m

]
.

Proof Define

S(m,j)
n =

� n
m �∑

i=0

Xim+j ,

Ann Oper Res (2009) 170: 133–159 149

where 1 � j � m, and observe that Sn ≤ ∑m

j=1 S
(m,j)
n . Therefore,

P

[
sup
n≥0

Sn > x

]
= P

⎡
⎣sup

n≥0

m∑
j=1

S(m,j)
n > x

⎤
⎦ � P

⎡
⎣

m∑
j=1

sup
n≥0

S(m,j)
n > x

⎤
⎦

�
m∑

j=1

P

[
sup
n≥0

S(m,j)
n >

x

m

]
� mP

[
sup
n≥0

S(m)
n >

x

m

]
,

where the last equality follows from the stationarity of {Xn}. �

Lemma 3.3 For a stationary m-dependent process {Xn}n∈N with mean EX1 = −δ < 0 and
X1 ∈ Rα , we have

P

[
sup

n�Hx

Sn > x

]
� 1

Hα−1
O

(∫ ∞

x

P[X1 > u]du

)
.

Proof For simplicity of notation, in this section, we assume that Hx ∈ N. Then, we define
M � supn�0 Sn with E[Xn] = −δ, and note that

sup
n�Hx

Sn = SHx + sup
n�Hx

(Sn − SHx).

Since the process {Xn} is stationary, we obtain

sup
n�Hx

(Sn − SHx)
d= M,

and therefore, P
[
supn�Hx Sn > x

]
is upper bounded by

P

[
SHx + δHx

2
+ sup

n�Hx

(Sn − SHx) − δHx

2
> 0

]
� P

[
SHx + 3δHx

4
>

δHx

4

]

+ P

[
M >

δHx

2

]

� I1 + I2.

From the result of Pakes (1975) and Lemma 3.2, recalling that X1 ∈ Rα , we have

I2 � 1

Hα−1
O

(∫ ∞

x

P[X1 > u]du

)
. (3.3)

Similarly, by defining Xδ
n = Xn + (3δ)/4 with the partial sum Sδ

n = ∑n

1 Xδ
i and noting that

Sδ
Hx ≤ supn≥0 Sδ

n, we obtain

I1 � P

[
sup

n

Sδ
n >

δHx

4

]
� 1

Hα−1
O

(∫ ∞

x

P[X1 > u]du

)
. (3.4)

Combining (3.3) and (3.4) completes the proof. �

150 Ann Oper Res (2009) 170: 133–159

Proof of Theorem 3.1 By the classical result of Loynes (1962) (see also Chap. 2.2 of Baccelli
and Bremaud 1994), we have

W(k) d=
(
W(k)(T−1) + B

(k)

−1 + ckT−1

)+
,

where W(k)(T−1) is the stationary workload observed at the moment T−1. Furthermore,

W(k)(T−1)
d= supn≥0 Sn, with Sn = ∑n

i=1 Xi,n ≥ 1, S0 = 0 and Xi � B
(k)
i − ck(Ti − Ti−1).

Next, observe that for x > 0

P[W(k)(T−1) > x] = P

[
sup
n≥1

Sn > x

]
≤ P

[
sup

n�Hx

Sn > x

]
+ P

[
sup

n�Hx

Sn > x

]

≤ P

[
sup
n≥1

Sε
n > δx

]
+ P

[
sup

1≤n≤Hx

S
ε

n > (1 − δ)x

]
+ P

[
sup

n�Hx

Sn > x

]

= I1(x) + I2(x) + I3(x), (3.5)

where X
ε

i = Xi1{Xi > εx}, Xε
i = Xi1{Xi � εx}, and S

ε

n = ∑n

i=1(X
ε

i + E[Xi] + δ), Sε
n =∑n

i=1(X
ε
i − E[Xi] − δ) are defined for some ε > 0, |E[X1]| > δ > 0.

First, let us prove an upper bound for (3.5). By Lemma 3.2(i) in Jelenković and
Momčilović (2003b), for any β > 0, there exists ε > 0 such that

I1(x) = o(x−β). (3.6)

Furthermore, define Nk = ∑Hx

i=1 1{Xε

i > 0},0 ≤ k ≤ m; note that X
ε

i depends on the class
index k since Xi = B

(k)
i − ck(Ti − Ti−1). To simplify the notation, we assume that Hx is an

integer. Now, P[Nk � 2] is upper bounded by

(
Hx

1

)
P
[
B(k) > εx

](m − 1

1

)
P [B > εx] +

(
Hx

2

)(
P
[
B(k) > εx

])2 = o
(
x (P[B > x])k+1) .

