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Stability of Finite Population ALOHA with Variable
Packets

Predrag R. Jelenkovit and Jian Tan

Abstract—ALOHA is one of the most basic Medium Access and distributed/asynchronous nature, make it especialheb
Control (MAC) protocols and represents a foundation for other ficial for wireless sensor networks with limited resources a
more sophisticated distributed and asynchronous MAC protaols, well as for wireless ad hoc networks that have difficulty in

e.g., CSMA. In this paper, unlike in the traditional work that . . . . -
focused on mean value analysis, we study the distributional C2TI€r Sensing due to hidden terminal problems and mybilit
properties of packet transmission delays over an ALOHA chan Furthermore, because of these properties ALOHA represents
nel. We discover a new phenomenon showing that a basica basis for many more sophisticated MAC protocols, e.g.,
finite population ALOHA model with variable size (exponential) CSMA.

packets is characterized by power law transmission delays,  Tragitionally, the performance evaluation of ALOHA has
possibly even resulting in zero throughput. These results ra .

in contrast to the classical work that shows exponential delys foc.used on mean V%'Ue (throughput) analysis, the examblgs 0
and positive throughput for finite population ALOHA with fixe d ~ Which can be found in every standard textbook on networking,
packets. Furthermore, we characterize a new stability coniion e.g., seel[3],[[11],[[10]; for more recent references s$ee [9]
that is entirely derived from the tail behavior of the packet and the references therein (due to space limitations, we do
and backoff distributions that may not be determined by mean not provide comprehensive literature review on ALOHA in

values. The power law effects and the possible instability mght . . .
be diminished, or perhaps eliminated, by reducing the variility this paper). However, it appears that there are no expindt a

of packets. However, we show that even a slotted (synchromid) 9general studies (more than two users) of the distributional
ALOHA with packets of constant size can exhibit power law properties of ALOHA, e.g., delay distributions. In this asd,
delays when the number of active users is random. From an jn Subsectiod II-A, we consider a standard finite population
engineering perspective, our results imply that the varialiity of o] oA model with variable length packets] [4].][2] that have
packet sizes and number of active users need to be taken into . . . o .
consideration when designing robust MAC protocols, espeaily & asymptotically exponential ta_'l' _Sur_prlsmgly, we adiger
for ad-hoc/sensor networks where other factors, such as lin @ New phenomenon that the distribution of the number of
failures and mobility, might further compound the problem. retransmissions (collisions) and time between two sufgkess
Index Terms—ALOHA, medium access control, power transmi_s_sions follow power law distributions, as stated in
laws, heavy-tailed distributions, light-tailed distributions, ad- Proposition[IL1 of Subsection IliB, Theorem IV/.1 of Sub-
hoc/sensor networks. section[IV-A on starting behavior as well as Theorem IV.2
of Subsectio TV-B on steady state behavior. Based on this
observation, we derive new stability conditions for finite
population ALOHA with variable packets in Theordm TlI.1
ALOHA represents one of the first and most basic disf Section[ll. Informally, our theorem shows that when the
tributed Medium Access Control (MAC) protocols] [1]. Itexponential decay rate of the packet distribution is smalle
is easy to implement since it does not require any uskran the parameter of the exponential backoff distributiod
coordination or complicated controls and, thus, represant the arrival rate, even the finite population ALOHA may have
basis for many modern MAC protocols, e.g., Carrier Sengero throughput. This is contrary to the common belief that
Multiple Access (CSMA). Basically, ALOHA enables multiplethe finite population ALOHA system always has a positive,
users to share a common communication medium (channelpibeit possibly small, throughput. Furthermore, even when
a completely uncoordinated manner. Namely, a user attemghte long term throughput is positive, the high variability o
to send a packet over the common channel and, if there a@ver laws (infinite variance when the power law exponent is
no other user (packet) transmissions during the same thmee, kess thar2) may cause unstable buffer content (queue sizes),
packet is considered successfully transmitted. Othenifitge  implying periods of very high congestion, long delays, and |
transmissions of more than one packet (user) overlap, we sasoughput. It also may appear counterintuitive that thetesy
that there is a collision and the colliding packets need to le characterized by power laws even though the distribstion
retransmitted. Each user retransmits a packet after wgditin of all the variables (arrivals, backoffs and packets) of the
an independent (usually exponential/geometric) peridthuf, system are of exponential type. However, this is in line with
making ALOHA entirely decentralized and asynchronous. Thbe results in[[b],[[1R2],[[6], which show that job completion
desirable properties of ALOHA, including its low compleaxit times in systems with failures where jobs restart from thy ve
beginning exhibit similar power law behavior. Our studyi@h [
_Predrag R. Jelenkovi¢ and Jian Tan are with the Departmeriles- a5 done in the communication context where job completion
trical Engineering, Columbia University, New York, 10027SH, e-mail: . L
{predrag,jiantah@ee.columbia.edu. times are represented by document/packet transmissiapsjel
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the existence of power law delays regardless of how lighizes. To further emphasize that packet variability is a sol
or heavy the packet/document and link failure distribusiorcause of power laws, we assume a finite population ALOHA
may be (e.g., Gaussian), as long as they have proportiomaldel where each user can hold (queue) up to one packet at
hazard functions. Furthermore, from a mathematical persp@ time since the increased queueing only further exacerbate
tive, Propositiof 1.1, Theorenis V.1 ahd TV.2 analyze armo the problem. In addition, in Section]V we show that the
complex setting than the one inl [6],_]12] and, thus, requirewser variability in an infinite population model may be a
novel proof. Hence, when compared with [6], [12], this paperause of power law delays as well. In the remainder of this
both discovers a new related phenomenon in a communicatgattion, we describe the model and introduce the necessary
MAC layer application area and provides a novel analysis abtation in Subsectidn I[[JA and present the preliminaryhess
it. in Subsection TI-B.

As already stated in the abstract, the preceding power
law phenomenon is a result of combined effects of pack&t Model Description
variability and collisions. Hence, one can see easily thatt Considerd > 2 users sharing a common communication
power law delays can be eliminated by reducing the varigbililink (channel) of unit capacity. Each user can hold at most on
of packets. Indeed, for slotted ALOHA with constant sizeacket in its queue and, when the queue is empty, a new packet
packets the delays are geometrically distributed. However is generated after an independent (from all other variables
show in SectiorlV that, when the number of users sharirgponential time with mean/\. Each packet has an indepen-
the channel is geometrically distributed, the slotted ALAOH dent length that is equal in distribution to a generic random
exhibits power law delays as well. variable L. A user with a newly generated packet attempts

In Section[Vl, we illustrate our results with simulationits transmission immediately and, if there are no othersuser
experiments, which show that the asymptotic power latwansmitting during the same time, the packet is considered
regime is valid even for relatively small delays and reasosuccessfully transmitted. Otherwise, if the transmissiof
ably large probability values. Furthermore, the distiibutof more than one packet overlap, we say that there is a collision
packets/number of users in practice might have a boundsmad the colliding packets need to be retransmitted; for aabis
support. To this end, we show by a simulation experimergpresentation of the system see Figlre 1. After a colljsion
that this situation results in distributions that have poweach participating user waits (backoffs) for an indepehden
law main body with an exponentiated (stretched) support @xponential period of time with medn'v and then attempts to
relation to the support of the packet size/number of activetransmit its packet. Each such user continues this puweed
users. Hence, although exponentially bounded, the delays nuntil its packet is successfully transmitted and then itegates
be prohibitively long. a new packet after an independent exponential time of mean

In practical applications, we may have combined effecig\. Let {U(t)}:>o denote the number of users that are in

of both variable packets and a random number of usefjckoff state at time and {Ll(-t)} denote the packet
implying that th_e delay and congestion is likely to b_e even. o of all thel/ () number of ag:ﬁ\l/%Ulﬂgers at tirrte
worse than predicted by our results. Thus, from an engingeri
perspective, one has to pay special attention to the packet
variability and the number of users when designing robu%]oﬁ
MAC protocols, especially for ad-hoc/sensor networks \eher2
link failures [€], mobility and many other factors might ther M]QH
worsen the performance.

