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Stability of Finite Population ALOHA with Variable
Packets

Predrag R. Jelenković and Jian Tan

Abstract—ALOHA is one of the most basic Medium Access
Control (MAC) protocols and represents a foundation for other
more sophisticated distributed and asynchronous MAC protocols,
e.g., CSMA. In this paper, unlike in the traditional work tha t
focused on mean value analysis, we study the distributional
properties of packet transmission delays over an ALOHA chan-
nel. We discover a new phenomenon showing that a basic
finite population ALOHA model with variable size (exponential)
packets is characterized by power law transmission delays,
possibly even resulting in zero throughput. These results are
in contrast to the classical work that shows exponential delays
and positive throughput for finite population ALOHA with fixe d
packets. Furthermore, we characterize a new stability condition
that is entirely derived from the tail behavior of the packet
and backoff distributions that may not be determined by mean
values. The power law effects and the possible instability might
be diminished, or perhaps eliminated, by reducing the variability
of packets. However, we show that even a slotted (synchronized)
ALOHA with packets of constant size can exhibit power law
delays when the number of active users is random. From an
engineering perspective, our results imply that the variability of
packet sizes and number of active users need to be taken into
consideration when designing robust MAC protocols, especially
for ad-hoc/sensor networks where other factors, such as link
failures and mobility, might further compound the problem.

Index Terms—ALOHA, medium access control, power
laws, heavy-tailed distributions, light-tailed distributions, ad-
hoc/sensor networks.

I. I NTRODUCTION

ALOHA represents one of the first and most basic dis-
tributed Medium Access Control (MAC) protocols [1]. It
is easy to implement since it does not require any user
coordination or complicated controls and, thus, represents a
basis for many modern MAC protocols, e.g., Carrier Sense
Multiple Access (CSMA). Basically, ALOHA enables multiple
users to share a common communication medium (channel) in
a completely uncoordinated manner. Namely, a user attempts
to send a packet over the common channel and, if there are
no other user (packet) transmissions during the same time, the
packet is considered successfully transmitted. Otherwise, if the
transmissions of more than one packet (user) overlap, we say
that there is a collision and the colliding packets need to be
retransmitted. Each user retransmits a packet after waiting for
an independent (usually exponential/geometric) period oftime,
making ALOHA entirely decentralized and asynchronous. The
desirable properties of ALOHA, including its low complexity
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and distributed/asynchronous nature, make it especially bene-
ficial for wireless sensor networks with limited resources as
well as for wireless ad hoc networks that have difficulty in
carrier sensing due to hidden terminal problems and mobility.
Furthermore, because of these properties ALOHA represents
a basis for many more sophisticated MAC protocols, e.g.,
CSMA.

Traditionally, the performance evaluation of ALOHA has
focused on mean value (throughput) analysis, the examples of
which can be found in every standard textbook on networking,
e.g., see [3], [11], [10]; for more recent references see [9]
and the references therein (due to space limitations, we do
not provide comprehensive literature review on ALOHA in
this paper). However, it appears that there are no explicit and
general studies (more than two users) of the distributional
properties of ALOHA, e.g., delay distributions. In this regard,
in Subsection II-A, we consider a standard finite population
ALOHA model with variable length packets [4], [2] that have
an asymptotically exponential tail. Surprisingly, we discover
a new phenomenon that the distribution of the number of
retransmissions (collisions) and time between two successful
transmissions follow power law distributions, as stated in
Proposition II.1 of Subsection II-B, Theorem IV.1 of Sub-
section IV-A on starting behavior as well as Theorem IV.2
of Subsection IV-B on steady state behavior. Based on this
observation, we derive new stability conditions for finite
population ALOHA with variable packets in Theorem III.1
of Section III. Informally, our theorem shows that when the
exponential decay rate of the packet distribution is smaller
than the parameter of the exponential backoff distributionand
the arrival rate, even the finite population ALOHA may have
zero throughput. This is contrary to the common belief that
the finite population ALOHA system always has a positive,
albeit possibly small, throughput. Furthermore, even when
the long term throughput is positive, the high variability of
power laws (infinite variance when the power law exponent is
less than2) may cause unstable buffer content (queue sizes),
implying periods of very high congestion, long delays, and low
throughput. It also may appear counterintuitive that the system
is characterized by power laws even though the distributions
of all the variables (arrivals, backoffs and packets) of the
system are of exponential type. However, this is in line with
the results in [5], [12], [6], which show that job completion
times in systems with failures where jobs restart from the very
beginning exhibit similar power law behavior. Our study in [6]
was done in the communication context where job completion
times are represented by document/packet transmission delays,
e.g., ARQ protocol. It may also be worth noting that [6] reveals
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the existence of power law delays regardless of how light
or heavy the packet/document and link failure distributions
may be (e.g., Gaussian), as long as they have proportional
hazard functions. Furthermore, from a mathematical perspec-
tive, Proposition III.1, Theorems IV.1 and IV.2 analyze a more
complex setting than the one in [6], [12] and, thus, require a
novel proof. Hence, when compared with [6], [12], this paper
both discovers a new related phenomenon in a communication
MAC layer application area and provides a novel analysis of
it.

As already stated in the abstract, the preceding power
law phenomenon is a result of combined effects of packet
variability and collisions. Hence, one can see easily that the
power law delays can be eliminated by reducing the variability
of packets. Indeed, for slotted ALOHA with constant size
packets the delays are geometrically distributed. However, we
show in Section V that, when the number of users sharing
the channel is geometrically distributed, the slotted ALOHA
exhibits power law delays as well.

In Section VI, we illustrate our results with simulation
experiments, which show that the asymptotic power law
regime is valid even for relatively small delays and reason-
ably large probability values. Furthermore, the distribution of
packets/number of users in practice might have a bounded
support. To this end, we show by a simulation experiment
that this situation results in distributions that have power
law main body with an exponentiated (stretched) support in
relation to the support of the packet size/number of active
users. Hence, although exponentially bounded, the delays may
be prohibitively long.

In practical applications, we may have combined effects
of both variable packets and a random number of users,
implying that the delay and congestion is likely to be even
worse than predicted by our results. Thus, from an engineering
perspective, one has to pay special attention to the packet
variability and the number of users when designing robust
MAC protocols, especially for ad-hoc/sensor networks where
link failures [6], mobility and many other factors might further
worsen the performance.

In summary, the rest of the paper is organized as follows.
In Section II, we provide the description and the preliminary
power law bounds. Then, we present our new stability con-
ditions that are based on packet distribution decay rates in
Section III. Further distributional properties for the number of
retransmissions and delays are investigated in Section IV.Sec-
tion V contains the results on power laws in slotted ALOHA
with random number of users. Experimental validation of our
results can be found in Section VI. The paper is concluded
in Section VII. Finally, some of the more technical proofs are
postponed to Section VIII.

II. POWER LAWS IN THE FINITE POPULATION ALOHA
WITH VARIABLE SIZE PACKETS

In this section we show that the variability of packet sizes,
when coupled with the contention nature of ALOHA, is a
cause of power law delays. This study is motivated by the
well-known fact that packets in today’s Internet have variable

sizes. To further emphasize that packet variability is a sole
cause of power laws, we assume a finite population ALOHA
model where each user can hold (queue) up to one packet at
a time since the increased queueing only further exacerbates
the problem. In addition, in Section V we show that the
user variability in an infinite population model may be a
cause of power law delays as well. In the remainder of this
section, we describe the model and introduce the necessary
notation in Subsection II-A and present the preliminary results
in Subsection II-B.

A. Model Description

ConsiderM ≥ 2 users sharing a common communication
link (channel) of unit capacity. Each user can hold at most one
packet in its queue and, when the queue is empty, a new packet
is generated after an independent (from all other variables)
exponential time with mean1/λ. Each packet has an indepen-
dent length that is equal in distribution to a generic random
variable L. A user with a newly generated packet attempts
its transmission immediately and, if there are no other users
transmitting during the same time, the packet is considered
successfully transmitted. Otherwise, if the transmissions of
more than one packet overlap, we say that there is a collision
and the colliding packets need to be retransmitted; for a visual
representation of the system see Figure 1. After a collision,
each participating user waits (backoffs) for an independent
exponential period of time with mean1/ν and then attempts to
retransmit its packet. Each such user continues this procedure
until its packet is successfully transmitted and then it generates
a new packet after an independent exponential time of mean
1/λ. Let {U(t)}t≥0 denote the number of users that are in

backoff state at timet and
{

L
(t)
i

}

1≤i≤U(t)
denote the packet

sizes of all theU(t) number of active users at timet.
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Fig. 1. Finite population ALOHA model with variable packet sizes.

