8.1 (a) \[m_x(t) = \frac{1}{3} \left[1 + (-3) + \sin 2\pi t \right] \]
\[= \left\{ -\frac{2}{3} + \frac{1}{3} \sin 2\pi t \right\} \]

(c) Each member function occurs with equal probability.

(b) \[R_{xx}(t_1, t_2) = \frac{1}{9} \left[(1)x(1) + (1)x(-3) + (1)\times(\sin 2\pi t_2) \right. \]
\[+ (-3)x(1) + (-3)x(-3) + (-3)\times(\sin 2\pi t_2) \]
\[+ (\sin 2\pi t_1)x(1) + (\sin 2\pi t_1)x(\sin -3) + (\sin 2\pi t_1)x(\sin 2\pi t_2) \left. \right] \]
\[= \frac{1}{9} \left[4 - 2\sin 2\pi t_1 - 2\sin 2\pi t_2 + \sin 8\pi t_1 \sin 2\pi t_2 \right] \]

(c) The process is not WSS, since \(m_x(t) \) depends on \(t \); as well as \(R_{xx}(t_1, t_2) \) in (b) doesn't is not a function of (\(t_1 - t_2 \)). Not WSS \implies \text{not stationary in strict sense.}

8.7 (a) \[m_x(t) = mA \cos \omega t + mA \sin \omega t \]
\[= \boxed{0} \]

(b) \[R_{xx}(t_1, t_2) = E \left[x(t_1) \times x(t_2) \right] \]
\[= E \left[(A \cos \omega t_1 + B \sin \omega t_1) \times (A \cos \omega t_2 + B \sin \omega t_2) \right] \]
\[= E \left[A^2 \cos \omega t_1 \cos \omega t_2 + AB \cos \omega t_1 \sin \omega t_2 + AB \sin \omega t_1 \cos \omega t_2 + B^2 \sin \omega t_1 \sin \omega t_2 \right] \]
\[E[A^2] \left(\cos w t_1 \cos w t_2 \right) + E[A]E[B] \left(\cos w t_1 \sin w t_2 + \sin w t_1 \cos w t_2 \right) \]
\[+ \ E[B^2] \left(\sin w t_1 \sin w t_2 \right) \]
\[= \frac{\sigma_A^2}{2} \left[\cos w (t_1-t_2) + \cos w (t_1+t_2) \right] + 0 \]
\[+ \frac{\sigma_B^2}{2} \left[\cos w (t_1-t_2) - \cos w (t_1+t_2) \right] \]
\[= \left(\cos w (t_1-t_2) \right) \left[\frac{\sigma_A^2}{2} + \frac{\sigma_B^2}{2} \right] + \cos w (t_1+t_2) \left[\frac{\sigma_A^2}{2} - \frac{\sigma_B^2}{2} \right] \]

If \(\sigma_A^2 = \sigma_B^2 \), then the second term in (b) becomes 0, \(\Delta R_{xx}(t_1,t_2) \) is a function of \(|t_1-t_2| \) = WSS.

Sols. 3.
\[X_{am}(t) = A \left[1 + m \sin t \right] \cos 2\pi f t \]

\[A(t) \]
\[0.5A \]
\[t \]
Note that the envelope of the resultant signal is given by

\[\pm A \left(1 \pm \frac{1}{2} \cos 2\pi f t \right) \cos \phi \cos 2\pi f t \]

where \(\pm \) denotes the carrier signal whose amplitude has been modulated by \(s(t) \).

(b) If \(s(t) \) is WSS, \(\mathbb{E} [s(t)] = K \) (say).

Then,

\[\mathbb{E} [x(t)] = A \left[1 + mk \right] \cos 2\pi f t \]

(not time-independent).

Therefore \(x(t) \) is not WSS.