In summary, the rest of the paper is organized as follows. : e 3
In Section1l, we provide the description and the prelimjnar colide  succeed
power law bounds. Then, we present our new stability con- ]Q%
ditions that are based on packet distribution decay rates in
Sectior1Il. Further distributional properties for the noen of
retransmissions and delays are investigated in SeciibBd¢\-
tionM contains the results on power laws in slotted ALOHA From the perspective of the receiver, Mi}i>l be an
with random number of users. Experimental validation of oificreasing sequence of positive time points when either a
results can be found in Sectign]VI. The paper is concludegllision or successful transmission occurs with = 0. Let
in Sectior{ VIl. Finally, some of the more technical proofs ar{p,,}..>1 be the sequence of time points when the receiver
postponed to Sectidn V]II. successfully receives theth packet and defing,, = D,, —

D,,—1 to be the transmission time for thath successfully
Il. POWERLAWS IN THE FINITE POPULATION ALOHA  received packet with a conventidn, = 0. Correspondingly,
WITH VARIABLE SIZE PACKETS we can defineV,, to be the number of (re)transmissions in

) ) o . theinterval(D,,,—1, D] for the mth successful transmission.
In this section we show that the variability of packet sizes, Now. from the perspective of usér,1 < i < M, define
when coupled with the contention nature of ALOHA, is D(i)} o

cause of power law delays. This study is motivated by th m> _ _
well-known fact that packets in today’s Internet have Jalga cessfully sends thexth packet and defin@’,%) = D,(,? -D

Fig. 1. Finite population ALOHA model with variable packetes.

to be the sequence of time points when usarc-
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to be the transmission time for theth successfully transmit- that only measures the delay caused by the collisions of the
ted packet with a conventiob)ff) = 0. By the same fashion, second type, theﬁl“,(,i) > 15,?.
we can defineV,\? to be the number of (re)transmissions in Now, consider the system at the moment when user
the interval(D'_| . D] for the mth successful transmission.has successfully initiated its transmission. At that motgen
We will study the stability of this model as well as thexumber of users<{ M — 1) can be in the backoffed state
ase/mptotic properties of the distributions @¥,,,7;, and (exponential with rate- for each user) and the remaining ones
N T, are waiting for the new packets to arrive (exponential wétter
A for each user). Hence, the time until another user attempts
B. Power Law Bounds to access the channel is upper bounded by an exponer.wt.ial time
of rate (M — 1)(\ A v). Therefore, given, the probability

In the rest of this subsection, we present preliminary (8Sul, ¢ there is a collision of the second type is lower bounded
for the finite ALOHA with variable packets, described Ny 1 — e~ EM=1)() implying that

the preceding subsection. LetA y = min(z,y), z Vy =

d d . - L (1) (1)
max(z,y), and <, >, < denote inequalities and equality in P {Nm = "} > PNy > n]

distribution, respectively. S E [(1 _ e—L(AJ—l)(k/\V))n}
Basically, ALOHA model can be viewed as a state depen- -
dent channel with failures where the failure rate depends on =P[N > n], (6)

the number of backoffed users and the sizes of the pack - I
present in the system. Hence, this model can be viewed agﬁce the repetitions of exponential times of raté—1)(A\v)

generalization of the problem stated lin [6], [7]. The follogy 3%(')”:;55: d[:el)ntiril;ﬁ etg :Egtn}ir]g?;eisopr%pjgy'exi stsr
proposition shows that the distributions of the number fuch thatP[L > ] > e,(#ﬂ)’z for all z >'I Then. if wée
retransmissions and the delays in our ALOHA model are 8ifine random variablé. with P[L. > ] :—ef(u+€)w x >0
ways sandwiched between two power laws, which is obtainwi obtain ‘ ‘ =
by uniformly bounding the variable collision (failure) est

d
independently of the state of the channel. L= Ll(Le > xe),

resulting in
Proposition 1.1 Assume that , fop > 0, (Lo (M- D))"
> _ ,—Le e>Te - Av
lim log P[L > x] S ) ]P’[ﬂ>n]_E[(1 c . ) }
T—00 T ’ >E [(1 . e—Le(M_l)()‘/\V)) 1(Le > xe)} ) (7)

and let N and N be two random variables with distributions . . .
Noticing that for anyd > 0, there exist$) < x5 < 1 such that

P[N >n]=E {(1 - e‘L(M—l)(M’O)n} (2) l—a2>e U492 forall 0 <z < x5, we can choose. large

enough, such that
and

n P[N S B [ (e e g }
PN >n] =E |(1- 20V -t N >n[2E e (Le > )
= M(/\ V I/) . _E 'ei(l+5)nefLE(1w—l)(>\Au):|

Then, uniformly for allm and,

4 4 —E e—(1+e)ne%e<M—1)<Mu>1(L6 < x{)}
N<NY <N 3 i CLe(M-1(AAw
- mo—= ( ) 2 E e_(l-‘rE)ne Le(M=1)(x ):| _ Cn’ (8)
and L
logP [ﬂ > n] _ I @) where¢ — 67(1+E)efmg(1kl—l)(>\Au) <1
n—oo  logn (M —=1)(AAv) Now, for any0 < z < 1,
log P [N > n] 1 _ log x
li - . 5 P[ (p-e)Le } —P|L. > =
S logn (M —-1)(AVv) ®) ¢ s ” p+e “

Similarly, there exisf’ and T such that[(B),[{#) and{5) are implying thate—(*+L« £ [/, whereU is a uniform random
satisfied for the corresponding expressionsTaf’, I’ andT"  variable betweerd and 1. Thus, we can derive froni(8)

(replacing N by 7). PN >n] > E [ein(1+5)U(Mfl)(AAu)/(I“rs)jl _ e,

Proof: We begin with studying\h(,i). First, we prove the )
lower bound Note that a collision for usermay occur for two NOW, since o/
. . - «
different reasons. Either, when useattempts to access the Ele ] ~T(a+1)/0 9)
channel it collides with the aI_ready existin_g tr_ar_13|_”nission asf — oo, one can easily obtain
after useri successfully starts its transmission it is interrupted

later by some other user that tries to access the channel. Now i 08P (¥ > n] > _ pte 7 (10)
if N only counts the collisions due to the second reason, n—oo logn (M =1)(AAv)

then clearlyNy) > N@_ Similarly, if 7() is the total time which, by passing — 0, proves the lower bound.