From the perspective of the receiver, let{Ci}i≥1 be an
increasing sequence of positive time points when either a
collision or successful transmission occurs withC0 = 0. Let
{Dm}m≥1 be the sequence of time points when the receiver
successfully receives themth packet and defineTm = Dm −
Dm−1 to be the transmission time for themth successfully
received packet with a conventionD0 = 0. Correspondingly,
we can defineNm to be the number of (re)transmissions in
the interval(Dm−1, Dm] for themth successful transmission.

Now, from the perspective of useri, , 1 ≤ i ≤ M , define
{

D
(i)
m

}

m≥1
to be the sequence of time points when useri suc-

cessfully sends themth packet and defineT (i)
m = D

(i)
m −D

(i)
m−1
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to be the transmission time for themth successfully transmit-
ted packet with a conventionD(i)

0 = 0. By the same fashion,
we can defineN (i)

m to be the number of (re)transmissions in
the interval(D(i)

m−1, D
(i)
m ] for themth successful transmission.

We will study the stability of this model as well as the
asymptotic properties of the distributions ofNm, Tm and
N

(i)
m , T

(i)
m .

B. Power Law Bounds

In the rest of this subsection, we present preliminary results
for the finite ALOHA with variable packets, described in
the preceding subsection. Letx ∧ y = min(x, y), x ∨ y =

max(x, y), and
d
≤,

d
≥,

d
= denote inequalities and equality in

distribution, respectively.
Basically, ALOHA model can be viewed as a state depen-

dent channel with failures where the failure rate depends on
the number of backoffed users and the sizes of the packets
present in the system. Hence, this model can be viewed as a
generalization of the problem stated in [6], [7]. The following
proposition shows that the distributions of the number of
retransmissions and the delays in our ALOHA model are al-
ways sandwiched between two power laws, which is obtained
by uniformly bounding the variable collision (failure) rates
independently of the state of the channel.

Proposition II.1 Assume that , forµ > 0,

lim
x→∞

log P[L > x]

x
= −µ, (1)

and letN and N be two random variables with distributions

P [N > n] = E

[(

1 − e−L(M−1)(λ∧ν)
)n]

(2)

and

P
[

N > n
]

= E

[(

1 − λ ∧ ν

M(λ ∨ ν)
e−L(M−1)(λ∨ν)

)n]

.

Then, uniformly for allm and i,

N
d
≤ N (i)

m

d
≤ N (3)

and

lim
n→∞

log P [N > n]

log n
= − µ

(M − 1)(λ ∧ ν)
, (4)

lim
n→∞

log P
[

N > n
]

log n
= − µ

(M − 1)(λ ∨ ν)
. (5)

Similarly, there existT and T such that (3), (4) and (5) are
satisfied for the corresponding expressions forT

(i)
m , T and T

(replacingN by T ).

Proof: We begin with studyingN (i)
m . First, we prove the

lower bound. Note that a collision for useri may occur for two
different reasons. Either, when useri attempts to access the
channel it collides with the already existing transmission, or
after useri successfully starts its transmission it is interrupted
later by some other user that tries to access the channel. Now,
if N (i)

m only counts the collisions due to the second reason,
then clearlyN

(i)
m ≥ N (i)

m . Similarly, if T (i)
m is the total time

that only measures the delay caused by the collisions of the
second type, thenT (i)

m ≥ T (i)
m .

Now, consider the system at the moment when useri
has successfully initiated its transmission. At that moment a
number of users (≤ M − 1) can be in the backoffed state
(exponential with rateν for each user) and the remaining ones
are waiting for the new packets to arrive (exponential with rate
λ for each user). Hence, the time until another user attempts
to access the channel is upper bounded by an exponential time
of rate (M − 1)(λ ∧ ν). Therefore, givenL, the probability
that there is a collision of the second type is lower bounded
by 1 − e−L(M−1)(λ∧ν), implying that

P

[

N (i)
m > n

]

≥ P[N (i)
m > n]

≥ E

[(

1 − e−L(M−1)(λ∧ν)
)n]

= P[N > n], (6)

since the repetitions of exponential times of rate(M−1)(λ∧ν)
are independent due to the memoryless property.

Condition (1) implies that, for anyǫ > 0, there existsxǫ

such thatP[L > x] ≥ e−(µ+ǫ)x for all x ≥ xǫ. Then, if we
define random variableLǫ with P[Lǫ > x] = e−(µ+ǫ)x, x ≥ 0,
we obtain

L
d
≥ Lǫ1(Lǫ > xǫ),

resulting in

P [N > n] ≥ E

[(

1 − e−Lǫ1(Lǫ>xǫ)(M−1)(λ∧ν)
)n]

≥ E

[(

1 − e−Lǫ(M−1)(λ∧ν)
)n

1(Lǫ > xǫ)
]

. (7)

Noticing that for anyδ > 0, there exists0 < xδ < 1 such that
1− x ≥ e−(1+δ)x for all 0 ≤ x ≤ xδ, we can choosexǫ large
enough, such that

P [N > n] ≥ E

[

e−(1+ǫ)ne−Lǫ(M−1)(λ∧ν)

1(Lǫ > xǫ)
]

= E

[

e−(1+ǫ)ne−Lǫ(M−1)(λ∧ν)
]

− E

[

e−(1+ǫ)ne−Lǫ(M−1)(λ∧ν)

1(Lǫ ≤ xǫ)
]

≥ E

[

e−(1+ǫ)ne−Lǫ(M−1)(λ∧ν)
]

− ζn, (8)

whereζ = e−(1+ǫ)e−xǫ(M−1)(λ∧ν ) < 1.
Now, for any0 < x < 1,

P

[

e−(µ+ǫ)Lǫ < x
]

= P

[

Lǫ > − log x

µ + ǫ

]

= x,

implying thate−(µ+ǫ)Lǫ
d
= U , whereU is a uniform random

variable between0 and1. Thus, we can derive from (8)

P[N > n] ≥ E

[

e−n(1+ǫ)U(M−1)(λ∧ν)/(µ+ǫ)
]

− ζn.

Now, since
E[e−θU1/α

] ∼ Γ(α + 1)/θα (9)

asθ → ∞, one can easily obtain

lim
n→∞

log P [N > n]

log n
≥ − µ + ǫ

(M − 1)(λ ∧ ν)
, (10)

which, by passingǫ → 0, proves the lower bound.
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Next, we prove theupper bound. We observe that a success-
ful transmission has two steps. First, the user has to initiate
the transmission successfully (grab the channel). Second,after
accessing the channel it has to complete the transmission
without interruptions from other users. We will bound these
events by independent ones as described below.

After a successful transmission or a collision, useri will
attempt to access the channel after an exponential time of rate
no smaller thanλ∧ ν; each other user will compete to access
the channel after an exponential time of rate no larger than
λ∨ ν. Once useri grabs the channel, its transmission will be
successful if the first channel access time of all the other users
is larger thanL. Note that the first access time of the other
users is exponential with rate upper bounded by(M−1)(λ∨ν).
Therefore, givenL, the probability of a collision (failure) is
upper bounded by

1 − λ ∧ ν

M(λ ∨ ν)
e−L(M−1)(λ∨ν).