In the preceding expression, the first term bounds the sum of probabilities P[Xε

i > 0,
X

ε

j > 0] for all indices 1 ≤ |i − j | ≤ m (note that in this case X
ε

i and X
ε

j are dependent); the
second term provides a bound on the corresponding sum when |i − j | > m, using the fact
that X

ε

i and X
ε

j are independent. Therefore,

I2(x) � P

[
sup

0≤n≤Hx

S
ε

n > (1 − δ)x,Nk = 1

]
+ P[Nk � 2]

≤
Hx∑
n=1

P

[
X

ε

i + n(E[X1] + δ) > (1 − δ)x
]
+ o

(
x (P[B > x])k+1)

�
∫ ∞

0
P[X1 > (1 − δ)x + u|E[X1] − δ|]du + o

(
x (P[B > x])k+1)

∼ 1

|E[X1] − δ|
∫ ∞

(1−δ)x

P[X1 > u]du. (3.7)

The estimate for I3(x) follows from Lemma 3.3. Using this estimate, (3.5), (3.6), (3.7) and
passing δ, ε → 0, H → ∞, we obtain the upper bound.

Ann Oper Res (2009) 170: 133–159 151

Next, we prove the lower bound for (3.5)

P[W(k)(T−1) > x] ≥ P

[
sup

1≤n≤Hx

Sn > x

]
≥ P

[
sup

1≤n≤Hx

S
ε

n > x

]
≥ P

[
sup

1≤n≤Hx

S
ε

n > x,Nk = 1

]

=
Hx∑
n=1

P

[
X

ε

i + n(EX1 + δ) > x
]

≥
∫ Hx

1
P [X1 > x + u|EX1 − δ|]du,

which by passing x → ∞, using regular variation, and then passing δ → 0, results in

P[W(k)(T−1) > x] � 1

ckE[T] − E[B(k)]
∫ ∞

x

P
[
B(k) > u

]
du. (3.8)

Finally, for any 0 < ε < 1, we have

P
[
W(k) > x

] = P

[(
W(k)(T−1) + B

(k)

−1 + ckT−1

)+
> x

]

� P
[
W(k)(T−1) > (1 − ε)x

]+ P
[
B(k) > εx

]
,

which, by (3.8), and then passing ε → 0, yields

P
[
W(k) > x

]
� P

[
W(k)(T−1) > x

]
. (3.9)

Also, since W(k)(T−1) is heavy-tailed and independent of T−1, we obtain

P
[
W(k) > x

]
� P

[
W(k)(T−1) + ckT−1 > x

] ∼ P
[
W(k)(T−1) > x

]
. (3.10)

Thus, (3.9) and (3.10) imply

P
[
W(k) > x

] ∼ P
[
W(k)(T−1) > x

]
, (3.11)

which, combined with (3.8), completes the proof of the first asymptotics. The second as-
ymptotic relationship of the theorem is implied by Lemma 2.1. �

3.2.2 Static priority

In this subsection, we assume that there is only one server with capacity c and that the
m + 1 classes are served jointly with a preemptive static priority (SP) discipline between
classes. Suppose that the priorities of the classes are assigned in a decreasing order of the
class index k, 0 � k � m, i.e., class k receives service only if classes i, k + 1 � i � m are
empty. Denote by W

(k)

0 the stationary workload of class k observed at arrival point T0. Let
μ(k) �

∑m

i=k E[B(i)] and note that μ(0) = E[B].

Theorem 3.2 If P[B > x] = l(x)/xα ∈ Rα, α > 1 and E[B] < cE[T], then, as x → ∞,

P

[
W

(k)

0 > x
]

∼ 1

cE[T] − μ(k)

∫ ∞

x

P
[
B(k) > u

]
du

∼ 1

(k + 1)(cE[T] − μ(k))

(
m

k

)
l(x)k+1

xαk+α−1
.

152 Ann Oper Res (2009) 170: 133–159

Remark 6 This result shows that the distribution of the workload W
(k)

0 behaves asymptoti-
cally as if class k were served in isolation by a system with capacity reduced by the mean
job sizes of classes with indices greater than k, which indicates a similar phenomenon as in
Theorem 3.1. Thus, our SP scheduling with comparison splitter should approximate SRPT
well.