Next, we prove theipper boundWe observe that a successFirst, user: initiates an attempt to grab the channel; for the
ful transmission has two steps. First, the user has to faitigith attempt, denote byX;},>, the idle period where user
the transmission successfully (grab the channel). Seaftet, either is waiting for a new packet to arrive or is in its badkof
accessing the channel it has to complete the transmissgtate for thenth packet. HenceX; is exponential with rate\
without interruptions from other users. We will bound thesand.X;, j > 1 are exponential with rate. Second, after user
events by independent ones as described below. makes an attempt to access the channel, it either collidis wi

After a successful transmission or a collision, usewill other users that are transmitting packets or starts trdtusgi
attempt to access the channel after an exponential timet®f rit;s own packet; for thejth attempt, denote byY;};>, the
no smaller tham\ A v; each other user will compete to accesperiod during which there are no transmissions from other
the channel after an exponential time of rate no larger thasers after uset starts sending theath packet. Note that if
AV wv. Once usei grabs the channel, its transmission will beisers fails to grab the channel for thgh attempt, therl; =
successful if the first channel access time of all the othersus0; if user i successfully grabs the channel for this attempt,
is larger thanL. Note that the first access time of the othethen it spends timé&’; transmitting themth packet without
users is exponential with rate upper boundedbl~—1)(\Vvv). interference from other users. Thus, we have
Therefore, givenl, the probability of a collision (failure) is

N NG _q
upper bounded by Té? _ 2"”‘: X, + ”2: Y+ L. (14)
1— &e—L(M—l)(/\VV)_ =1 j=1
M(AVv)

Since {X,} is a sequence of exponential random variables
Furthermore, due to the memoryless property of exponen%['h rate equal to eithek or v, we can always find two i.i.d
distribution the probability ofn successive collisions, given . "\ v 71 e
L, can be upper bounded by independent events with pr eﬁ(_ponenual sequence$ X, X };>1 and {X, X,};>1, such

abilities given by the preceding expression. Therefortgraf at

unconditioning, we obtain X; < Xj < X (15)
; ANV o " Additionally, observe that when useérsuccessfully grabs the
(4) _ L(M—1)(AVv)
P [N’” o n} sE [(1 MV y)e ) } channelY; is stochastically upper bounded by an exponential
—P [N >n (1) random variable with raté)M — 1)(\ v v), and thus, we can

construct a sequence of i.i.d. exponential random vargable
Next, usingl —z < e~ and defining; £ AAv/(M(AVr)), {Y,Y;} such that
we derive, forz, > 0, Y; <Y, (16)

— —nCe LM=D(Vw) _ o
P[N>n] <E {6 1(L> xf)} where{Y’;} is independent of X ; }.
+ (1 _ Cefmé(Mfl)()\v:/))n First, we prove the upper bound. Using the union bound,
N ()
< _ncele(L>1‘é)(]\/ffl)()\\/V) n ‘ N,
_E{e }—f—??, (12) ]P’{Tr(nl)>2t}§P Z(Xj+}/j)+L>2t
wheren £ 1 — e #(M=DOAV») < 1 Now, condition [(1) L7=1
implies that, for any0 < ¢ < p, we can choose:. such [~ _ .
that P[L > z] < e ®#=9% for all + > z.. Thus, by <P Z(Xj +Y)>t,NW < ————
defining an exponential random variatile with P[L¢ > z] = j=1 2E[X +Y]
g L
e~ =97 4 > 0, we obtainL1(L > x.) < L¢. Therefore, P |:N(i) ot ] +PIL >4
(12) implies "7 2E[X +Y]
PN >n] <E[eme "M pns 1) /(X +Y])
<P X +Y) >t
Similarly as in the proof of the lower bound, we know =1
e~ (=91 L 17 is a uniform random variable betweénand - .
1. Thus, [IB) implies +P [N(i) > T] +P[L>t].
m 2E[X +Y
P [N > n} <E [67HCU(MA)(AW/)/(M7E)} I 77" [ ]
= ’ By @), (I8) and[(16), we obtain
By (@), we obtain £/ (2EX+71)
mlogP[N>”]§_ poe ]P[T,S;'>>2t}§]? (X, +Y;) >t
n—co logn (M -1)(AVv) j=1
which, by passinge — 0, finishes the proof of the upper - t
bound. { JE[X + Y]} [ ]

Now, we prove the result de,(,f). Observe that each attempt R
for useri to transmit themth packet consists of two steps. =h+DL+ 1, (17)



which, by defining random variabl@& with the following
distribution

P [T > 2t} 4 min{h + Iz + I3, 1},

implies P {T,Sf) > 24 <P[T>2t],ie.,

7
T <T. (18)

For (I1), applying Chernoff bound, we derivf =
O(e~"™) for somen > 0. Condition [1) impliess = O(e™")
for some othem > 0. To computel,, using [5), we obtain,

N t
lim log P {N > 21E[Y+?J _ H
t—00 log t (M -1)(AVy)’
which, combined with the estimates fbr and I3, implies that
logP [T > t] 7
Py log ¢ T M -1)(AVy) (19)

Next, we prove the lower bound. It is easy to obtain

[N -1
PITW >t 2P| Y (X +Y)+L>1
j=1
[N 1
>P Y X >t
L j=1
[N -1 o
>P X:>¢t, NW > 241
> ; >N > g+
RPN
>PINWD > = 41
> _m>Em+}
N 2
-P X, <t,N®>_2_ 11
Z J = 4t m = E[X] + ’

j=1
which, by recallingX; > X ; and using[(B), yields

2t/E[X]

. , 2t
PITO >t >PIND > _—_ 41| P X<t
[m>y,yﬂﬁm+ ; <
o 2t/E[X]
SP|N>——+1|-P X. <t
p [ g2 ] 2| S ks

2 N (t) — ().
Now, define a random variablg with
P[T > t] £ max{I;(t) — Ix(t),0},
implying
N d
T > 1T.

Next, by Churnoff bound, we obtaif:(t) < O (e=") for
somen > 0. Using [3), we derive

2t
t—00 log t (M —-1)(AAv)’

which, combined with the estimates fd(¢), implies that
log P [T" > 1] 0

o logt (M —1(AAv) (20)
Combining [29) and{20) completes the proof. [ |

The following lemma studies the distribution of the number
of retransmissions that occur from a point when there is a
departure until the system becomes full. For the two segsenc
{C;} and{D,, } defined in Subsectidn1HA, noting thaD,,, }
is a subsequence ofC;}, we can define the position of
Dy, in {C;} by hy, 2 min{i > 0 : C; = D,,}. Let
N,{I, m > 0 be the total number of both collisions and
departures until the system becomes full and all the users ar
backlogged (a collision occurs) for the first time aftBy,,

i.e., NJ, & min{l — hy, : U(C)+) = M,l > h,,}, where
U(Ci+) represents the right hand limit @f(¢) at time C;.

Recall that{Ll(.t)}1< - represents the packet sizes of all
<i<U(t
the U(t) number of active users at time

Lemma II.1 For any finite vaIueQLz(.D"L)}lgiSU(Dm) attime
D,,,, uniformly for all m > 0, we have

PN, >n] =0 (") (21)

where the constanty > 0 does not depend on
D,
(L} <icv (D)

Remark 1 We believe that it is possible to prove a tighter ex-
ponential bound® [N/, > n] = O (e~"™), but the preceding
Weibull bound suffices for our proofs.