Furthermore, due to the memoryless property of exponential
distribution the probability ofn successive collisions, given
L, can be upper bounded by independent events with prob-
abilities given by the preceding expression. Therefore, after
unconditioning, we obtain

P

[

N (i)
m > n

]

≤ E

[(

1 − λ ∧ ν

M(λ ∨ ν)
e−L(M−1)(λ∨ν)

)n]

= P
[

N > n
]

. (11)

Next, using1−x ≤ e−x and definingζ , λ∧ν/(M(λ∨ν)),
we derive, forxǫ > 0,

P
[

N > n
]

≤ E

[

e−nζe−L(M−1)(λ∨ν)

1 (L > xǫ)
]

+
(

1 − ζe−xǫ(M−1)(λ∨ν)
)n

≤ E

[

e−nζe−L1(L>xǫ)(M−1)(λ∨ν)
]

+ ηn, (12)

where η , 1 − ζe−xǫ(M−1)(λ∨ν) < 1. Now, condition (1)
implies that, for any0 < ǫ < µ, we can choosexǫ such
that P[L > x] ≤ e−(µ−ǫ)x for all x ≥ xǫ. Thus, by
defining an exponential random variableLǫ with P[Lǫ > x] =

e−(µ−ǫ)x, x ≥ 0, we obtainL1(L > xǫ)
d
≤ Lǫ. Therefore,

(12) implies

P
[

N > n
]

≤ E

[

e−nζe−Lǫ(M−1)(λ∨ν)
]

+ ηn. (13)

Similarly as in the proof of the lower bound, we know
e−(µ−ǫ)Lǫ d

= U is a uniform random variable between0 and
1. Thus, (13) implies

P
[

N > n
]

≤ E

[

e−nζU(M−1)(λ∨ν)/(µ−ǫ)
]

+ ηn.

By (9), we obtain

lim
n→∞

log P
[

N > n
]

log n
≤ − µ − ǫ

(M − 1)(λ ∨ ν)
,

which, by passingǫ → 0, finishes the proof of the upper
bound.

Now, we prove the result forT (i)
m . Observe that each attempt

for user i to transmit themth packet consists of two steps.

First, useri initiates an attempt to grab the channel; for the
jth attempt, denote by{Xj}j≥1 the idle period where useri
either is waiting for a new packet to arrive or is in its backoff
state for themth packet. Hence,X1 is exponential with rateλ
andXj, j > 1 are exponential with rateν. Second, after useri
makes an attempt to access the channel, it either collides with
other users that are transmitting packets or starts transmitting
its own packet; for thejth attempt, denote by{Yj}j≥1 the
period during which there are no transmissions from other
users after useri starts sending themth packet. Note that if
useri fails to grab the channel for thejth attempt, thenYj =
0; if user i successfully grabs the channel for this attempt,
then it spends timeYj transmitting themth packet without
interference from other users. Thus, we have

T (i)
m =

N(i)
m
∑

j=1

Xj +

N(i)
m −1
∑

j=1

Yj + L. (14)

Since {Xj} is a sequence of exponential random variables
with rate equal to eitherλ or ν, we can always find two i.i.d.
exponential sequences,{X, Xj}j≥1 and {X, Xj}j≥1, such
that

Xj ≤ Xj ≤ Xj . (15)

Additionally, observe that when useri successfully grabs the
channel,Yj is stochastically upper bounded by an exponential
random variable with rate(M − 1)(λ ∨ ν), and thus, we can
construct a sequence of i.i.d. exponential random variables
{Y , Y j} such that

Yj ≤ Y j , (16)

where{Y j} is independent of{Xj}.
First, we prove the upper bound. Using the union bound,

P

[

T (i)
m > 2t

]

≤ P





N(i)
m
∑

j=1

(Xj + Yj) + L > 2t





≤ P





N(i)
m
∑

j=1

(Xj + Yj) > t, N (i)
m ≤ t

2E[X + Y ]





+ P

[

N (i)
m >

t

2E[X + Y ]

]

+ P [L > t]

≤ P







t/(2E[X+Y ])
∑

j=1

(Xj + Yj) > t







+ P

[

N (i)
m >

t

2E[X + Y ]

]

+ P [L > t] .

By (3), (15) and (16), we obtain

P

[

T (i)
m > 2t

]

≤ P







t/(2E[X+Y ])
∑

j=1

(Xj + Y j) > t







+ P

[

N >
t

2E[X + Y ]

]

+ P [L > t]

, I1 + I2 + I3, (17)
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which, by defining random variableT with the following
distribution

P
[

T > 2t
]

, min{I1 + I2 + I3, 1},

implies P

[

T
(i)
m > 2t

]

≤ P
[

T > 2t
]

, i.e.,

T (i)
m

d
≤ T . (18)

For (17), applying Chernoff bound, we deriveI1 =
O(e−ηn) for someη > 0. Condition (1) impliesI3 = O(e−ηn)
for some otherη > 0. To computeI2, using (5), we obtain,

lim
t→∞

log P

[

N > t
2E[X+Y ]

]

log t
= − µ

(M − 1)(λ ∨ ν)
,

which, combined with the estimates forI1 andI3, implies that

lim
t→∞

log P
[

T > t
]

log t
= − µ

(M − 1)(λ ∨ ν)
. (19)

Next, we prove the lower bound. It is easy to obtain

P

[

T (i)
m > t

]

≥ P





N(i)
m −1
∑

j=1

(Xj + Yj) + L > t





≥ P





N(i)
m −1
∑

j=1

Xj > t





≥ P





N(i)
m −1
∑

j=1

Xj > t, N (i)
m >

2t

E[X]
+ 1





≥ P

[

N (i)
m >

2t

E[X ]
+ 1

]

− P





N(i)
m −1
∑

j=1

Xj ≤ t, N (i)
m ≥ 2t

E[X]
+ 1



 ,

which, by recallingXj ≥ Xj and using (3), yields

P

[

T (i)
m > t

]

≥ P

[

N (i)
m >

2t

E[X ]
+ 1

]

− P





2t/E[X]
∑

j=1

Xj ≤ t





≥ P

[

N >
2t

E[X]
+ 1

]

− P





2t/E[X]
∑

j=1

Xj ≤ t





, I1(t) − I2(t).

Now, define a random variableT with

P [T > t] , max{I1(t) − I2(t), 0},

implying

T (i)
m

d
≥ T .

Next, by Churnoff bound, we obtainI2(t) ≤ O (e−ηt) for
someη > 0. Using (5), we derive

lim
t→∞

log P

[

N > 2t
E[X] + 1

]

log t
= − µ

(M − 1)(λ ∧ ν)
,

which, combined with the estimates forI2(t), implies that

lim
t→∞

log P [T > t]

log t
= − µ

(M − 1)(λ ∧ ν)
. (20)

Combining (19) and (20) completes the proof.
The following lemma studies the distribution of the number

of retransmissions that occur from a point when there is a
departure until the system becomes full. For the two sequences
{Ci} and{Dm} defined in Subsection II-A, noting that{Dm}
is a subsequence of{Ci}, we can define the position of
Dm in {Ci} by hm , min{i ≥ 0 : Ci = Dm}. Let
Nf

m, m ≥ 0 be the total number of both collisions and
departures until the system becomes full and all the users are
backlogged (a collision occurs) for the first time afterDm,
i.e., Nf

m , min{l − hm : U(Cl+) = M, l ≥ hm}, where
U(Cl+) represents the right hand limit ofU(t) at time Cl.

Recall that
{

L
(t)
i

}

1≤i≤U(t)
represents the packet sizes of all

the U(t) number of active users at timet.

Lemma II.1 For any finite values{L(Dm)
i }1≤i≤U(Dm) at time

Dm, uniformly for all m > 0, we have

P
[

Nf
m > n

]

= O
(

e−η
√

n
)

(21)

where the constantη > 0 does not depend on
{L(Dm)

i }1≤i≤U(Dm).

Remark 1 We believe that it is possible to prove a tighter ex-
ponential boundP

[

Nf
m > n

]

= O (e−ηn), but the preceding
Weibull bound suffices for our proofs.

The proof of Lemma II.1 is presented in Section VIII.

III. STABILITY

In this Section, we derive the stability condition of finite
population ALOHA with variable packets. Corollaries III.1
and III.2 are based on Proposition II.1; Proposition III.1
studies the distributional properties of the upper bound for
the number of (re)transmissions and transmission delay for
each successfully received packet observed at the receiver.
Using these results, we derive the stability condition in The-
orem III.1.