Proof Let W(k)(Tn) be the stationary workload of class k jobs at time Tn. First, we establish
an upper bound. For 0 � k � m, we group all the arrivals of classes k, . . . ,m into a new
class with the highest priority, while all the other classes remain the same. The workload of
the new class is denoted as Ŵ (k)(Tn), where Ŵ (k)(Tn) �

∑m

i=k W(i)(Tn) and Ŵ
(k)

0 represents
a variable that is equal in distribution to Ŵ (k)(Tn). Clearly,

W(k)(Tn) � Ŵ (k)(Tn), (3.12)

where the workload recursion for the new class satisfies

Ŵ (k)(Tn+1) =
(

Ŵ (k)(Tn) +
m∑

i=k

B
(i)

n+1 − c(Tn+1 − Tn)

)+
.

Now, by Lemma 2.1, it is easy to see that, as x → ∞,

P

[
m∑

i=k

B
(i)

n+1 > x

]
∼ P

[
B

(k)

n+1 > x
]
,

and, using the same argument as in the proof of the upper bound in Theorem 3.1, we obtain

P

[
Ŵ

(k)

0 > x
]

∼ 1

cE[T] − μ(k)

∫ ∞

x

P
[
B(k) > u

]
du, (3.13)

which, by (3.12), yields

P

[
W

(k)

0 > x
]

� 1

cE[T] − μ(k)

∫ ∞

x

P
[
B(k) > u

]
du. (3.14)

Next, we prove a lower bound. For ε > 0 and k < m, we have

P

[
W

(k)

0 > x
]

� P

[
W

(k)

0 > x, Ŵ
(k+1)

0 � εx
]

� P

[
Ŵ

(k)

0 > (1 + ε)x, Ŵ
(k+1)

0 � εx
]

� P

[
Ŵ

(k)

0 > (1 + ε)x
]
− P

[
Ŵ

(k+1)

0 > εx
]
.

Using the same argument as for (3.13) and passing ε → 0 in the preceding inequality imply

P

[
W

(k)

0 > x
]

� 1

cE[T] − μ(k)

∫ ∞

x

P
[
B(k) > u

]
du.

The same asymptotic inequality can be easily shown to hold for k = m. This inequality, com-
bined with (3.14), completes the proof of the first asymptotic relationship in Theorem 3.2.
The second asymptotics follows directly from Lemma 2.1. �

Ann Oper Res (2009) 170: 133–159 153

4 Conclusion

We show in Theorem 2.2 that the medium size heavy-tailed jobs can have asymptotically
much shorter sojourn times under SRPT than under PS/FBPS scheduling disciplines. Fur-
thermore, the asymptotic performance of SRPT is uniformly good for the smaller as well
as for the larger jobs, which implies that the performance gains of smaller jobs with SRPT,
compared to PS/FBPS, are not achieved at the expense of larger jobs. Hence, in this as-
ymptotic heavy-tailed context, SRPT is both efficient and fair, which complements similar
findings obtained using the mean value analysis.

However, as early as in the paper by Schrage and Miller (1966), it was observed that
SRPT may be difficult to implement because of its complicated preemptive nature that re-
quires keeping track of the remaining processing times for all the jobs in the queue. Thus, it
is natural to consider threshold-based static priority (SP) disciplines to approximate SRPT,
as suggested originally by Schrage and Miller (1966), which was then followed by a consid-
erable number of later studies. However, the main drawback of selecting static thresholds in
practice is that the real world traffic is often nonstationary, highly correlated, bursty, etc.

Our second main contribution in this paper is the design of a scalable (low complexity)
and adaptive comparison scheduling approximation to SRPT. The good performance of our
comparison scheduler is demonstrated using our asymptotic queueing analysis under the
heavy-tailed service requirements; additional verification of this scheduling algorithm was
done by Jelenković et al. (2007) via simulations. We also discuss refinements of our mech-
anism that, at the expense of a small additional complexity, improve the accuracy of job
classification for correlated arrivals and highly concentrated service distributions.

Finally, we would like to point out that, in addition to the static priority discipline an-
alyzed in our paper, it may also be interesting to analyze the performance of our split-
ting mechanism for other disciplines, such as generalized processor sharing in Borst et al.
(2003a), weighted fair queueing in Caprita et al. (2006), and hierarchical processor sharing.