The proof of Lemma[ll.] is presented in Sectibn VIl

IIl. STABILITY

In this Section, we derive the stability condition of finite
population ALOHA with variable packets. Corollaries TlI.1
and[II.2 are based on Propositi¢n_]I.1; Proposition 1.1
studies the distributional properties of the upper bound fo
the number of (re)transmissions and transmission delay for
each successfully received packet observed at the receiver
Using these results, we derive the stability condition ireTh
orem[IIl.7.

We uselim to denote bothim and lim, i.e., lim means
that the corresponding two statements with respedinicand
lim are true. From Propositidn11.1, we can easily obtain the
following two corollaries. Note that in Corollafy 111.1 wese
lim with respect tom since the existence of the stationary
region forN,(,? and T,Si) is not established. At this point of
our analysis, we could not find an easy argument for resolving
this, maybe minor, technical issue.

Corollary .1 If A=v > 0, then, asn — oo,

logP [Nfé) > n] M
li - .
e logn - (M -1)v

Corollary 1.2 If 0 < A < v andpy > (M — 1)v, then the
system has a positive throughput. Xf> v > 0 and u <
(M — 1)v, then the system has a zero throughput.



Proof: Let N(¢) £ min{j : 3/ _ T,, < t} be the and using the union bound, we obtain

m=1

counting process for the number of successfully transthitte

. . 2 _ f

packets observed at the receiver from tiauntil time t.  FlNm >n] =P N >, Ny <N }
By_the Asam’e fash|ojn we lg:an define the counting process P N >, N =N }
NO(t) £ min{j : 37 _ < t} for useri,1 < i < M, )
which represents the number of successfully transmittedd-pa <P|N,, — Nf 4+ Nf >, N <N, }
ets observed at usérfrom time 0 until time ¢. Clearly, we .
have +P Nf > n]

M [ f f }

. < _
N =Y N (22) < B[N = Niy > N < N
i=1 +P Nf > 2}+1P>[Nf > ] 27)

whereN (), N (t) all go to infinity almost surely as— oo. By Lemma [IL.1), we know that for some < ¢ < 1,

Recalling the proof corresponding t6 and T in Propo-

f f < { f }
sition[IT.1l, we can always construct on the same probability P {N -1 2} +F [N -1 2] 2P N1 > 2

space{T;} ., and{T; }j>1, two sequences of i.i.d. copies <a2cV3. (28)
of {T} and {T}, such thatT; < T\’ < T,. Define o o
_ Z-{ ; {Z ’ Observe thatv! , < N,, implies that there exists time
N (1) £ min{y : 37 ’)<t dN®(t) £ min{j : ich eat is i
‘ ( )_—(i)mm{J P2 m=1 L }an (1) = min{j: ;< D,, at which each user has a packet and is in backoffed
71T, <t} foruseri,1 <i < M. By the preceding status. Thus, by recalling the notation defined for Lerini II.
definitions, we can easily obtain we can denote the packet sizes held My active users at
time o by LE”), 1 < i < M. In addition, we know that right
NO@® < NOD@) < N (t). (23) after timeD,,_,, one user has just successfully transmitted a

packet. Thus, at time (when the system is full) there is at
least one new packet with size equal in distributionZton

Thus, if A < vandp > (M —1)v, then the system. Therefore, we obtain

NO(¢ NO(¢ 1 P|N,—N. , >Z N/ <N
i N0y MO L gy B 1> g Ny < N
t—o0 t t—o0 t E [ﬂ 1 M . ) LELJ
<E|[1-—= Ze—Li m- (M—1)u>>
since T has a power law tail with index greater than one < M <i—1
(E [T] < oo) by Propositiod TL1L. ) |z
If A\>vandy < (M —1)v, then <E (1 - MeL(Ml)”> ] ;
" NO(#) = v () 1 . 5 which, in conjunction with[{(2[7) and_(28), implies, uniforynl
im < lm ——=F = — = for all m
t—o0 t ~ t—o0 t E[T] ’ !

+2(VE,

1 2
since T has a power law tail with index smaller than one FlVm >n] <E [(1 - MQ_L(M_I)V>
(E [T] = oo) by Propositior IL1L.
Combining [22), [(24) and (25), we finish the proof. m Now, we can define a random variahlé which satisfies,
for integern, P[N > n] is equal to

5]
Proposition Il1.1 For an ALOHA system with finite size pack-  yin{ 1,E (1 — ie—L(M—l)u) ’
ets att = 0 and under condition[{1l) on asymptotically M
exponential packet sizes, there exiétand 7' such that the

+2<\/§},

C . X implying
number of transmissiond/,,, and the transmission tim&;, d .
satisfy Npm < N.
d . d . By using the same approach as in calcula 11), we obtain
N in T i y using PP ting (11)
. logP[N > n] u
lim =— ,
with n—oo logn (M - 1)v
. . which finishes the proof of the result o in equation [Z5).
. PN >n] T PIT > t] - _ K The proof forT follows similar arguments as in proving the
lim lim . (26)
n—co  logn t—oo  logt (M = 1)v result onT,” in Propositior 1-B. [ |

Combining Theorer II[J1 and Corollaky1Il.2, we obtain the
Proof: Recalling the definition ofV/ before Lemm&TLiL following theorem. Observe that this theorem is slightlyreno



general than Corollafy 1ITI2 since it shows that> (M —1)r Remark 6 This theorem indicates that the distribution tails
is enough for positive throughput, i.e., the additionalditon of N,, andT,, are essentially power laws when the packet
A < v in Corollary[ll.2 is not needed. distribution is approximately exponentiat(e—**). Thus, the
finite population ALOHA may exhibit high variations, e.g.,
Theorem Ill.1 Under condition [(1), ifx > (M — 1)v, the system has infinite average transmission time when
the ALOHA system has a positive throughput. Conversely,\if; /(M — 1)v < 1; and whenl < Mpu/(M — 1)v < 2, the
A>v>0andu < (M- 1)v, then, the system has a zeraransmission time has finite mean but infinite variance. ghni
throughput. be worth noting that this may even occur when the expected

packet length is much smaller than the expected backoff time
Remark 2 For the critical case. = (M — 1)v, if L has an EI « 1/v.

exact exponential tail, i.eP[L > xg ~ ce P and \ > v,
then, the limiting distributions of\f,,i) and T,(,f) would have
exact power law tails of index, and therefore, have infinite
means.

Proof of Theoreni TVI1: We first prove the logarithmic
asymptotics forV,,, based on which a similar result can be
proved forT,,.