We uselim to denote bothlim and lim, i.e., lim means
that the corresponding two statements with respect tolim and
lim are true. From Proposition II.1, we can easily obtain the
following two corollaries. Note that in Corollary III.1 we use
lim with respect tom since the existence of the stationary
region for N

(i)
m and T

(i)
m is not established. At this point of

our analysis, we could not find an easy argument for resolving
this, maybe minor, technical issue.

Corollary III.1 If λ = ν > 0, then, asn → ∞,

lim
m→∞

log P

[

N
(i)
m > n

]

log n
→ − µ

(M − 1)ν
.

Corollary III.2 If 0 < λ ≤ ν and µ > (M − 1)ν, then the
system has a positive throughput. Ifλ ≥ ν > 0 and µ <
(M − 1)ν, then the system has a zero throughput.
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Proof: Let N(t) , min{j :
∑j

m=1 Tm ≤ t} be the
counting process for the number of successfully transmitted
packets observed at the receiver from time0 until time t.
By the same fashion, we can define the counting process
N (i)(t) , min{j :

∑j
m=1 T

(i)
m ≤ t} for user i, 1 ≤ i ≤ M ,

which represents the number of successfully transmitted pack-
ets observed at useri from time 0 until time t. Clearly, we
have

N(t) =

M
∑

i=1

N (i)(t) (22)

whereN(t), N (i)(t) all go to infinity almost surely ast → ∞.
Recalling the proof corresponding toT and T in Propo-

sition II.1, we can always construct on the same probability
space

{

T j

}

j≥1
and

{

T j

}

j≥1
, two sequences of i.i.d. copies

of {T} and {T}, such thatT j ≤ T
(i)
m ≤ T j . Define

N
(i)

(t) , min{j :
∑j

m=1 T (i)
m ≤ t} and N (i)(t) , min{j :

∑j
m=1 T

(i)

m ≤ t} for user i, 1 ≤ i ≤ M . By the preceding
definitions, we can easily obtain

N (i)(t) ≤ N (i)(t) ≤ N
(i)

(t). (23)

Thus, if λ ≤ ν andµ > (M − 1)ν, then

lim
t→∞

N (i)(t)

t
≥ lim

t→∞

N (i)(t)

t
=

1

E
[

T
] > 0, (24)

since T has a power law tail with index greater than one
(E
[

T
]

< ∞) by Proposition II.1.
If λ ≥ ν andµ < (M − 1)ν, then

lim
t→∞

N (i)(t)

t
≤ lim

t→∞
N

(i)
(t)

t
=

1

E [T ]
= 0, (25)

since T has a power law tail with index smaller than one
(E
[

T
]

= ∞) by Proposition II.1.
Combining (22), (24) and (25), we finish the proof.

Proposition III.1 For an ALOHA system with finite size pack-
ets at t = 0 and under condition (1) on asymptotically
exponential packet sizes, there existN̂ and T̂ such that the
number of transmissionsNm and the transmission timeTm

satisfy

Nm

d
≤ N̂ , Tm

d
≤ T̂

with

lim
n→∞

P[N̂ > n]

log n
= lim

t→∞
P[T̂ > t]

log t
= − µ

(M − 1)ν
. (26)

Proof: Recalling the definition ofNf
m before Lemma II.1

and using the union bound, we obtain

P[Nm > n] = P

[

Nm > n, Nf
m−1 < Nm

]

+ P

[

Nm > n, Nf
m−1 ≥ Nm

]

≤ P

[

Nm − Nf
m−1 + Nf

m−1 > n, Nf
m−1 < Nm

]

+ P

[

Nf
m−1 > n

]

≤ P

[

Nm − Nf
m−1 >

n

2
, Nf

m−1 < Nm

]

+ P

[

Nf
m−1 >

n

2

]

+ P

[

Nf
m−1 >

n

2

]

. (27)

By Lemma (II.1), we know that for some0 < ζ < 1,

P

[

Nf
m−1 >

n

2

]

+ P

[

Nf
m−1 >

n

2

]

≤ 2P

[

Nf
m−1 >

n

2

]

≤ 2ζ
√

n
2 . (28)

Observe thatNf
m−1 < Nm implies that there exists time

σ < Dm at which each user has a packet and is in backoffed
status. Thus, by recalling the notation defined for Lemma II.1,
we can denote the packet sizes held byM active users at
time σ by L

(σ)
i , 1 ≤ i ≤ M . In addition, we know that right

after timeDm−1, one user has just successfully transmitted a
packet. Thus, at timeσ (when the system is full) there is at
least one new packet with size equal in distribution toL in
the system. Therefore, we obtain

P

[

Nm − Nf
m−1 >

n

2
, Nf

m−1 < Nm

]

≤ E





(

1 − 1

M

(

M
∑

i=1

e−L
(Dm−)
i (M−1)ν

))⌊n
2 ⌋



≤ E

[

(

1 − 1

M
e−L(M−1)ν

)⌊n
2 ⌋]

,

which, in conjunction with (27) and (28), implies, uniformly
for all m,

P[Nm > n] ≤ E

[

(

1 − 1

M
e−L(M−1)ν

)⌊n
2 ⌋]

+ 2ζ
√

n
2 .

Now, we can define a random variablêN which satisfies,
for integern, P[N̂ > n] is equal to

min

{

1, E

[

(

1 − 1

M
e−L(M−1)ν

)⌊n
2 ⌋]

+ 2ζ
√

n
2

}

,

implying

Nm

d
≤ N̂.

By using the same approach as in calculating (11), we obtain

lim
n→∞

log P[N̂ > n]

log n
= − µ

(M − 1)ν
,

which finishes the proof of the result on̂N in equation (26).
The proof forT̂ follows similar arguments as in proving the
result onT

(i)
m in Proposition II-B.

Combining Theorem III.1 and Corollary III.2, we obtain the
following theorem. Observe that this theorem is slightly more
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general than Corollary III.2 since it shows thatµ > (M −1)ν
is enough for positive throughput, i.e., the additional condition
λ ≤ ν in Corollary III.2 is not needed.

Theorem III.1 Under condition (1), if µ > (M − 1)ν,
the ALOHA system has a positive throughput. Conversely, if
λ ≥ ν > 0 and µ < (M − 1)ν, then, the system has a zero
throughput.

Remark 2 For the critical caseµ = (M − 1)ν, if L has an
exact exponential tail, i.e.,P[L > x] ∼ ce−µx and λ ≥ ν,
then, the limiting distributions ofN (i)

m and T
(i)
m would have

exact power law tails of index1, and therefore, have infinite
means.

Remark 3 The conditionλ ≥ µ and µ < (M − 1)ν yields
a zero throughput. However, it appears that one could obtain
a positive throughput by decreasingλ for fixed ν and µ in
this case. Specifically, we conjecture that the throughput of
the system is positive whenλ is small enough andMµ >
(M − 1)ν > µ.

Proof: The second statement of this theorem is the same
as the second statement of Corollary III.2. Given Proposi-
tion III.1, the first statement can be easily derived using
basically the same arguments as in the proof of Corollary III.2,
and thus we omit the details.

IV. A PPROXIMATION OF THEDISTRIBUTIONS OFNm AND

Tm

A. Starting Behavior

In this subsection, we study the number of retransmissions
Nm and the transmission delayTm for the mth successfully
transmitted packet observed at the receiver when the system
starts from an empty state. This result characterizes the starting
behavior of our ALOHA model for small (finite)m. Further-
more, since ALOHA tends to accumulate with time longer
packets, it would make sense to define a modified ALOHA
which, after a finite (possibly large) number of successful
transmissions, refreshes itself by discarding all the packets
currently present in the system. Hence, for this modified
ALOHA, the following theorem describes the steady state
behavior as well.

Theorem IV.1 Under condition (1), assume that at timet = 0
the system is emptyU(0) = 0, then, for any fixedm ≥ M ,
the number of transmissionsNm and the transmission time
Tm satisfy

lim
n→∞

P[Nm > n]

log n
= lim

t→∞
P[Tm > t]

log t
= − Mµ

(M − 1)ν
. (29)

Remark 4 A special case of this theorem whenU(Cm+) =
M with all the packets in the system being i.i.d. and equal in
distribution toL was proved in Theorem 1 of [8].