Appendix

Proof of Lemma 2.1 Since the case m = 0 is immediate, we assume that m ≥ 1. First, we
show that the second asymptotics in (2.3) holds assuming that {Xi}0≤i≤m are continuous. In
this case, we have P[Xi = Xj] = 0, i �= j and, thus

P[X0 > x,X0 < X̃k] =
(

m

k

)
P

[
X0 > x,X0 ≤ min

1≤i≤k
Xi

]
= 1

k + 1

(
m

k

)
P

[
min

0≤i≤k
Xi > x

]

= 1

k + 1

(
m

k

)
P[X0 > x]k+1.

Next, the first asymptotics in (2.3) is implied by the preceding analysis and the following
identity

P[X0 > x, X̃k+1 ≤ X0 < X̃k] = P[X0 > x,X0 < X̃k] − P[X0 > x,X0 < X̃k+1].
If {Xi}0≤i≤m are not continuous but in L, (2.3) still holds asymptotically. This claim will

follow from the preceding arguments if we show that for Xi ∈ L, as x → ∞,

P[Xn > Xn−1 > · · · > X0 > x] ∼ P[Xn ≥ Xn−1 ≥ · · · ≥ X0 > x]. (4.1)

154 Ann Oper Res (2009) 170: 133–159

Since Xi ∈ L, it is enough to prove the preceding relationship for x ∈ N. Our proof starts
with n = 1,

P[X0 > x,X0 ≤ X1] = P[X0 > x,X0 < X1] + P[X0 > x,X0 = X1]. (4.2)

Furthermore, for any ε > 0 and x large,

P[X0 > x,X0 = X1] =
∞∑

y=x

P[y < X0 ≤ y + 1,X0 = X1, y < X1 ≤ y + 1]

≤
∞∑

y=x

(P[y < X0 ≤ y + 1])2

=
∞∑

y=x

P[y < X0 ≤ y + 1] P[X0 > y]
P[X0 > y + 1]P[X0 > y + 1]

−
∞∑

y=x

P[y < X0 ≤ y + 1]P[X0 > y + 1]

≤ ε

∞∑
y=x

P[y < X0 ≤ y + 1]P[X0 > y + 1]

� ε(P[X0 > x])2, (4.3)

where the last inequality is implied by the monotonicity of P[X0 > y] and (4.3) follows
from X0 ∈ L since for any ε > 0, we can choose x0 such that for y > x ≥ x0,

P[X0 > y]
P[X0 > y + 1] ≤ 1 + ε.

Combining (4.2), (4.3), using the fact that P[X0 > x,X0 < X1] is of the same order as
(P[X0 > x])2, and passing ε → 0, yield the proof for n = 1. Now, for n � 2, we have

P[Xn � Xn−1 � · · · � X0 > x]
= P[Xn > Xn−1 � · · · � X0 > x] + P[Xn = Xn−1 � · · · � X0 > x]
� P[Xn > Xn−1 � · · · � X0 > x] + P[Xn = Xn−1 > x]P[Xn−2 � · · · � X0 > x]
= P[Xn > Xn−1 � · · · � X0 > x] + o

(
P[X0 > x]n+1

)
,

and by repeating the preceding procedure n − 1 more times, we obtain

P[Xn � Xn−1 � · · · � X0 > x] = P[Xn > Xn−1 > · · · > X0 > x] + o
(
P[X0 > x]n+1

)
.

Noting that P[Xn > Xn−1 > · · · > X0 > x] is of the same order as P[X0 > x]n+1 and P[Xn �
Xn−1 � · · · � X0 > x] � P[Xn > Xn−1 > · · · > X0 > x], we finish the proof. �

Proof of Lemma 2.2 Let R10(t) and R20(t) be the remaining service times at time t � 0 for
the labeled customer that arrives at T0 under processes {(Ti,B1i)}i>−∞ and {(Ti,B2i)}i>−∞,
respectively. By the same notion, we define W1(t) and W2(t) to be the workloads at time t

Ann Oper Res (2009) 170: 133–159 155

in these two queues that need to be finished before the labeled customer can start receiving
its service. In order to justify V1 � V2, it is enough to prove that R10(t) � R20(t), t � 0.

