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abstract:

This paper proposes a new measure for network performance evaluation called topology lifetime.
The measure provides insight into which one of a set of topologies is likely to last the longest
before more capacity must be installed. The lifetime measure is not single valued, but considers
growth as a function of a set of demand shifts (perturbation). One network may be better able
to support a uniform growth in the traffic, while another may support more growth when
unexpected shifts in the load occur. The ability of a network to support unexpected changes
in load is becoming more important because of (1) current practices for installing fiber optics
cables, (2) recent advances in dense wavelength division multiplexing, and (3) the increasing
popularity of the Internet. The lifetime measure is applied to several topologies; a dual ring,
a chordal ring, a Manhattan Street network and an hierarchical network. We also apply the
measure to a realistic US IP Backbone network. In this paper, our objective is to show how to
apply the measure to different networks, and to explain certain implications for comparisons
between networks. We expect this measure to be useful both in the construction of new networks

and in selecting between new links that may be added to an existing network.
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1 Introduction

According to current network design practices, communications networks are typically designed
to (1) carry the load that is presented to the network [14], [15],[19], [20], [21], (2) provide a
level of reliability [18], [21], and (3) accommodate the expected growth in demand [15], [16],
[17]. During the design process, the following facts and issues are considered. The load on
the network is not static. It is different at different times of the day and different days of the
year, and hence the network must support all of the load distributions that occur [15], [17]. In
order to guarantee a level of reliability, networks have alternate paths and sufficient additional
capacity to carry the traffic even if a link or a node fails. Networks must also have sufficient
spare capacity to support the future predicted traffic for at least the time it takes to install

new facilities.

What is typically not considered in the design process is how well the network copes with
unpredicted shifts in the traffic load. We are concerned that highly optimised networks, based
on the above criteria, may not cope with such traffic shifts. Currently, there are three factors
that are making it more important to consider such shifts: (1) the way fibers are installed, (2)
recent and expected advances in wavelength division multiplexing (WDM) and Dense WDM
(DWDM), and (3) the new Internet services that are being introduced. Because of the first two
factors, installed network topologies have nowadays adequate capacity for a longer time than
in the past, and will be able to cope with greater shifts in demand. The third factor is causing

the shifts in demands to occur more frequently and more suddenly than they have in the past.

The total cost of installing a long haul fiber, including the material and labor, is usually much
higher than the cost of the fiber itself. The current practice is to install conduits that can
house 36 fibers, and there is a move to install several hundred fibers at a time. If a link will
not require a large number of fibers in the foreseeable future, empty conduits are installed and
fibers are added as the demand increases. Installing empty, rather than full, conduits allows
the network owner to take advantage of advances in fiber technology that occur in the interim.
As a result of the way fibers are installed, the physical topology of the network is fixed for a

longer time into the future than if smaller units of capacity were installed as needed.

Up until 1995 fiber on the long haul network carried one wavelength that operated at 1.7 Gb/s.
By 1997 WDM systems carried eight wavelengths per fiber, each operating at 2.5 Gb/s - a
ten fold increase in capacity in two years. In 1998 WDM systems were available that had 16

wavelengths per fiber, and in 1999 systems were announced that have 40 wavelengths per fiber,



with a commitment to increase the bits per wavelength to 10 Gb/s by mid-2000 - another
twenty fold increase. Nowadays, WDM systems with 40 wavelengths or more are called Dense
WDM or DWDM in short. The current trend is expected to reach 160 wavelengths per fiber
and 40 Gb/s per wavelength by 2007 - 4,000 times the capacity per fiber that was possible 12
years earlier. As a result of DWDM, the fiber links that are installed have adequate bandwidth
for a longer time and hence postpone new fiber installations and modifications of the network

topology.

Until recently, the shift in network load has been a result of movements of population and
businesses. This is a relatively slow and predictable process. The Internet is increasing the
rate of this process which is becoming more and more unpredictable. Server farms may be
located anywhere on the network. If a server farm provides a service that becomes popular,
the demand to that part of the network increases. As the popularity and use of the Internet

increases, so do the sudden shifts in network load.