Remark 5 Note that this result still holds even if we allow
m to be a slowly growing function ofn for Nm, e.g.,m =
o(log n) (or m = o(log t) for Tm).

Remark 6 This theorem indicates that the distribution tails
of Nm and Tm are essentially power laws when the packet
distribution is approximately exponential (≈ e−µx). Thus, the
finite population ALOHA may exhibit high variations, e.g.,
the system has infinite average transmission time when0 <
Mµ/(M − 1)ν < 1; and when1 < Mµ/(M − 1)ν < 2, the
transmission time has finite mean but infinite variance. It might
be worth noting that this may even occur when the expected
packet length is much smaller than the expected backoff time
EL ≪ 1/ν.

Proof of Theorem IV.1: We first prove the logarithmic
asymptotics forNm, based on which a similar result can be
proved forTm.

First, we begin with proving thelower boundfor Nm. We
construct a special event with a positive probability that guides
the system from time0 up to timeDm−1. Denote byE1 the
event that only one of the users has packets to send and all
the otherM − 1 users are empty from time0 through time
Dm−1; additionally, we require that the sizes of these arriving
packets be less than a constantk − 1 with P[L ≤ k − 1] > 0
and that each new arrival be within a unit interval after the
previous departure. This construction impliesDm−1 ≤ (m −
1)k, and therefore, by timeDm−1 the probability that the
system evolves according toE1 is lower bounded by

P[E1] ≥
(

(1 − e−λ)P[L ≤ k − 1]
)m−1

e−(M−1)λ(m−1)k > 0.
(30)

Next, immediately after timeDm−1, observe that the whole
system becomes empty according to our construction. Then,
we build another special eventE2 that leadsM users to have
i.i.d. packets with sizes that are larger than1 in their buffers
after timeDm−1.

To this point, we require that each of theM users have
a packet with size larger than1 arriving to the system after
Dm−1 and that their arriving points be within[Dm−1, Dm−1+
1]. This event happens with probability(1−e−λ)M

P[L > 1]M .
Notice that, immediately after theM th packet arrives, there
are eitherM − 1 or M users in the backoff status, depending
on whether theM th arrived packet collides with others upon
arrival or not. If theM th packet does not collide with others
upon arrival, we require that a retransmission occur withinone
unit of time after it arrives, which happens with a probability
greater than1− e−(M−1)ν . These requirements can guarantee
that there exists a timeτ ∈ [Dm−1, Dm−1 + 2) with τ =
min{Cn | U(Cn+) = M, Cn > Dm−1}, at which each user
in the system has a packet and is in the backoff status. The
probability that the eventE2 happens is lower bounded by

P[E2] ≥ (1 − e−λ)M
P[L > 1]M (1 − e−(M−1)ν) > 0.

Now, givenE1 andE2, we can denote byN∗
m the number of

retransmissions between(τ, Dm], implying Nm ≥ N∗
m. Then,

recalling the notation defined before Lemma II.1 and defining
Lo , min

{

L
(τ)
1 , L

(τ)
2 , · · · , L

(τ)
M

}

, we obtain

P[N∗
m > n | E1, E2] = E

[(

1 − 1

M

(

M
∑

i=1

e−L
(τ)
i (M−1)ν

))n]

≥ E

[(

1 − e−Lo(M−1)ν
)n]

. (31)
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It is easy to check that the complementary cumulative distri-
bution functionP[Lo ≥ x] satisfies

lim
x→∞

log P[Lo ≥ x]

x
= −Mµ,

which, by using the same technique as in estimating (6), yields

lim
n→∞

log P[N∗
m > n | E1, E2]

log n
≥ − Mµ

(M − 1)ν
.

Finally, usingP[Nm > n] ≥ P[E1, E2]]P[N∗
m > n | E1, E2]

completes the proof of the lower bound forNm.
Next, we proceed with the proof of theupper boundfor Nm.

Using the same approach as in evaluating (27), we obtain

P[Nm > n] ≤ P

[

Nm − Nf
m−1 >

n

2
, Nf

m−1 < Nm

]

+ 2ζ
√

n
2 .

(32)

Now, we observe thatNf
m < Nm implies that there exists

time σ < Dm at which each user has a packet at hand and is
in the backoff status. Thus, we denote the packet sizes held
by M users at timeσ by L

(σ)
i , 1 ≤ i ≤ M . In addition,

we know that at timeσ the total number of packets, including
those still present in the system and those already successfully
transmitted, is less thanm + M since the system has onlyM
users. Denote the sizes of the firstm + M packets arriving
to the system by{L1, L2, · · · , Lm+M} and its order statistics
by L(1) ≥ L(2) ≥ · · · ≥ L(m+M), and we obtain

P[Nm − Nf
m−1 > n, Nf

m−1 < Nm]

≤ E

[(

1 − 1

M

(

M
∑

i=1

e−L
(σ)
i (M−1)ν

))n]

≤ E

[(

1 − 1

M
e−L(M)(M−1)ν

)n]

. (33)

Since L(M) is the M th largest value amongLi, 1 ≤ i ≤
m + M , we know

lim
x→∞

P[L(M) > x]

x
= −Mµ.

Then, by (32), (33) and using the same approach as in
estimating (11), one derives

lim
n→∞

log P[Nm > n]

log n
≤ − Mµ

(M − 1)ν
, (34)

which completes the proof of the upper bound.
The proof for the logarithmic asymptotics ofTm is based

on similar arguments as in provingT (i)
m in Proposition II.1

and, thus, we omit the details.

B. Limiting Steady State Behavior

When the system keeps running for a long period of time,
we can show that the preceding upper bound, presented in
Theorem III.1, is attainable whenλ = ν > µ/(M − 1). In
order to study this situation, first we establish the following
lemma that characterizes the growth of the packet sizes in the
system immediately after a departure at timeDm. Noting that
λ = ν, we can assume that once a user successfully transmits

a packet through the channel, it immediately generates a new
packet in its buffer and goes into the backoff state, i.e., we
can interpret that the arrival and departure happen at the same
time. Therefore, the system evolves as if it always hadM
packets available and all users remained in the backoff state
over the entire operation. LetL(Dm) be the minimum of the
packet sizes of the otherM −1 users except the one departing
at timeDm.

Lemma IV.1 Assume thatλ = ν > µ/(M − 1) and

lim
y→∞

sup
δy<x<y

1

y − x
log

(

P[L > x]

P[L > y]

)

≤ µ (35)

for 0 < δ < 1. Then, there existsp > 0 such that for any fixed
y,

lim
m→∞

P [L(Dm) > y] > p. (36)

Remark 7 We believe that a stronger result
limm→∞ P [L(Dm) > y] = 1 for all y is also true, but
the preceding lemma suffices for our proofs. Furthermore,
a careful examination of our proof shows that the result is
also true formin{λ, ν} > µ/(M − 1), but we avoid this
generalization due to considerable notational complications.

Remark 8 It is easy to see that condition (35) holds for a
broad range of distributions from exponential family, e.g.,
Gamma distribution,e−µxeγxβ

with 0 < β < 1, etc.

The proof of Lemma IV.1 is presented in Section VIII. By
using this lemma, we can derive the following theorem that
characterizes the limiting steady state behavior of our ALOHA
model.