We use induction to prove the result and denote max(x,0) by x+. First, if R10(Ti) ≤
R20(Ti) and W1(Ti+) � W2(Ti+), we have

W1(t) = (W1(Ti+) − (t − Ti))
+ ≤ (W2(Ti+) − (t − Ti))

+ = W2(t),
(4.4)

R10(t) = R10(Ti) − (t − Ti − W1(Ti+))+

≤ R20(Ti) − (t − Ti − W2(Ti+))+ = R20(t)

for Ti ≤ t < Ti+1. Note that Wj(Ti+) and Wj(Ti−) denote the right- and left-hand limits of
Wj(t) at Ti , respectively; i.e., the times right after and before the arrival at Ti . Hence, it is
enough to prove that, all the customers arriving at Ti , T0 ≤ Ti ≤ V1, see R10(Ti) � R20(Ti)

and W1(Ti+) � W2(Ti+) immediately after their arrival.
For the arrival at time T0, the claim is obviously correct. Now, assuming that the result

holds for i = n, we proceed to prove it for i = n + 1. Based on the hypothesis, (4.4) implies
R10(Tn+1) � R20(Tn+1) and W1(Tn+1−) � W2(Tn+1−) at the time immediately before Tn+1.
Next, at time Tn+1, if B1(n+1) = 0 < B2(n+1), then, we have

W1(Tn+1+) = W1(Tn+1−) ≤ W2(Tn+1−) + B2(n+1)1
{
B2(n+1) < R20(Tn+1)

} = W2(Tn+1+),

since W1(Tn+1−) � W2(Tn+1−).
The case B1(n+1) = B2(n+1) = Bn+1 results in the following three different scenarios:

(1) If Bn+1 < R10(Tn+1), then

W1(Tn+1+) = W1(Tn+1−) + Bn+1 � W2(Tn+1−) + Bn+1 = W2(Tn+1+),

since R10(Tn+1) � R20(Tn+1) by induction hypothesis.
(2) If Bn+1 > R20(Tn+1), then

W1(Tn+1+) = W1(Tn+1−) � W2(Tn+1−) = W2(Tn+1+).

(3) If R10(Tn+1) � Bn+1 � R20(Tn+1), then

W1(Tn+1+) = W1(Tn+1−) � W2(Tn+1−) + Bn+1 = W2(Tn+1+).

Therefore, the result holds for i = n + 1, which completes the induction, and implies that
V2 � V1. �

Proof of Lemma 3.1 Without loss of generality we assume that b1 > · · · > bν and
min{pk}1�i�ν > 0. Define qk �

∑k

i=1 pi , 1 � k � ν with q0 = 0 and choose m >

min{1/pk}1�k�ν . When Bi = bk , we say Bi is routed into the right class if Bi is ei-
ther in class �mqk−1� or in class �mqk−1 − 1 (note that if mqk−1 /∈ N, then �mqk−1� =
�mqk−1 − 1). The condition m > min{1/pk}1�k�ν guarantees that if Bi �= Bj , then, the
corresponding right classes for Bi and Bj are different since mpk > 1 for all 1 � k � ν.

First, since both {Oi} and {Si} are random, we construct a deterministic sequence
{di}1�i�n for comparison purposes as follows: di = bk, �nqk−1� + 1 � i � �nqk�. Then,

P[η(n) > ε] � P

[
n∑

i=1

1{Oi �= di} >
ε

2
n

]
+ P

[
n∑

i=1

1{Si �= di} >
ε

2
n

]

156 Ann Oper Res (2009) 170: 133–159

� I1 + I2. (4.5)

For I2, applying the union bound, we can easily prove that, for some H,ξ > 0,

I2 � He−ξn. (4.6)

Therefore, we only need to prove that I1 � He−ξ min(l,n), where H,ξ may be different from
the ones chosen in (4.6).

Next, in order to evaluate I1, we denote the event Ei = {Bi is not in the right class} and
prove that there exists H,ξ > 0, such that as n → ∞,

max
1�i�ν

P[Ei] � He−ξ l . (4.7)

To this end, if ν = 1, it is obvious that P[Ei] = 0 for all i; if ν � 2, noting that P[Ei ,Bi =
b1] = 0, we have

P[Ei] =
ν−1∑
k=1

P[Ei ,Bi = bk+1], (4.8)

where P[Ei ,Bi = bk+1] is upper bounded by

P

[{
B̃(i,�mqk+1�l) � bk+1 < B̃(i,�mqk−1l)

}C
]

� P

[
bk+1 < B̃(i,�mqk+1�l)

]
+ P

[
bk+1 � B̃(i,�mqk−1l)