First, we begin with proving théower boundfor N,,,. We
Remark 3 The condition\ > 1 andu < (M — 1)v yields construct a special event with a positive probability thaitigs

a zero throughput. However, it appears that one could obtfip system from timé up to time D,,,_;. Denote bys; the
a positive throughput by decreasingfor fixed » and 1 in event that only one of the users has packets to send and all

this case. Specifically, we conjecture that the throughput §1€ OtherM — 1 users are empty from time through time
the system is positive wheh is small enough and/p > D,,_1; additionally, we require that the sizes of these arriving
(M -1 > . packets be less than a constant 1 with P[L <k —1] >0

and that each new arrival be within a unit interval after the
Proof: The second statement of this theorem is the sarpeevious departure. This construction impliBg,_; < (m —
as the second statement of Corollary 1Il.2. Given Proposijk, and therefore, by timeD,, ; the probability that the
tion LIl the first statement can be easily derived usimgystem evolves according # is lower bounded by
basically the same arguments as in the proof of Cordllarg, !l _ m=1 _(M—1)A\(m—1)k
and thus we omit the details. [ | Pl&i] = (1 —e PL <k —1]) ¢ >(3%)

IV. APPROXIMATION OF THEDISTRIBUTIONS OFN,;, AND Next, immediately after timé‘)”}—l’ observe that thg whole
T system becomes emp_ty according to our construction. Then,
. ) m we build another special evedt that leadsM users to have
A. Starting Behavior i.i.d. packets with sizes that are larger thiin their buffers
In this subsection, we study the number of retransmissioafier time D,,,_ ;.
N,, and the transmission deld,, for the mth successfully  To this point, we require that each of thd users have
transmitted packet observed at the receiver when the systermpacket with size larger thah arriving to the system after
starts from an empty state. This result characterizes #mérgy  D,,,_; and that their arriving points be with{®,,, 1, Dy,—1+
behavior of our ALOHA model for small (finite». Further- 1]. This event happens with probability—e=*)MP[L > 1]M.
more, since ALOHA tends to accumulate with time longeXotice that, immediately after thé/th packet arrives, there
packets, it would make sense to define a modified ALOHAre eitherM — 1 or M users in the backoff status, depending
which, after a finite (possibly large) number of successfoin whether thel/th arrived packet collides with others upon
transmissions, refreshes itself by discarding all the peckarrival or not. If theMth packet does not collide with others
currently present in the system. Hence, for this modifiagpon arrival, we require that a retransmission occur witrie
ALOHA, the following theorem describes the steady statenit of time after it arrives, which happens with a probabili
behavior as well. greater than — e~ (M~1¥_ These requirements can guarantee
that there exists a time € [D,,—1,D,—1 + 2) with 7 =
Theorem IV.1 Under condition[(lL), assume that at time=-0 min{C,, | U(C,+) = M,C,, > D,,_1}, at which each user
the system is empty (0) = 0, then, for any fixedn > M, in the system has a packet and is in the backoff status. The
the number of transmissiond,, and the transmission time probability that the event, happens is lower bounded by
T satisty P&] > (1— e ) MP[L > 1JM(1 — e~ (M-D¥) > g,

P[N,, . P[T, >t M .
lim M = lim [T > 1] = — LB (29) Now, givené&; andé&s, we can denote by, the number of

oo logn tmeo logt (M —1)v retransmissions betweén, D,,], implying N,, > N7 . Then,

Remark 4 A special case of this theorem whéHC,,+) = recalling the notat(i(T))n defined before Lemmalll.1 and defining

M with all the packets in the system being i.i.d. and equal iho = min {LY), Ly’ ,Lg\})}, we obtain
distribution to L was proved in Theorem 1 of][8].

M n
* _ 1 L (M-1)v
Remark 5 Note that this result still holds even if we aIIow]P[Nm >n|é,&H]=E Kl M (Ze

=1
m to be a slowly growing function of. for N,,, e.g.,m = n
a1y

o(logn) (or m = o(logt) for T,,).

Y

(31)



It is easy to check that the complementary cumulative dista packet through the channel, it immediately generates a new

bution functionP[L, > x| satisfies packet in its buffer and goes into the backoff state, i.e., we
log P[L, > 7] can interpret that the arrival and departure happen at the sa
lim ——2="2 = —Muy, time. Therefore, the system evolves as if it always hdd
Tr—00 €T

) ) ) _ ) ~ packets available and all users remained in the backof stat
which, by using the same technique as in estimafihg (6)dgielyyer the entire operation. Lét(D,,) be the minimum of the

i logP[N}, > n | &, &) - Mu packet sizes of the othéd/ — 1 users except the one departing
et logn ST -1 at time D,,.

Finally, usingP[N,, > n] > P[&1, &]|P[NE, > n | é1,E)

completes the proof of the lower bound fdf,, . Lemma IV.1 Assume thah =v > u/(M — 1) and

Next, we proceed with the proof of thgpper boundor N,,,.
Using the same approach as in evaluatlng (27), we obtain

lim sup
Y= gy<ae<y Y — T

RL> o)
P[Ny >n] <P [N, — N} log (P[L>y] sp (39

m—1

> g,Nj;,l < Nu| +20VE,
(32) for0 < 4 < 1. Then, there exists > 0 such that for any fixed

Now, we observe thalV/ < N,, implies that there exists 4
time o < D,, at which each user has a packet at hand and is lim P[L(Dyp) > y] > p. (36)
in the backoff status. Thus, we denote the packet sizes held meee
by M users at times by LE"),l < i < M. In addition,
we know that at timer the total number of packets, includingReémark 7 We  believe  that ~a  stronger  result
those still present in the system and those already suedigssfin,,, . P[L(Dm) >y] = 1 for all y is also true, but
transmitted, is less tham + M since the system has only the preceding lemma suffices for our proofs. Furthermore,
users. Denote the sizes of the first+ M packets arriving @ careful examination of our proof shows that the result is

to the system by{Ly, Lo, - - - , Ly ar} and its order statistics S0 true formin{A,v} > u/(M — 1), but we avoid this
by L) > L3 > ... > [(m+M) and we obtain generalization due to considerable notational compbcesti

P[N,, — N >n, N/ | < N,]
M n Remark 8 It is easy to see that conditioh {35) holds for a
< IE < 1 < e_LEU)(M_l)U>> ‘|

1 — Z broad range of distributions from exponential family, e.g.
M\~ Gamma distributione—#*¢7*” with 0 < 3 < 1, etc.

Lo\
<E Kl YA =y ) ] : (33) The proof of Lemma1V1 is presented in Sectibn VIIl. By
_ - _ using this lemma, we can derive the following theorem that
Since L(™) is the Mth largest value amond.;,1 < i < characterizes the limiting steady state behavior of our A2O

m + M, we know model.
(M)
oo x Theorem IV.2 Under condition[(3b), i\ = v > u/(M — 1),

Then, by [3R), [[(38) and using the same approach as \ie obtain
estimating [(IIL), one derives

— PN, .o PTy, >t

— logP[N,, > n] Mu lim lim PN > n] = lim lim Pl > 1)

lim < - ; (34) n—0om—co  logn t=00m—oco logt

n—oo logn (M- 1)v 7 37
which completes the proof of the upper bound. T (M - 1)v’ (37)

The proof for the logarithmic asymptotics @f,, is based _

on similar arguments as in provinﬁﬁ) in Proposition .1 Proof: First, we prove the result fav,,,. The upper bound
and, thus, we omit the details. is implied by Propositiod IlL1 and thus, we only need to

m prove the lower bound. Recalling the definition 6{D,,)
in the paragraph before Lemrha1V.1 and using Lenimal IV.1,
we obtain that there exigt > 0 andmg > 0 such that for all

m > my,
When the system keeps running for a long period of time,

we can show that the preceding upper bound, presented in
Theorem(1Il1, is attainable wheh = v > p/(M — 1). In
order to study this situation, first we establish the follogvi
lemma that characterizes the growth of the packet sizesein th Since there is a new packet with size equal in distribution
system immediately after a departure at timg,. Noting that to L arriving to the system at tim®,,,_; (see the discussion

A = v, we can assume that once a user successfully transnbiéfore Lemma V1), and the packet sizes of the other- 1

B. Limiting Steady State Behavior

logn

P |L(Dm-1) > -1

> p. (38)



users are lower bounded iy D,,—1), we obtain variable since sensors may switch between sleep and active

log 1 } modes, as shown in Figufé 2; similarly in ad hoc wireless

m networks the variability of users may arise due to mobility,

PNy >n]>P {Nm >n,L(Dp—1) >
new users joining the network, etc.