Theorem IV.2 Under condition (35), ifλ = ν > µ/(M − 1),
we obtain

lim
n→∞

lim
m→∞

P[Nm > n]

log n
= lim

t→∞
lim

m→∞

P[Tm > t]

log t

= − µ

(M − 1)ν
. (37)

Proof: First, we prove the result forNm. The upper bound
is implied by Proposition III.1 and thus, we only need to
prove the lower bound. Recalling the definition ofL(Dm)
in the paragraph before Lemma IV.1 and using Lemma IV.1,
we obtain that there existp > 0 andm0 > 0 such that for all
m > m0,

P

[

L(Dm−1) >
log n

(M − 1)ν

]

> p. (38)

Since there is a new packet with size equal in distribution
to L arriving to the system at timeDm−1 (see the discussion
before Lemma IV.1), and the packet sizes of the otherM − 1
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users are lower bounded byL(Dm−1), we obtain

P[Nm > n] ≥ P

[

Nm > n, L(Dm−1) >
log n

(M − 1)ν

]

≥ E

[(

1 − 1

M

(

M
∑

i=1

e−L
(Dm−1)
i (M−1)ν

))n

× 1

(

L(Dm−1) >
log n

(M − 1)ν

)

]

≥ E

[(

1 − 1

M

(

e−L(M−1)ν

+

M−1
∑

i=1

e−L(Dm−1)·(M−1)ν

))n

× 1

(

L(Dm−1) >
log n

(M − 1)ν

)

]

≥ P

[

L(Dm−1) >
log n

(M − 1)ν

]

× E

[(

1 − M − 1

M
· 1

n
− 1

M
e−L(M−1)ν

)n]

,

(39)

where we use the independence between the new packet size
andL(Dm−1) at timeDm−1 in the last inequality.

Combining (38) and (39) yields, forn large enough,
P[Nm > n] is lower bounded by

p

(

1 − M − 1

M
· 1

n

)n

× E

[(

1 − 1

M(1 − (M − 1)/(Mn))
e−L(M−1)ν

)n]

≥ p

(

1 − M − 1

M
· 1

n

)n

E

[(

1 − e−L(M−1)ν
)n]

,

which, by noting that

lim
n→∞

(

1 − M − 1

M
· 1

n

)n

= e−(M−1)/M > 0

and using the same approach as in calculating (6), completes
the proof the lower bound. The result onTm can be proved
by using the same approach as in proving the result onTm in
Proposition II.1.

V. POWER LAWS IN SLOTTED ALOHA WITH RANDOM

NUMBER OF USERS

It is clear from the preceding section that the power law
delays arise due to the combination of collisions and packet
variability. Hence, it is reasonable to expect an improved
performance when this variability is reduced. Indeed, it iseasy
to see that the delays are geometrically bounded in a slotted
ALOHA with constant size packets and a finite number of
users. However, in this section we will show that, when the
number of users sharing the channel has asymptotically an
exponential distribution, the slotted ALOHA exhibits power
law delays as well. Situations with random number of users are
essentially predominant in practice, e.g., in sensor networks,
the number of active sensors in a neighborhood is a random

variable since sensors may switch between sleep and active
modes, as shown in Figure 2; similarly in ad hoc wireless
networks the variability of users may arise due to mobility,
new users joining the network, etc.

���
���
���

���
���
���

��
��
��

��
��
��

Active

Sink

Sleep

Fig. 2. Random number of active neighbors in a sensor network.

More formally, consider a slotted ALOHA model (e.g., see
Section 4.2.2 of [3]) with packets/slots of unit size and a
random number of usersM ≥ 1 that are fixed over time.
This model can be viewed as a first order approximation of
a real system where the number of users change very slowly.
Similarly as in Section II, each user holds at most one packet
at a time and after a successful transmission a new packet is
generated according to an independent Bernoulli process with
success probability1−e−λ, λ > 0. In case of a collision, each
colliding user backs off according to an independent geometric
random variable with parametere−ν , ν > 0. Denote the
number of slots where transmissions are attempted but failed
and the total time between two successful packet transmissions
asN andT , respectively.

Theorem V.1 If λ = ν and there existsα > 0, such that

lim
x→∞

log P[M > x]

x
= −α,

then, we have

lim
n→∞

log P[N > n]

log n
= lim

t→∞
log P[T > t]

log t
= −α

ν
. (40)

Remark 9 Similarly as in Theorem IV.1, this result shows
that the distributions ofN andT are essentially power laws,
i.e., P[T > t] ≈ t−α/ν and, clearly, ifα < ν, then EN =
ET = ∞.

Proof: Sinceλ = ν, we can consider a situation where all
the users are backlogged, i.e., have a packet to send. In this
case the total number of collisions between two successful
transmissions is geometrically distributed givenM ,

P[N > n | M ] =

(

1 − Me−(M−1)ν(1 − e−ν)

1 − e−Mν

)n

, n ∈ N,

since, givenM , 1 − e−Mν is the conditional probability that
there is an attempt to transmit a packet, and1 − e−Mν −
Me−(M−1)ν(1− e−ν) is the conditional probability that there
is a collision. Therefore,

P[N > n] = E

[

(

1 − Me−(M−1)ν(1 − e−ν)

1 − e−Mν

)n
]

. (41)

On the other hand, we have

P[T > t] = E

[

(

1 − Me−(M−1)ν(1 − e−ν)
)t
]

, t ∈ N.

(42)
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Now, following the same arguments as in the proof of Propo-
sition II.1, we can prove (40).

Actually, using part i) of Theorem 2.1 in [7], we can
compute the exact asymptotics ofT under more restrictive
conditions.

Theorem V.2 If λ = ν and F (x) , P[M > x] satisfies
F

−1
(x) ∼ Φ

(

eνx(eνx − x)−1
)

, where Φ(·) is regularly
varying with indexβ > 0, then, ast → ∞,

P[T > t] ∼
Γ(β + 1)

Φ(t)
.

VI. SIMULATION EXAMPLES

In this section, we illustrate our theoretical results with
simulation experiments. In particular, we emphasize the char-
acteristics of the studied ALOHA protocol that may not be
immediately apparent from our theorems. For example, in
practice, the distributions of packets and number of random
users might have bounded supports. We show that this situ-
ation may result in truncated power law distributions for the
transmission delays. To this end, it is also important to note
that the delay distribution has a power law main body with a
stretched support in relation to the support ofL andM and,
thus, may result in very long, although, exponentially bounded
delays.

Example 1 (Finite population model) For the finite popu-
lation model described in Subsection II-A, we compare the
starting and steady state behavior in this experiment.

10
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Transmission time : t
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1 >
 t 

]

Starting behavior

M=2 

M=4 
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M=20 

Fig. 3. Starting behavior: transmission time distributionfor the first
successfully transmitted packet for finite population ALOHA with variable
size packets.

First, we verify Theorem IV.1 on the starting behavior by
plotting the empirical distribution of timeT1 for the first
successful transmission in a system that is initially empty. In
this regard, we conduct four experiments forM = 2, 4, 10, 20
users, respectively. The packets are assumed i.i.d. exponential

with mean 1 and the arrival intervals and backoffs follow
an exponential distribution with mean2/3. The simulation
experiments that each repeatedly measure105 samples are
shown in Figure 3, which indicates a power law transmission
delay. We can see from the figure that, asM gets large
(M = 10, 20), the slopes of the distributions that represent
the power law exponents on thelog / log plot are essentially
the same, as predicted by our Theorem IV.1.

Next, we compare the starting behavior with the steady
state behavior predicted by Theorem IV.2. In this setting,
we set M = 3 and choose i.i.d. packet sizes that follow
an exponential distribution with mean1. In addition, we
assume that arrival intervals and backoffs are exponentialwith
mean1.5. The starting behavior is represented by repeatedly
measuring105 number of the transmission times for the first
packet (m=1) in a system that is initially empty and the
steady state distribution is obtained by continuously measuring
the transmission times of the packets with indexes from
m = 105 to m = 107. The plot in Figure 4 shows that
the transmission time distribution of the first packet for the
starting behavior has a slope−Mµ/((M − 1)ν) = −2.25,
and the steady state transmission time distribution has a slope
−µ/((M − 1)ν) = −0.75, as predicted by equations (29) and
(37) in the log-log scale, respectively.
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Fig. 4. Comparing starting behavior and steady state behavior for finite
population ALOHA with variable size packets.