We introduce the concept of network lifetime measure. It is a measure of the growth and shifts
in the load (traffic demand perturbations) that a network can sustain. The longer the network
can support growth and load changes, the longer it will be before we have to add new links. The
measure is used to compare network topologies and not to estimate the actual time (weeks,
months or years) before links must be added. The growth that a network can sustain is a
function of the demand perturbations. One topology may have a longer lifetime than another

when there is linear growth but not when the perturbations exceed a certain magnitude.

To calculate the linear growth that the network can sustain we consider traffic matrices of the
load between each pair of cities for different times of the day and different days of the year
(multihour traffic demand matrices). For each matrix, we increase each element of the matrix
by the same multiplier until we can no longer support the load on the network, regardless of
how we reroute the traffic. The minimum of the multipliers of the matrices is the growth that
the network can sustain before we have to add bandwidth. It should be clarified that this linear
growth represents the traffic growth relative to the growth in capacity that can be achieved
without installing new fiber and not the absolute traffic growth. Clearly, if the capacity per
fiber increases further than the demand growth everywhere in the network forever, then we

shall never need to install more fiber.

Defining the growth associated with perturbations in the network load is more difficult because
there are many ways that the load on a network can change. In a network with N cities, there

are N ways that the load from one city can change relative to the others, N(N — 1) ways that



the traffic between one pair of cities may change relative to the others, and many more ways
that combinations of origin destination (OD) pairs and cities may change relative to the rest
of the network. We start by defining the set of changes in load that we will consider - the set
of feasible perturbations. In this paper the set of feasible perturbations includes all changes in
the importance of one city or one OD pair. In a practical application we may augment the set
to include changes in importance of combinations of cities or OD pairs that are likely to occur

together.

For each perturbation in our feasible set we select a number of different magnitudes of the
perturbation and follow the same procedure that we did for linear growth. First we modify
each of the traffic matrices by the same magnitude of one perturbation, then we calculate
the load multipliers to saturation for each matrix, and finally we determine the minimum
multiplier. This results in a graph of the minimum multiplier as a function of the magnitude

of the perturbation. There is a graph for each perturbation in the feasible set.

In order to reason about the relative merits of a topology, we must distill the large number of
graphs. We cannot simply combine the results and plot the minimum multiplier for the same
magnitude of all perturbations in the feasible set because some perturbations will subsume
others and hide their effects. For instance, the minimum multiplier for a 10 percent increase
in the traffic from a city will always be less than the minimum multiplier for a 10 percent
increase in the traffic on one link from that city. Therefore, the result of a city becoming more
important will hide the effect of a link between cities becoming more important. In order to
look at different types of perturbations at the same time, we normalize the modified matrices.
Our normalization procedure is formally specified in Section 2. Basically, we decrease some
components as we increase others, so that the network load is the same on all networks before

we calculate the growth.

The result is a single graph of the growth that can be sustained as a function of the magnitude
of all perturbations. The value of the graph at zero perturbation is the linear growth that the
network can sustain. In Section 4, we apply our measure to a three node network. In Section
5, we compare a number of topologies using this procedure, and finally in Section 6 we apply

our measure to a network of realistic size and comment on critical links.



2 Definition of a Measure for Topology Lifetime

Consider a network with m nodes. Let the present traffic be represented by a finite set S of n

traffic matrices:
S ={[T1(, ) [T2(4, )]s - [Tn (G 5)]}- (1)

Each of the matrices in S is the traffic between all OD pairs at a certain time of day for different
days of the year. For example, for some s, v and v, [T,(%, 7)], can be the traffic matrix between
8 AM and 9 AM on a normal working day, [Ty (%, 7)] the traffic matrix between 8 PM and 9 PM
on a normal Sunday, and [T,(i, 7)] the traffic matrix between 10 AM and 11 AM on Mother’s
Day. Since we are concerned with a network that interconnects nodes, we shall assume that

there is no traffic between a node and itself, i.e., Ty(4,7) = 0 for all 4.

We define a topology in two ways (1) directed and (2) undirected. A directed topology is defined
by:

e a Graph G = (V, E) where V is a set of nodes (vertices) and E is a set of directed links
(edges),

e a set of capacities: C = {¢;;} where ¢;; is the capacity of link (¢, 5), and

e practical routing limitations.