]

= P

[
ml∑
i=1

1{Bi < bk+1} > �mqk + 1�l
]

+ P

[
ml∑
i=1

1{Bi < bk+1} � �mqk − 1l
]

. (4.9)

By noting that E[1{Bi < bk+1}] = qk,1 � k � ν − 1, and using the large deviation results
with the condition �mqk + 1� > mqk > �mqk − 1, we obtain that for all 1 � k � ν − 1 and
some H,ξ > 0, the righthand side of (4.9) is further bounded by He−ξ l . By substituting this
upper bound for (4.9) into (4.8), we prove (4.7), and therefore, the total number of jobs

Nε �
n∑

i=1

1{Ei}

that are not in the right classes satisfies, for 0 < δ < 1 and some Hδ, ξ > 0,

P[Nε > δn] = P

[
n∑

i=1

1{Ei} > δn

]
�

E
[∑n

i=1 1{Ei}
]

δn
� Hδe

−ξ l . (4.10)

Now, we continue with evaluating I1. Since

I1 �
ν∑

k=1

P

[
n∑

i=1

1{Oi �= di,Oi = bk} >
εn

2ν

]
, (4.11)

Ann Oper Res (2009) 170: 133–159 157

we only need to show that for each 1 � k � ν and some Hε, ξε > 0,

P

[
n∑

i=1

1{Oi �= di,Oi = bk} >
εn

2ν

]
� Hεe

−ξε min(l,n).

To this end, we define E(k)
n �

∑n

i=1 1{Oi �= di,Oi = bk} and denote by Nk,1 � k � ν the
total number of jobs of size bk and by Nr

k the total number of jobs of size bk that are
routed into the right class with N0 = Nr

0 = 0. Obviously, by the definition of Nε , we have
|∑k

j=0(N
r
j − Nj)| � Nε for 1 � k � ν. Now, we claim that, for 1 � k � ν,

E(k)
n =

n∑
i=1

1{Oi �= di,Oi = bk} �

∣∣∣∣∣∣
k−1∑
j=0

Nr
j − �nqk−1 + 1�

∣∣∣∣∣∣
+

∣∣∣∣∣∣
k∑

j=0

Nr
j − �nqk�

∣∣∣∣∣∣
+ 2Nε.

(4.12)
In order to prove (4.12), we define Rk ⊂ {1,2, . . . , n} to be the set of all the indices of

the jobs in {Oi}1�i�ν that are routed to the right classes for job size bk . Now, if there is no
element i of Rk such that Oi = bk , then the total number of jobs of size bk in {Oi}1�i�ν is
bounded by Nε since none of the jobs of size bk are in the right classes. Thus, in this case
we obtain

E(k)
n �

n∑
i=1

1{Oi = bk} � Nε.

Next, if Rk contains at least one index i such that Oi = bk , we can always define τk =
min{i ∈ Rk : Oi = bk} and σk = max{i ∈ Rk : Oi = bk}. Then, let A = {i ∈ N | τk � i � σk}
and B = {i ∈ N | �nqk−1 + 1� � i � �nqk�}. It is easy to see that all the indices in A but not
in B are contributing to E(k)

n since di �= bk for i ∈ A\B, and therefore,

E(k)
n �| A\B | +Nε,

where Nε contains all the errors 1{Oi �= di,Oi = bk} for i /∈ Rk . Here, “\” represents set
difference operation and | · | denotes the cardinality of a set. To compute the cardinality of
the preceding set difference, we have the following four different scenarios.

• if τk � �nqk−1 + 1� and σk � �nqk�, then |A\B| is upper bounded by �nqk−1 + 1� − τk ,
which, by noting that

∑k−1
j=0 Nr

j < τk , results in

E(k)
n � �nqk−1 + 1� − τk + Nε �

∣∣∣∣∣∣
k−1∑
j=0

Nr
j − �nqk−1 + 1�

∣∣∣∣∣∣
+ Nε;

• if τk � �nqk−1 + 1� and σk � �nqk�, then |A\B| is upper bounded by σk − �nqk�. By
noting that

∑k

j=0 Nr
j + Nε � σk , we obtain

E(k)
n � σk − �nqk� + Nε �

k∑
j=0

Nr
j + Nε − �nqk� + Nε;

• if �nqk−1 + 1� � τk � σk � �nqk�, then, |A\B| = 0 and E(k)
n is upper bounded by the total

number of jobs Nε that are not in the right classes;