Example 2 (Random number of users)As stated in Sec-
tion V, the situation when the number of usersM is random
may cause heavy-tailed transmission delays even for slotted
ALOHA. However, in many practical applications the number
of active usersM may be bounded, i.e., the distribution
P[M > x] has a bounded support. Thus, from equation (42)
it is easy to see that the distribution ofT is exponentially
bounded. However, this exponential behavior may happen
for very small probabilities, while the delays of interest can
fall inside the region of the distribution (main body) that
behaves as the power law. This example is aimed to illustrate
this important phenomenon. Assume that initiallyM ≥ 1
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Fig. 5. Illustration of the stretched support of the power law main body when
the number of users ismin(M, K), whereM is geometrically distributed.

users have unit size packets ready to send andM follows
geometric distribution with mean3. The backoff times of the
colliding users and the arrival intervals of the new packets
are independent and geometrically distributed with mean2.
We take the number of users to have finite support[1, K] and
show how this results in a truncated power law distribution for
T in the main body, even though the tails are exponentially
bounded. This example is parameterized byK whereK ranges
from 6 to 14 and for eachK we set the number of users to
be equal toMK = min(M, K). We plot the distribution of
P[T > t], parameterized byK, in Figure 5. From the figure we
can see that, when we increase the support of the distributions
from K = 6 to K = 14, the main (power law) body of the
distribution of T increases from less than5 to almost700.
This effect is what we call the stretched support of the main
body of P[T > t] in relation to the supportK of M . In
fact, it can be rigorously shown that the support of the main
body of P[T > t] grows exponentially fast. Furthermore, it
is important to note that, ifK = 14 and the probabilities of
interest forP[T > t] are bigger than1/500, then the result
of this experiment is basically the same as forK = ∞; see
Figure 5.

VII. C ONCLUDING REMARKS AND FURTHER EXTENSIONS

In this paper, we show that a basic finite population
ALOHA model with exponential packets is characterized by
power law transmission delays, possibly even resulting in zero
throughput. Based on these results, we establish a new stability
condition that is entirely derived from the tail behavior ofthe
packet and backoff distributions.

Note that at any moment of time the finite population
ALOHA model from Subsection II-A can be described as
a Markov process for the state vector

(

L
(t)
1 , L

(t)
2 , · · · , L

(t)
M

)

,

whereL
(t)
i is the packet size of useri at timet. However, this

Markov process is not easy to analyze in the sense that it has
infinitely, possibly uncountably, many states with complicated
transitions, where long packets tend to accumulate in the

system since the short ones are easier to pass. Hence we
conjecture, based on our initial simulation experiments, that
in the steady state the system may have multiple functional
forms for the power law exponent for different values of
λ, ν and µ. The complete characterization of the stability
of this Markov process and the full understanding of the
spatial interactions and temporal correlations of packet sizes
in the system remain a challenging problem. In this paper, we
provide a partial picture of the system behavior. Furthermore,
from an engineering perspective, it is important to study more
sophisticated MAC protocols, including CSMA and RTS/CTS
scheme, since ALOHA represents the basis for these more
practical MAC protocols.

This power law effect and the possible instability for our
ALOHA model might be diminished, or perhaps eliminated,
by reducing the variability of packets. However, we show
that even a slotted (synchronized) ALOHA with packets of
constant size can exhibit power law delays when the number
of active users is random. This spatial correlation can have
a significant impact on the performance of ALOHA system
when users are persistently present over a period of time that
is larger than the packet transmission time. A more realistic
framework to study this effect could assume that users arrive
and depart on a slower time scale.

From the algorithmic perspective, we want to point out that
there are other possible ways to reduce the power law delays in
ALOHA, for example, adaptive ALOHA decreases by half the
retransmission rate after each collision, which might greatly
reduce the number of collisions at the expense of possibly
low throughput. Hence, finding a right balance between the
reduction of power law effects and a good throughput requires
further investigation.

VIII. P ROOFS OFLEMMAS II.1 AND IV.1

Proof of Lemma II.1: Our proof begins with find-
ing a subsequenceC(s) = {C(s)

1 , C
(s)
2 , · · · } from C =

{Chm , Chm+1, · · · }; recall the definition ofhm preceding the
statement of Lemma II.1. The procedure can be described
iteratively as follows: initially, setC(s)

1 = Chm , and forj ≥ 1,
we denote byC(s)

j+1 the smallest value inC that is larger than

C
(s)
j + 1. Based on this subsequence, we defineYj , j ≥ 1

to be the number of collisions and departures within each
time interval

[

C
(s)
j , C

(s)
j + 1

]

; note thatC(s)
j+1 > C

(s)
j + 1

by construction. Additionally, letX be the indexj of the
interval

[

C
(s)
j , C

(s)
j + 1

]

within which the system reaches the

full state for the first time afterChm , implying
∑X−1

j=1 Yj ≤
Nf

m ≤∑X
j=1 Yj . We will prove that there exists a probability

p > 0, such that for allj ≥ 1,

P [X > j] ≤ (1 − p)j .

To this end, for each interval
[

C
(s)
j , C

(s)
j + 1

]

, j ≥ 1, we
construct a special eventEj such that on this event the system

becomes full at a collision in
[

C
(s)
j , C

(s)
j + 1

]

, i.e., there exists

Cl ∈
[

C
(s)
j , C

(s)
j + 1

]

such thatU(Cl+) = M . Our construc-
tion is described as follows. We require that all the backlogged
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users, including those already in the system immediately after
time C

(s)
j and the new arrivals in

[

C
(s)
j , C

(s)
j + 1/2

]

that col-
lide with other users, make no retransmissions during the entire
interval

[

C
(s)
j , C

(s)
j + 1/2

]

, which occurs with a probability

lower bounded bye−Mν/2 since there areM users in total and
the backoffs are independent and exponential (memoryless).
Also, we require that all empty users(≤ M) observed
immediately after timeC(s)

j have new arrivals with sizes larger

than one(L > 1) within
[

C
(s)
j , C

(s)
j + 1/2

]

, which happens

with a probability lower bounded by(1−e−λ/2)M
P[L > 1]M .

Now, if M − U
(

C
(s)
j +

)

is even, our construction implies

that at timeC(s)
j +1/2 all the users are backlogged, since two

consecutive new arrivals afterC
(s)
j collide with each other and

after that they are not allowed to retransmit beforeC
(s)
j +1/2,

which implies that there existsCl ∈
[

C
(s)
j , C

(s)
j + 1/2

]

such

that U (Cl+) = M . On the other hand, ifM − U
(

C
(s)
j +

)

is odd, at timeC
(s)
j + 1/2 there is exactly one user trans-

mitting and the remainingM − 1 ones are all backlogged.
Now, we require that at least one backlogged user retransmit
during

[

C
(s)
j + 1/2, C

(s)
j + 1

]

, which occurs with probability

1−e−(M−1)ν/2 due to the memoryless property of the backoff
distribution. Clearly, this requirement ensures that the system
is full at a collision time within

[

C
(s)
j + 1/2, C

(s)
j + 1

]

. Thus,

irrespective of whetherM −U
(

C
(s)
j +

)

is even or odd, there

existsCl ∈
[

C
(s)
j , C

(s)
j + 1

]

such thatU (Cl+) = M on Ej.
Therefore, we can uniformly lower bound the probability

of Ej conditional onU
(

C
(s)
j +

)

, or equivalently onM −
U
(

C
(s)
j +

)

, almost surely (a.s.) as

P

[

Ej

∣

∣

∣
U
(

C
(s)
j +

)]

≥ e−Mµ/2(1 − e−λ/2)M
P[L > 1]M

(

1 − e−(M−1)ν/2
)

, p > 0. (43)

Now, observe thatEj is determined by the value of

U
(

C
(s)
j +

)

and the future new arrivals and backoff times after

timeC
(s)
j . Furthermore,{X ≥ j} is completely determined by

the arrival and backoff processes before timeC
(s)
j . Hence, due

to the memoryless property of the backoff and arrival times,
the event{X ≥ j} andEj are conditioinally independent given

U
(

C
(s)
j +

)

. Therefore, by using (43), we obtain, a.s.,

P

[

X ≥ j, Ej

∣

∣

∣
U
(

C
(s)
j +

)]

= P

[

X ≥ j
∣

∣

∣
U
(

C
(s)
j +

)]

P

[

Ej

∣

∣

∣
U
(

C
(s)
j +

)]

≥ P

[

X ≥ j
∣

∣

∣
U
(

C
(s)
j +

)]

p,

which implies

P
[

X ≥ j, Ej

]

≥ P [X ≥ j] p. (44)

Thus, by noting that{X ≥ j} ∩ Ej ⊂ {X = j} and using
(44), we obtain

P [X ≥ j] − P [X ≥ j + 1] = P [X = j]

≥ P
[

X ≥ j, Ej

]

≥ P [X ≥ j] p,

which results in

P [X ≥ j + 1] ≤ P [X ≥ j] (1 − p).