The undirected topology is also defined by a graph G = (V, E) except that E is now a set
of undirected links. Each of the elements ¢;; in C represents the total capacity on the (3, 5)
link. In other words, ¢;; must be greater than or equal to the traffic transmitted on link (3, 5)
between 7 and j plus the traffic transmitted on link (4,7) between j and 7. Networks such as
the token ring are directed topologies. The bidirectional networks that are currently used for
telecommunications are also directed networks, where ¢;; = ¢;; for every link (i,j). Undirected
networks are more flexible than directed networks because the capacity on link (i,j) can be
used for transmission in either direction. On an undirected channel, the capacity on a link
can be divided so that different fractions of the bandwidth are used for transmission in each
direction. Therefore, undirected networks have greater routing flexibility and longer lifetimes.
In the past, most telecommunications applications, like voice telephone calls, required an equal
amount of bandwidth in each direction. Therefore, it was reasonable to design networks with
equal bandwidth in both directions on each of the channels. At present, more applications,

like distributing entertainment television and the world wide web, require more bandwidth in



one direction than the other. In such applications it is more economical for the network to be
asymmetric and to have different bandwidths in opposite directions on a channel. Since we
can change the transmission direction on a fiber, or even on a subset of the wavelengths on
the fiber, to optimize network utilization, undirected networks may be used in the future. Our

measure applies to both directed and undirected networks.

Different routing techniques can be used to satisfy OD demands in a network. In practice,
constraints are placed on the routes and these constraints limit the traffic on the network and
the lifetime of the network. Typically, networks constrain the number of hops on a route to
avoid overloading switching and transmission facilities and to avoid excessive delay. In this

work, k is the hop limit, and when k£ = oo there is no hop limit.

Another typical routing constraint is caused by the switching capabilities of different nodes.
Telecommunications networks are hierarchical. Local access switches cannot act as an inter-
mediate node on a path. In order to send traffic to a destination that is not directly connected
to a local switch, the traffic must be sent to a higher layer (tandem) switch. In section 5.4 we

investigate the lifetime of an hierarchical network.

For a given network G = (V, E) with link capacities ¢;;, the traffic matrix [T;(4, j)] is said to
be feasible for a given topology if the topology can support the load [T4(%, )] without violating

the routing contraints or exceeding the link capacities.

For any traffic matrix [Ty (i, j)], we introduce the concept of growth factor, denoted by v € IR™.
In particular, we are interested in the maximum value of v for which ¥[T4(3,7)] is feasible.

Since we are interested in traffic growth, we shall focus on the range 1 > 1.

For a given topology and for a given traffic matrix [Ty(7, j)], let 4] be the maximal value for

4 such that 4[Ty(i, 7)] is feasible. Let
¢* = min{y7, 93, ..., Y5 }- (2)

We use 1* as our measure for the life-time of a given topology with a given set of link capacities,
routing constraints and a set of traffic load matrices (S). The measure 9* signifies by how much

current traffic load can grow until we need to add capacity to the current topology.

In the remainder of this paper we use capital letter T" for a matrix and small letter ¢ to denote

an element in a matrix. For example, the [i,j] element in the matrix [T4(7,7)] is denoted by
td(l,j)

So far the definition of 4/* assumes that the network growth is uniform. However, we have argued



that we must also consider changes in the traffic distribution. To allow for such unexpected
changes in the traffic growth we introduce a parameter which we call the unezpected traffic

growth (UTG) parameter, denoted U.

To incorporate the UTG in our original framework we construct new sets of matrices S(U) as

follows. When the traffic between the OD pair [4, j] increases by U we multiply the elements

ta(i,7) and t4(4,4) by (1 + U), for every matrix Ty in S, (d = 1, 2,...,n). All of the other

elements in each matrix Ty are multiplied by (1 — ry g(; j)), where,
U(ta(i, ) + ta(y,7))

ST ST taisg)) — (talis §) + ta(59)

T1,d(i5) = ( 3)

This value of 7 4; ;) maintains the total traffic (the sum of the elements in matrix T4) constant,
so that there is a shift in load without growth. Multiplying the load on both [¢,j] and [4, 4]
OD pairs means that we assume that both increase at the same rate. This is a reasonable

assumption even when the traffic matrix is asymmetric.