158 Ann Oper Res (2009) 170: 133–159

• if τk < �nqk−1 +1� � �nqk� < σk , then, we obtain |A\B| � �nqk−1 +1�−τk +σk −�nqk�,
which, by noting that σk �

∑k

j=0 Nr
j + Nε and

∑k−1
j=0 Nr

j < τk , yields

E(k)
n � �nqk−1 + 1� − τk + σk − �nqk� + Nε

�

∣∣∣∣∣∣
k−1∑
j=0

Nr
j − �nqk−1 + 1�

∣∣∣∣∣∣
+

k∑
j=0

Nr
j + Nε − �nqk� + Nε.

Therefore, by the above arguments, we prove the claim in (4.12).
Next, using (4.12), for 1 � k � ν, we derive

P

[
n∑

i=1

1{Oi �= di,Oi = bk} >
εn

2ν

]

� P

⎡
⎣
∣∣∣∣∣∣
k−1∑
j=0

Nr
j − �nqk−1 + 1�

∣∣∣∣∣∣
+

∣∣∣∣∣∣
k∑

j=0

Nr
j − �nqk�

∣∣∣∣∣∣
+ 2Nε >

εn

2ν

⎤
⎦

� P

⎡
⎣
∣∣∣∣∣∣
k−1∑
j=0

Nj − �nqk−1 + 1�
∣∣∣∣∣∣
+

∣∣∣∣∣∣
k∑

j=0

Nj − �nqk�
∣∣∣∣∣∣
+ 4Nε >

εn

2ν

⎤
⎦

� P

⎡
⎣
∣∣∣∣∣∣
k−1∑
j=0

Nj − �nqk−1 + 1�
∣∣∣∣∣∣
>

εn

6ν

⎤
⎦+ P

[
Nε >

εn

24ν

]

+ P

⎡
⎣
∣∣∣∣∣∣

k∑
j=0

Nj − �nqk�
∣∣∣∣∣∣
>

εn

6ν

⎤
⎦ ,

which, by noting that E[Nj] = npj for 1 � j � ν and using Chernoff bound, (4.11) and
(4.10), implies that I1 � He−ξ min(l,n) for some H,ξ > 0. Combining this bound, (4.5) and
(4.6), we complete the proof. �

References

Anantharam, V. (1999). Scheduling strategies and long-range dependence. Queueing Systems: Theory and
Applications, 33(1–3), 73–89.

Asmussen, S., Schmidli, H., & Schmidt, V. (1999). Tail probabilities for non-standard risk and queueing
processes with subexponential jumps. Advances in Applied Probability, 31(2), 422–447.

Baccelli, F., & Bremaud, P. (1994). Elements of queueing theory: Palm-Martingale calculus and stochastic
recurrence. Berlin: Springer.

Bansal, N., & Gamarnik, D. (2006). Handling load with less stress. Queueing systems: Theory and Applica-
tions, 54(1), 45–54.

Bansal, N., & Harchol-Balter, M. (2001). Analysis of SRPT scheduling: investigating unfairness. In Proceed-
ings of ACM SIGMETRICS & Performance’01 (pp. 279–290). Cambridge, MA.

Borst, S., Boxma, O., & Jelenković, P. (2003a). Reduced-load equivalence and induced burstiness in GPS
queues with long-tailed traffic flows. Queueing Systems: Theory and Applications, 43(4), 273–306.

Borst, S. C., Boxma, O. J., Núñez-Queija, R., & Zwart, A. P. (2003b). The impact of the service discipline on
delay asymptotics. Performance Evaluation, 54(2), 175–206.

Caprita, B., Nieh, J., & Stein, C. (2006). Grouped distributed queues: distributed queue, proportional share
multiprocessor scheduling. In PODC’06: Proceedings of the twenty-fifth annual ACM symposium on
principles of distributed computing (pp. 72–81), New York, NY, USA.

Ann Oper Res (2009) 170: 133–159 159

Harchol-Balter, M., Schroeder, B., Bansal, N., & Agrawal, M. (2003). Size-based scheduling to improve Web
performance. ACM Transactions on Computer Systems (TOCS), 21(2), 207–233.

Jelenković, P. R., & Lazar, A. A. (1998). Subexponential asymptotics of a Markov-modulated random walk
with queueing applications. Journal of Applied Probability, 35(2), 325–347.