Iterating onj in the preceding inequality yields

P[X ≥ j + 1] ≤ (1 − p)j . (45)

Since the number of collisions and departuresYj within the

interval
[

C
(s)
j , C

(s)
j + 1

]

is bounded by the number of active

usersU
(

C
(s)
j +

)

in the system immediately after timeC(s)
j

plus the total number of retransmissions and arrivalsZj within
this interval, we obtain

Yj ≤ U
(

C
(s)
j +

)

+ Zj ≤ M + Zj . (46)

Then, by noting thatZj is stochastically smaller than a Poisson
random variable with rateM max(ν, λ) and using (45), (46),
we obtain

P[Nf
m > n] ≤ P





X
∑

j=1

Yj > n





≤ P[X >
√

n] +
√

nP[Y1 >
√

n]

= O
(

e−η
√

n
)

,

for someη > 0, which finishes the proof.
Proof of Lemma IV.1: Recall the definition of

{Dm}m≥0 in Subsection II-A and denote the packet size
of the new arrival at timeDm by Lm for all m. First,
we prove the case whenM = 2. For m > w1 ,

⌈1/(P[L > y])⌉, we consider at timeDm a set of de-
parture points{Dm−w1 , Dm−w1+1, · · · , Dm}. By the expla-
nation before Lemma IV.1, we know that the system has
w1 + 1 number of arrivals in[Dm−w1 , Dm]. Define τ(2,1) =
min {j : Lj > y, j ≥ m − w1} and it is easy to see that there
existsy0 such that for ally > y0,

P[τ(2,1) < m] = 1 − P[L ≤ y]w1

≥ 1 − (1 − P[L > y])1/P[L>y]

> 1 − 2e−1,

implying that the eventE2, a packet of size larger thany
arriving to the system in[Dm−w1 , Dm−1], has a positive
probability. Now, sinceM = 2, denote byL(1)

j the size of
the packet that arrives beforeDj but is still in the system
observed immediately afterDj. Then, defineD2 , {L(1)

j >
y, τ(2,1) < j ≤ m}, i.e., after packetτ(2,1) arrives to the
system in [Dm−w1 , Dm], the size of the remaining packet
in the system observed immediately after departure times is
always larger thany. Now, we need to show thatP[D2|E2] is
also positive. To this end, we observe that at each point when
a departure occurs the new arrival to the system has a packet
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size equal in distribution toL, and thus,P[D2|E2] is lower
bounded

≥ E





m
∏

i=τ(2,1)+1

(

1(Li > y) +
e−νLi

e−νLi + e−νy
1(Li ≤ y)

)



 ,

where1(Li > y) + e−νLi/(e−νLi + e−νy)1(Li ≤ y) gives
the lower bound for the probability thatL(Di) is larger than
y at Di. Since{Li} are i.i.d. random variables, we obtain

P[D2|E2] ≥
(

1 − E

[

e−νy

e−νLi + e−νy
1(Li ≤ y)

])w1

. (47)

Now, it is straightforward to see that

E

[

e−νy

e−νLi + e−νy
1(Li ≤ y)

]

=

∫ y

0

1

1 + eν(y−x)
dP[L ≤ x]

= − 1

1 + eν(y−x)
P[L > x]

∣

∣

∣

y

0
+ ν

∫ y

0

P[L > x]eν(y−x)dx

(1 + eν(y−x))2

=
1

1 + eνy
− 1

2
P[L > y] + ν

∫ ǫy

0

P[L > x]eν(y−x)dx

(1 + eν(y−x))2

+ ν

∫ y

ǫy

P[L > x]eν(y−x)dx

(1 + eν(y−x))2
. (48)

Sinceν > µ, in the preceding equality, by choosing0 < ǫ <
1 − µ/ν, we obtain

ν

∫ ǫy

0

P[L > x]eν(y−x)dx

(1 + eν(y−x))2
≤ νe−ν(1−ǫ)y = o(P[L > y]).

(49)

Next, observe

ν

∫ y

ǫy

P[L > x]eν(y−x)dx

(1 + eν(y−x))2

≤ ν

∫ y

ǫy

P[L > x]e−ν(y−x)dx

≤ νP[L > y]

∫ y

ǫy

P[L > x]

P[L > y]
e−ν(y−x)dx,

which, by recalling condition (35), implies that there exist
0 < δ < ν − µ andyδ > 0 such that for ally > yδ,

ν

∫ y

ǫy

P[L > x]eν(y−x)dx

(1 + eν(y−x))2

≤ νP[L > y]

∫ y

ǫy

e(µ+δ)(y−x)e−ν(y−x)dx

= O(P[L > y]). (50)

Substituting (48), (49) and (50) into (47), we obtain, forp2 > 0
andy big enough,

P[D2|E2] > p2, (51)

which finishes the proof of the lemma forM = 2.
Now, we prove the case whenM = 3. For

m > w2 = ⌈2/(P[L > y])⌉, consider a set of
time points W = {Dm−w2, Dm−w2+1, · · · , Dm}. De-
fine τ(3,1) = min {j : Lj > y, j ≥ m − w2} and τ(3,2) =

min
{

j : Lj > y, j > τ(3,1)

}

. It is easy to see that there exists
y0 such that for ally > y0,

P[τ(3,2) < m] ≥ P

[

τ(3,1) ≤
w

2
, τ(3,2) − τ(3,1) ≤

w

2

]

≥
(

1 − P[L ≤ y]
w
2

) (

1 − P[L ≤ y]
w
2

)

≥
(

1 − 2e−1
)2

,

implying that the eventE3, two packets of size larger than
y arriving to the system in[Dm−w2 , Dm−1], has a positive
probability.

Since M = 3, we can denote byL(1)
j ≥ L

(2)
j the

order statistics of the sizes of the packets excluding the
one just arriving to the system at timeDj . Then, we de-

fine an eventD3 by D3 ,

{

L
(1)
j > y, τ(3,1) < j ≤ τ(3,2)

}

⋃

{

L
(2)
j > y, τ(3,2) < j ≤ m

}

, i.e., after packetτ(3,1) ar-
rives and before packetτ(3,2) comes to the system in
[Dm−w2 , Dm−2], one of the remaining packet sizes in the
system observed immediately after each departure time is
always larger thany; after packetτ(3,2) arrives to the system in
[Dm−w2 , Dm−1], all the remaining packet sizes in the system
observed immediately after departure times are always larger
than y. Now, we need to show thatP[D3|E3] is positive. To
this end, we observe thatP[D3|E3] is lower bounded by

E

[ τ(3,2)
∏

i=τ(3,1)+1

(

1

(

{Li > y} ∪ {L(2)
i > y}

)

+
e−2νLi + e−2νL

(2)
i

e−2νLi + e−2νy + e−2νL
(2)
j

1

(

Li ≤ y, L
(2)
i ≤ y

)

)

w2
∏

i=τ(3,2)+1

(

1(Li > y) +
e−2νLi

e−2νLi + 2e−2νy
1(Li ≤ y)

)

]

,

which, by recalling that{Li} are i.i.d. and noting thatτ(3,2)−
τ(3,1) ≤ w2, w2 − τ(3,2) ≤ w2, implies thatP[D3|E3] is lower
bounded by

(

1 − E

[

e−2νy

e−2νLi + e−2νy
1(Li ≤ y, L

(2)
i ≤ y)

])w2

×
(

1 − E

[

2e−2νy

e−2νLi + 2e−2νy
1(Li ≤ y)

])w2

≥
(

1 − E

[

2e−2νy

e−2νLi + e−2νy
1(Li ≤ y)

])2w2

. (52)

Then, by using the same approach as in evaluating (47), we
can easily obtain, forp3 > 0,

P[D3|E3] > p3, (53)

which finishes the proof of the caseM = 3.
The situationM > 3, although notationally complicated,

follows easily by induction using the same arguments as in
provingM = 2, 3. For these reasons we omit the details.
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