We repeat this procedure for all OD pairs to obtain a set of matrices S1(U). The number of
matrices in S1(U) is n x m(m — 1)/2 where n is the number of matrices in S and m is the

number of nodes in the network.

The value of U is constrained. For any matrix T; and any OD pair [¢, j], U cannot exceed

(S S talis ) — (fai, §) + ta(j, )

U1(d(5, 5))maz = ta(i, ) + ta(j, 1)

4)

When U = U;(d(%, j))maz all of the traffic has been moved to OD pair [, j] and no more traffic

can be moved. Therefore, in S1(U) the value of U must not exceed

U(Dmaz = é?zgs{Ul(d(Z’j))maw} (5)

We follow a similar procedure when single nodes become more active. For a particular node

j, for every matrix Ty in S, we multiply all the elements ¢4(7,5) and t4(4,%) by 1+ U, for all
i # j. All other elements in Ty are multiplied by (1 —ry 4(;)), where

U( letd(zaj)'i_zzlltd(jaz)) .
(Zm S a6, 9)) — (S a6 ) + P tal59))

Notice that Eq. (6) must be modified if the condition ¢4(i,7) = 0 does not hold.

T2,d(j) =



We repeat this procedure for all the nodes and all the matrices in S, and obtain the set of

matrices So(U). The number of matrices in Sa(U) is n x m.

Again, for any matrix Ty and any node 7, U must not exceed

(Zm) S a6, 9)) = (S e 5) + T4 tals )
U (ZZ’Q td(zaj) + Zgl td(.?a Z))

since when U = Uz (d(j))maz all of the traffic in the network is at node j. Therefore, the value

Us (d(j))maw = 3 (7)

of U in S3(U) must not exceed
U(2)maz = min{U2(d(5))maz }- (8)
d(i,5)
Considering Egs. (5) and (8), the value of U must not exceed any of the bounds U(1),,q, and
U(2)maz and hence it cannot exceed the bound Up,,, defined by

Unaz = min{U(l)maw; U(Q)maw}- (9)

Define S(U) as the union of S1(U) and So(U). The number of m x m traffic matrices in S(U)
is n x m(m + 1)/2. Note that the set S(U) can be augmented to include other shifts, such as

two or more separate OD pairs or nodes becoming more active.

By analogy to the definition of 4/* as our measure for the life-time of a given topology with given
link capacities, routing constraints and the set of matrices S, we define the function U*(U) as
our measure for the life-time of a given topology with given link capacities, routing constraints

and, in this case, the set of matrices S(U). Notice that * = ¥*(0).

In general, when we shift traffic, it may not be possible to route the new traffic on the underlying
network. In other words, the shifted traffic may not be feasible. In this case, in order to find
a feasible solution we will have to consider 3 < 1. At present, we are mainly interested in

networks with growth potential so it is unlikely that 1/ < 1 will have to be considered.

For any given topology, capacities, routing constraints and a set of matrices S, we now have
the curve U*(U) which provides the network designer with a means for comparing different
topologies. Notice that one topology could have a higher U*(0) than another, but when U
exceeds a certain value, the situation may be reversed. This provides the designer with insight

into the possible effect of unexpected uneven traffic growth on topology life-time.

The way we normalized our traffic shifts, using U and r to keep the total traffic fixed, is very
important and not at all arbitrary. By normalizing our traffic, the shift is independent of

the growth (signified by the ¢ variable). This way we cover both shift and growth and are



able to have a meaningful single curve lifetime measure which includes the effect of different
types of traffic shifts. If, for example, we grow the OD pair [i,5] by D and grow node i by
D, without normalizing, then the increased traffic caused by growing the traffic from the node
always includes the increased traffic caused by growing the traffic on the OD pair. In such a
case, the optimal ¢ obtained as a result of increasing node traffic activity will always be less
than the optimal 1 related to the OD pair being more active and the U*(D) curve will not
consider link growth at all. In order to consider both link and node growth, we would need two
separate curves. If we also consider growing pairs of cities, or other more complex patterns, we
would need additional curves. When we normalize the traffic, so that the total load remains
the same, we can include different shift patterns on the same curve. Thus, achieving a simple
and useful lifetime measure. In the remainder of the paper we shall derive the curves ¥*(U)

for several specific topologies.