M n
1 —£Pm=0) (1),
2E <1_M<Ze ! ( ) @ Active O @—1o
i=1
O )
logn () Sleep o <
1(L(Dp- —_—
X (—( ”>>m4_1w)] o s O O
=z oIn ./
Y —L(M-1)v
> E <1 M <e ( Fig. 2. Random number of active neighbors in a sensor network
n Mi:l o~ L(Din—1)-(M—1) ! M(_)re formally, consid_er a slotted ALOHA mo_del_(e.g., see
_ Section 4.2.2 of[[B3]) with packets/slots of unit size and a
=t random number of userd/ > 1 that are fixed over time.
%1 <L(Dm1) > logn ) This model can be viewed as a first order approximation of
. (M —1)v a real system where the number of users change very slowly.
log n Similarly as in Sectioi]l, each user holds at most one packet
>P |:L(Dm—l) > m] at a time and after a successful transmission a new packet is

ne generated according to an independent Bernoulli procetss wi

x E [(1 S M-1 1 ieL(MUV) } , success probability—e=*, A > 0. In case of a collision, each
M- n M colliding user backs off according to an independent geamet

(39) random variable with parameter v > 0. Denote the
where we use the independence between the new packet sizmber of slots where transmissions are attempted butifaile
and L(D,,—1) at time D,,,_; in the last inequality. and the total time between two successful packet transmnissi
Combining [38) and [(39) yields, for large enough, as N andT, respectively.
P[N,, > n] is lower bounded by

Theorem V.1 If A\ = v and there existsx > 0, such that

< M1 1)"
p —_— . —_
M n lim logP[M > z] N
1 IRTEAN o *
E|(1- TeAMm L
: K M(T = (M = 1)/ (M) ) } then, we have
n n log P[N logP[T >t
> 1— M-—-1 ] l E (1 . e—L(]W—l)V lim M = lim M — _g (40)
2p M n J n—00 logn t—00 logt v
which, by noting that Remark 9 Similarly as in Theoreni IV]1, this result shows
M_1 1\" that the distributions ofV andT" are essentially power laws,
lim <1— 7 -—> =~ (M=D/M 5 e, P[T > t] ~ t~°/¥ and, clearly, ifa < v, thenEN =
" ET = .
and using the same approach as in calculafihg (6), completes _ _ o
the proof the lower bound. The result @i, can be proved Proof: Since\ = v, we can consider a situation where all
by using the same approach as in proving the resulf,prin  the users are backlogged, i.e., have a packet to send. In this
Propositior TL.1. m case the total number of collisions between two successful
transmissions is geometrically distributed givh

V. POWERLAWS IN SLOTTED ALOHA WITH RANDOM Me—(M—nu(l —e) n
NUMBER OF USERS PN >n|M]= (1— e ) , mEN,

It is clear from the preceding section that the power law . My . .
delays arise due to the combination of collisions and pac pce,_glvenM, l—e IS the_ conditional probalrﬂk}y that
there is an attempt to transmit a packet, and e~ " —

variability. Hence, it is reasonable to expect an improved™ ~ /" ;), N i, o
performance when this variability is reduced. Indeed, #dsy . © lisi (11?he 2('5 the conditional probability that there
to see that the delays are geometrically bounded in a slotldg coision. therelore,
ALOHA with constant size packets and a finite number of Me= M- _ o—v)\"
1- ( (41)
1— 671\11/ :

PN >n]=FE

users. However, in this section we will show that, when the
number of users sharing the channel has asymptotically an
exponential distribution, the slotted ALOHA exhibits pawe©On the other hand, we have
law delays as well. Situations with random number of usess ar —(M—1)w 0!

essentially predominant in practice, e.g., in sensor nisyo PT>1t=E {(1 — Me (1-e )) ] ytEN.
the number of active sensors in a neighborhood is a random (42)
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Now, following the same arguments as in the proof of Propasth mean1 and the arrival intervals and backoffs follow
sition[IL.T, we can prove (40). an exponential distribution with mea®/3. The simulation
m experiments that each repeatedly measL0e samples are
Actually, using part i) of Theorem 2.1 in][7], we canshown in Figuré 3, which indicates a power law transmission
compute the exact asymptotics @f under more restrictive delay. We can see from the figure that, &5 gets large
conditions. (M = 10,20), the slopes of the distributions that represent
the power law exponents on theg / log plot are essentially
Theorem V.2 If A = v and F(z) £ P[M > z] satisfies the same, as predicted by our TheofemIIV.1.
Ffl(x) ~ & (euz(eux_x)fl), where ®(-) is regularly Next, we compare the starting behavior with the steady
varying with index3 > 0, then, ast — oo, state behavior predicted by Theordm 1V.2. In this setting,
we set M = 3 and choose i.i.d. packet sizes that follow
M, an exponential distribution with meah. In addition, we
o(t) assume that arrival intervals and backoffs are exponentilal
mean1.5. The starting behavior is represented by repeatedly
measuringl0® number of the transmission times for the first
In this section, we illustrate our theoretical results witphacket (m=1) in a system that is initially empty and the
simulation experiments. In particular, we emphasize thar-ch steady state distribution is obtained by continuously meag
acteristics of the studied ALOHA protocol that may not béhe transmission times of the packets with indexes from
immediately apparent from our theorems. For example, in = 10° to m = 107. The plot in Figurel¥ shows that
practice, the distributions of packets and number of randafe transmission time distribution of the first packet foe th
users might have bounded supports. We show that this sisarting behavior has a slopeMu/(M — 1)v) = —2.25,
ation may result in truncated power law distributions foe thand the steady state transmission time distribution haspesl
transmission delays. To this end, it is also important teenot-p/((M — 1)v) = —0.75, as predicted by equatior[s {29) and
that the delay distribution has a power law main body with @7) in the log-log scale, respectively.
stretched support in relation to the support/ofind M and,

P[T > t] ~

VI. SIMULATION EXAMPLES

thus, may result in very long, although, exponentially bdech . Steady state behavidr=v>p/(M-1)
delays. 10° = ; ; —_ e :
—<— Starting behavior
= Steady state behayi Dr
Example 1 (Finite population model) For the finite popu- 10 1
lation model described in Subsectibn 1I-A, we compare th
starting and steady state behavior in this experiment. 152l |
Starting behavior n B
0 IS 10k B
=
o )
107 E
10° E
i | . ‘ |
10’ 10' o o 10* 10°

1 o1
Transmission time : t

Fig. 4. Comparing starting behavior and steady state behder finite
population ALOHA with variable size packets.