Jelenković, P. R., & Momčilović, P. (2002). Resource sharing with subexponential distributions. In Proceed-
ings of IEEE INFOCOM’02 (Vol. 3, pp. 1316–1325). New York, NY, USA.

Jelenković, P. R., & Momčilović, P. (2003a). Asymptotic loss probability in a finite buffer fluid queue with
heterogeneous heavy-tailed on-off processes. Annals of Applied Probability, 13(2), 576–603.

Jelenković, P. R., & Momčilović, P. (2003b). Large deviation analysis of subexponential waiting times in a
processor-sharing queue. Mathematics of Operations Research, 28(3), 587–608.

Jelenković, P. R., Kang, X., & Tan, J. (2007). Adaptive and scalable comparison scheduling. In Proceedings
of ACM SIGMETRICS’07 (Vol. 35, No. 1, pp. 215–226). San Diego, CA, USA.

Kleinrock, L. (1976). Queueing systems volume II: computer applications. New York: Wiley-Interscience.
Loynes, R. M. (1962). The stability of a queue with non-independent inter-arrival and service times. Mathe-

matical Proceedings of the Cambridge Philosophical Society, 58, 497–520.
Núñez-Queija, R. (2000). Processor-sharing models for integrated-services networks. PhD thesis, Eindhoven

University of Technology, the Netherlands.
Nuyens, M., & Zwart, B. (2006). A large-deviations analysis of the GI/GI/1 SRPT queue. Queueing Systems:

Theory and Applications, 54(2), 85–97.
Nuyens, M., Wierman, A., & Zwart, B. (2008). Preventing large sojourn times using SMART scheduling.

Operations Research, 56(1), 88–101.
Pakes, A. (1975). On the tails of waiting-time distributions. Journal of Applied Probability, 12(3), 555–564.
Palmowski, Z., & Rolski, T. (2006). On the exact asymptotics of the busy period in GI/G/1 queues. Advances

in Applied Probability, 38, 792–803.
Park, K., & Willinger, W. (Eds.). (2000). Self-similar network traffic and performance evaluation. New York:

Wiley.
Rai, I. A., Urvoy-Keller, G., Vernon, M. K., & Biersack, E. W. (2004). Performance analysis of LAS-based

scheduling disciplines in a packet switched network. In SIGMETRICS/Performance ’04 (pp. 106–117).
New York, NY, USA.

Rai, I. A., Biersack, E. W., & Urvoy-Keller, G. (2005). Size-based scheduling to improve the performance of
short TCP flows. IEEE Network, 19(1), 12–17.

Ramanan, K., & Stolyar, A. L. (2001). Largest weighted delay first scheduling: Large deviations and opti-
mality. Annals of Applied Probability, 11(1), 1–48.

Rawat, M., & Kshemkalyani, A. (2003). SWIFT: Scheduling in web servers for fast response time. In Pro-
ceedings of the second IEEE international symposium on network computing and applications (p. 15).
Los Alamitos, CA, USA.

Schrage, L. E. (1968). A proof of the optimality of the shortest remaining processing time discipline. Opera-
tions Research, 16(3), 687–690.

Schrage, L. E., & Miller, L. W. (1966). The queue M/G/1 with the shortest remaining processing time disci-
pline. Operations Research, 14(4), 670–684.

Squillante, M. S., Yao, D. D., & Zhang, L. (1999). Web traffic modeling and Web server performance analysis.
ACM SIGMETRICS Performance Evaluation Review, 27(3), 24–27.

Wierman, A., & Harchol-Balter, M. (2003). Classifying scheduling policies with respect to unfairness in an
M/GI/1. In Proceedings of ACM SIGMETRICS’03 (pp. 238–249). San Diego, CA, USA.

Wolff, R. W. (1989). Stochastic modeling and theory of queues. New York: Prentice Hall.
Zwart, A. P., & Boxma, O. J. (2000). Sojourn time asymptotics in the M/G/1 processor sharing queue. Queue-

ing Systems, 35(1–4), 141–166.

	Heavy-tailed limits for medium size jobs and comparison scheduling
	Abstract
	Introduction
	Heavy-tailed limits for medium size jobs with popular schedulers
	Definitions and preliminary results
	Conditional limits

	Adaptive and scalable comparison scheduling
	Comparison splitting
	Refined splitting

	Queueing analysis
	Queueing in isolation
	Static priority

	Conclusion
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

