ELEN E6951 Wireless & Mobile Networking, II

Lecturer:
 Prof. Predrag Jelenkovic
 Office hours: Tue 4-5pm
 Office: 812 Schapiro Research Bldg.
 Phone: (212) 854-8174
 Email: predrag@ee.columbia.edu
 URL: http://www.comet.columbia.edu/~predrag

TA/Grader: TBA

Day, time and place: Tue, 10am-12:30pm, Room: TBA

Credits: 4.5

Prerequisites: The basic knowledge of communication theory, probability and communication networking is expected.

Description: The course is structured in two parts. The first part will provide an overview of the fundamental concepts of designing multimedia mobile wireless networks. The second part will be research oriented where students will have an opportunity to apply the basic knowledge from the first part to understanding the latest wireless network design challenges and proposals.

More specifically, the topics in the first more traditional half will include: frequency reuse, propagation and fading, interference, basic digital modulation and detection, channel capacity and coding/decoding, diversity gains (spatial, frequency, time), Medium-Access Control (MAC) protocols (TDMA, FDMA, CDMA, ALOHA-based), channel assignment methods (fixed versus dynamic), power control, handoff, scheduling methods for wireless packet networks. Examples of second generation (2G) circuits switched systems and standards and their evolution to third generation (3G+) packet-based networks will be given. The second half of the course will consist of reading and presenting the latest wireless research papers and technology proposals. Examples of topics that will be covered include: MAC, routing, flow/congestion control and energy issues in ad-hoc and sensor networks; fundamental wireless capacity limitations; multiple antenna capacity gains. If time permits, additional topics will be covered based on the students and/or teachers interest.

Project(s): Small numerical or simulation problems may be assigned during the first half of the semester. The grading of the second part of the course will be mostly based on a project that will be presented in class and written as a final paper.

Required text: Lecture notes and research papers will be used.

In addition, the following textbook is recommended:

Homework: Weekly assigned (at least for the first ½ of the semester).

Grading: Homework (15%) + Midterm (35%) + Final project (50%).

Software requirements: Quantitative homework assignments may require the use of mathematical software packages MATHEMATICA or MATLAB.