‘ ‘ Example 2 (Random number of users)As stated in Sec-
g 10 16 16 10 tion[V] the situation when the number of usévsis random
Transmission time : t may cause heavy-tailed transmission delays even for dlotte
) , _ o o , ALOHA. However, in many practical applications the number
Fig. 3. Starting behavior: transmission time distributifor the first . . . .
successfully transmitted packet for finite population AL®Mith variable of active usersM may be bounded, i.e., the distribution
size packets. P[M > z] has a bounded support. Thus, from equatlod (42)
it is easy to see that the distribution @f is exponentially
First, we verify Theoreni IVI1 on the starting behavior bypounded. However, this exponential behavior may happen
plotting the empirical distribution of timé; for the first for very small probabilities, while the delays of interesinc
successful transmission in a system that is initially empty fall inside the region of the distribution (main body) that
this regard, we conduct four experiments fdr=2,4,10,20 behaves as the power law. This example is aimed to illustrate
users, respectively. The packets are assumed i.i.d. erfiahe this important phenomenon. Assume that initially > 1
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o j RS TSRS EEESE S S PR E R system since the short ones are easier to pass. Hence we

< ‘ B - conjecture, based on our initial simulation experimertisf t
in the steady state the system may have multiple functional
forms for the power law exponent for different values of
A, v and p. The complete characterization of the stability
of this Markov process and the full understanding of the
spatial interactions and temporal correlations of packadss
in the system remain a challenging problem. In this paper, we
provide a partial picture of the system behavior. Furtheeno
from an engineering perspective, it is important to studyemo
sophisticated MAC protocols, including CSMA and RTS/CTS
scheme, since ALOHA represents the basis for these more
practical MAC protocols.

This power law effect and the possible instability for our
, ALOHA model might be diminished, or perhaps eliminated,

10" 10° 10
Transmission time : t by reducing the variability of packets. However, we show
_ . _ that even a slotted (synchronized) ALOHA with packets of
Fig. 5. [llustration of the stretched support of the power taain body when constant size can exhibit power law delays when the number

the number of users imin(M, K), where M is geometrically distributed. . . . . .
of active users is random. This spatial correlation can have

a significant impact on the performance of ALOHA system
users have unit size packets ready to send Rhdollows when users are persistently present over a period of tinte tha
geometric distribution with meas. The backoff times of the IS larger than the packet transmission time. A more realisti
colliding users and the arrival intervals of the new packefggmework to study this effect could assume that userserriv
are independent and geometrically distributed with mean @nd depart on a slower time scale. _

We take the number of users to have finite suppori] and From the algor|thr_n|c perspective, we want to point out that_
show how this results in a truncated power law distribution f there are other possible ways to reduce the power law detays i
T in the main body, even though the tails are exponentiafy-OHA, for example, adaptive ALOHA decreases by half the
bounded. This example is parameterizedwhereK ranges rétransmission rate after each collision, which might tiyea
from 6 to 14 and for eachk we set the number of users toreéduce the number of collisions at the expense of possibly
be equal toMx = min(M, K). We plot the distribution of low th_roughput. Hence, finding a right balance between _the
P[T > t], parameterized by, in Figure(s. From the figure we reductl(?n of power law effects and a good throughput reguire
can see that, when we increase the support of the distritzitiéurther investigation.

from K = 6 to K = 14, the main (power law) body of the

distribution of 7' increases from less thah to almost700. VIII. PrROOFs OFLEMMAS [LI]AND [V.1]
This effect is what we call the stretched support of the main  proof of Lemma LI Our proof begins with find-
body of P[T" > ¢] in relation to the supporfs of M. In ing a subsequenc€® = {C\¥,c{. ...} from ¢ =

fact, it can be rigorously shown that the support of the ma'thm’chmﬂ’ ... }; recall the definition ofz,,, preceding the
body of P[T" > t] grows exponentially fast. Furthermore, itstatement of Lemm&_Tll1. The procedure can be described
is important to note that, it = 14 and the probabilities of jieratively as follows: initially, seCfS) =y, andforj > 1,
interest forP[I" > ¢] are bigger tharl /500, then the result \ o gonote b)(,“](i)l the smallest value i@ that is larger than

of this experiment is basically the same as f6r= oco; see s .
P y > CJ(. ) + 1. Based on this subsequence, we definej > 1

Figure[5. . L
gurel® to be the number of collisions and departures within each

i i (8) ((s) . (s) (s)
VII. CONCLUDING REMARKS AND FURTHER EXTENSIONs M€ interval |C7, €57 4 1); note thatCyy > €7 + 1
by construction. Additional

. o : y, letX be the index;j of the
In this paper, we show that a basic finite population (5) ~(s) o )
ALOHA model with exponential packets is characterized biterval {Cj G5+ 1} within which the system reaches the
power law transmission delays, possibly even resultingeiio z full state for the first time afteC’;,, , implying Zj:ll Y; <
throughput. Based on these results, we establish a ne\djtgtabiNré < Zj_(:l Y;. We will prove that there exists a probability
condition that is entirely derived from the tail behaviortbé ;- 0, such that for allj > 1,
packet and backoff distributions.

m?

Note that at any moment of time the finite population P[X > j] < (1—p).
ALOHA model from Subsectiof T-A %E)ln B)e descrzged aS 14 this end, for each intervdiC®  C®) 4+ 1 > 1, we
a Markov process for the state vect()L1 s Ly ,LM), i J J
construct a special evefij such that on this event the system

(t) - . X . .
whereL;™ is the packet size of usérat tw_net. However, th|s_ becomes full at a collision iriiC(.S), )+ 1}, i.e., there exists
Markov process is not easy to analyze in the sense that it has &) ~(s) J J

infinitely, possibly uncountably, many states with comaled C: € [st O + 1} such that/ (C;+) = M. Our construc-
transitions, where long packets tend to accumulate in tkien is described asfollows. We require that all the bactad)
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users, including those already in the system immediategr afThus, by noting thaf X > j} N&; C {X = j} and using
time C’J@ and the new arrivals irEC’J(»S), C’J(»S) +1/2| that col- (44), we obtain

!lo![e Wltlh ()Ct’?se)rg?grs, ;na2ke n(r)Trer:ransmlssm_;s durmgétt:?fn PIX>j]-P[X>j+1=P[X =]

interva [ G+ /},w ich occurs with a probability >P[X >,

lower bounded by —**/2 since there aré/ users in total and >P[X > j]

the backoffs are independent and exponential (memoryless) - =J1P,
Also, we require that all empty users< M) observed which results in
immediately after tim(CJ(.S) have new arrivals with sizes larger
than one(L > 1) within [OJ(S),OJ(»S) + 1/2}, which happens
with a probability lower bounded bt —e=*/2)MP[L > 1]M.
Now, if M — U (O§S)+) is even, our construction implies PIX >j+1] < (1—p). (45)
that at timeC'*) +1/2 all the users are backlogged, since two Since the number of collisions and departurgswithin the
consecutive new arrivals aftérf) collide with each other and jnterval {C;S), CJ(.S) + 1| is bounded by the number of active
after that they are not allowed to retransmit bef61§é) +1/2,

PIX2j+1] <P[X >j](1-p)

Iterating onj in the preceding inequality yields

R _ (8) ~(a) usersU CJ(-S)+ in the system immediately after tinfé§s)
which implies that there exists; e [Cj O+ 1/2} such  plus the total nimber of retransmissions and arrizglsvithin

that U (Ci+) = M. On the other hand, it/ — 7 (C{"+)  this interval, we obtain

is odd, at timeCj(-s) + 1/2 there is exactly one user trans- Y; <U (OJ(-S)Jr) +Z; <M+ Zj. (46)
mitting and the remaining/ — 1 ones are all backlogged. _ _ ) ]
Now, we require that at least one backlogged user retransrien: Py noting thaZ; is stochastically smaller than a Poisson
during OJ(S) 12, Cj('S) " 1]’ which occurs with probability random variable with ratd/ max(v, \) and using[(45),[(46),

we obtain
1—e~(M=1)/2 due to the memoryless property of the backoff

distribution. Clearly, this requirement ensures that ty&tesn

X
) ) T s s P[N] <P >Y;
is full at a collision time within CJ(. )1/, CJ(. )+ 1] Thus, [N >l < g

j=1
irrespective of whethed — U OJ(»S)+) is even or odd, there < P[X > /0] + VnP[Y1 > /1]
existsC) € [C;S),Cj(-s) + 11 such thatl/ (Cy+) = M on &;. -0 (e—nﬁ) :
Therefore, we can uniformly lower bound the probabilit)f/ hich finishes th ¢
of &£; conditional onU O<S)+§, or equivalently on)s — 1O Somen > 0, which finishes the proof. _— u
J(S) ( J q y Proof of Lemma Recall the definition of
U (Cj +), almost surely (a.s.) as {Dy,}m>0 in Subsectior I-A and denote the packet size
of the new arrival at timeD,, by L,, for all m. First,
p{gj ‘ U(C§S)+ﬂ we prove the case whed/ = 2. For m > w; £

[1/(P[L > vy])], we consider at timeD,, a set of de-
> e Mul2(1 — e MHMp[L > M (1 - ef(Mfl)”/Q) parture points{ D, ., Dm—w,+1, - » Dm }. By the expla-
2,50 43) nation before Lemma 1M1, we know that the system has
P ' wy + 1 number of arrivals iND,, ., , D,,]. Definer ) =
Now, observe that€; is determined by the value ofmin{j:L;>y,j>m—w:}anditis easy to see that there
U (O§S)+) and the future new arrivals and backoff times afte(?‘X'StSy0 such that for ally > yo,

time C*). Furthermore{X > ;} is completely determined by Plrz1) <m] =1—-P[L <y"
the arrival and backoff processes before tkﬁ}@. Hence, due >1—(1—P[L > y])/FE>Y
to the memoryless property of the backoff and arrival times, >1—2e 1,

the even{ X > j} and¢; are conditioinally independent given,

(s) . . implying that the event,, a packet of size larger than
v (Cj +)' Therefore, by usind (33), we obtain, a.s., arriving to the system inD,,_.,,D,,—1], has a positive

) () probability. Now, sinceM = 2, denote byL§.1) the size of
P [X 25,8 | U (07 +)} the packet that arrives befo®; but is still in the system
—P {X > ’ U (OJ(S)JF)} P [Ej ‘ U (OJ(S)JF)} observed immediately afteD;. Then, defineD; £ (£ >
Y, 72,1y < j < m}, i.e., after packetr,, arrives to the
>P {X > ’ U (CJ(»S)JF)} D, system in[D,,—q,, D], the size of the remaining packet
in the system observed immediately after departure times is
which implies always larger thary. Now, we need to show th&@[D;|&s] is

, ) also positive. To this end, we observe that at each point when
P[X >j,&] >P[X > j]p. (44) 3 departure occurs the new arrival to the system has a packet
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size equal in distribution td., and thusP[D,|&] is lower min {j c Ly >y,5> 7—(371)}. It is easy to see that there exists

bounded Yo such that for ally > v,
w w
N —vlLi Pl7(3,2 <m]Z]P’{73.1 < —,7(3,2) — T(3,1 S—}
e II (W04 i< | 2 o1 £ 582~ T = 5
i=T(2.1)+1 ¢ te ™ > (1 —P[Lgy]2) (1—]P’[L§y]2)

. > (1-2¢71)°
where1(L; > y) + e vLFi/(e7vLi + e7"¥)1(L; < y) gives > ( )

the lower bound for the probability thdi(D;) is larger than implying that the events, two packets of size larger than

y at D;. Since{L;} are i.i.d. random variables, we obtain 4 arriving to the system iriD,, .,, D,n_1], has a positive
wy probability.

l(LiSy)D . (47) Since M = 3, we can denote byL§1) > L? the

e VY
e‘”Li—f—e—”y .. . J .
order statistics of the sizes of the packets excluding the
Now, it is straightforward to see that one just arriving to the system at tim®;. Then, we de-

. . . fine an eventD; by D; £ {L§.1) >y, 731y <J < 7(3_2)}
eV ) ,
E [WI(LZ' < y)} —/0 Wdﬁb@ <z {Lf) >y, T2 <J < m}, i.e., after packetry; ar-

P[Ds|&s] > (1 ~E {

1 Y YP(L > a]er—2)dy rives and before packets ) comes to the system in
= —7,,@,1)]?@ > x| + / T or =)} D —wsys Dim—2], one of t_he remaining packet sizes in the_
1+e 0 o (I+e ) system observed immediately after each departure time is
_ l]P’[L >yl + V/Ey P[L > z]e’V"")da always larger thap; after packetr; ) arrives to the system in
14ew 2 Y 0 (1 + ev(y—2))2 [Dyn—wys Dim—1], all the remaining packet sizes in the system
Y PIL > z]e’V ") dg observed immediately after departure times are alway®targ
+ /EU (I +erlv-m))2 (48)  than y. Now, we need to show thd&[D;|&3] is positive. To

this end, we observe th&[D;|&s] is lower bounded by
Sincev > p, in the preceding equality, by choosifg< € <

. 7(3,2)
1 — p/v, we obtain El H <1<{Li>y}U{L§2) >y}>
/Ey P[L > z]e’V=*)dg =TEntl
0

< ve VU= = o(P[L > y]).

1_’_81/(‘7;71) 2 e—2vLi 4 e—QULEZ)
| ) (49) + ot (Li <y L < y)
e—2vL; + e—2vy +e QVLj
Next, observe w2 ( e—2vLi
H 1(Li>y)+ﬁl(Li§y))‘|a
/y P[L - x]ey(y_m)dx 1=T(3,2)+1 ek +2e vy
v(y—x))2
w (1 ere =) which, by recalling tha{ Z;} are i.i.d. and noting thats o) —
< V/ P[L > x]efu(yfr)dm T(3,1) < Wa, w2 — T(3,2) < we, implies thatP[Ds|&;] is lower
ey bounded by
YPIL > x] w
< vP[L > / = e gy, e~y 2
>4 ey PIL > ] 1-E ml(héyigmﬁy)

which, by recalling condition[(35), implies that there éxis 2e—2vy w2
0 <& <v—pandys > 0 such that for ally > ys, x|(1-E Wl@i <y)

v v(y—) 220y 2w
U/ P[L > z]e*v—?)dx > (1_E|:e—1(Li§y):|) 2

, (14 er—)2 e~ wli 4 e=2vy

Then, by using the same approach as in evalualing (47), we

Y
(n+6)(y—=) ,—v(y—=)
<vPIL> y]/ € € du can easily obtain, fops > 0,

€y

= O(P[L > y]). (50) P[D5|E3] > ps, (53)

Substituting[(48) [(49) and (50) it (47), we obtain,#er> 0 which finishes the proof of the case = 3.

andy big enough, The situationM/ > 3, although notationally complicated,
P[Ds|&] > po, (51) follows easily by induction using the same arguments as in

proving M = 2, 3. For these reasons we omit the details
which finishes the proof of the lemma far = 2.
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