3 Discussion on Use and Extensions

In this paper we implicitly assume that the network load grows uniformly across all of the links
and nodes in the networks, and that equal percentage deviations from the predicted growth are

equally likely. This is a first approximation and it can be refined.

First, we do not expect the load to grow uniformly across the network. For example, in
the United States there has been a population shift from the mid-west to the south. If the
communications load increases by 10%, we may expect a 15% increase in the south and only a
5% increase in the mid-west. In a real application, growth should be our best estimate of how

the network is growing, rather than uniform growth.

Second, equal percentage deviations from the expected growth are not always equally likely,
particularly if the cities or links that we consider have vastly different sizes. If someone installs
a server farm in a town in North Dakota, it may cause a 1000% percent increase in the traffic.

This increase is much more likely than a 1000% increase in the traffic in New York City.

We can deal with the different likelihoods by weighting the percentage change according to the
relative size of the entities. However, this is not a desirable solution because it will require the
designer to optimise these weights which is a significant burden. Users of tools do not like to
make hard decisions on many parameters. A more natural approach for networks is to analyze
a hierarchy of approximately equal sized members. In Chapter 6, we consider a possible USA

IP backbone network. All of the links are 2.4 Gbps in each direction. There are also lower rate



access networks that we can analyze separately. In the network of equal size components it is
reasonable to assume that all deviations from the expected growth are equally likely. An added

advantage to the hierachical approach is that we can more easily perform our computations.

For large networks, it may not be possible (due to computing limitations) to consider both
the traffic shifts from any OD pair to another as well as the traffic shifts on the nodes (e.g.,
one node becomes more important in terms of traffic demand than others). In this case, we
recommend using just the traffic shifts on nodes. First, it significantly shortens the solution
time, and second, we found empirically that in many cases, node traffic shifts subsume OD pair
traffic shifts; namely, we obtain the same lifetime curve whether or not we consider traffic shift

on OD pairs.

4 Topology Lifetime Measure for a Three Node Network

In this section we consider a small example of a three node network (see Figure 1) to show
how to calculate the topology lifetime, namely the ¥*(U) curve. Our three node network has
a symmetrical traffic matrix, all its links are bidirectional and all its nodes have switching
capabilities. When we mention an OD pair [, j], we mean both [4, ] and [4, i]; accordingly, this

three node example has three OD pairs and not six.

The traffic is represented by a single symmetric 3 x 3 matrix, 7. That is, the set S, has only

one element 7. Let:

N
I
o = O

1
0
3

S w N

Also assume that ¢jo = ¢13 = co3 = 60 (recall that ¢;; is the total capacity between node ¢ and
node 7). This means, since the topology is bidirectional, that for every link we have 30 units

of capacity in each direction.

Figure 1: The three node topology
The set S1(U) has three matrices, T1(1,2), T1(1,3), and Ty(z,3), related to the OD pairs [1,2], [1,3]

10



and [2,3] respectively. The matrices are:

0 ]_(]_ + U) 2(1 - 7“1(172))
Ti1,9) = 1(1+U) 0 3(1 —ri1,2))
2(1 - 7“1(1,2)) 3(1— 7“1(1,2)) 0
where ’1“1(172) = U/5
0 ]_(]_ - 7"1(173)) 2(1 + U)
Ty = | WL —ria3) 0 (L —ri3)
2(1 + U) 3(1 - ’1“1(173)) 0
where ’1“1(173) = U/2
0 1(1 - 7“1(2,3)) 2(1 - 7“1(2,3))
T3 = | WL —ria3) 0 3(1+U)
2(1 - ’1“1(273)) 3(1 + U) 0

where ’1“1(273) =U.

The set So(U) also has three matrices, T 1, T2, and T3, related to the nodes 1, 2, and 3

respectively. The matrices are:

0 11+0U)  201+70)
T2,1 = ]_(]. + U) O 3(1 —_ 7"2(1))

where 791y =U.

Tho=| 11+0U) 0 3(1+U)
where 799y = 2U.
T2,3 = ]_(]_ — 7“2(3)) O 3(1 + U)
21+U) 31+10) 0

where 793y = 5U.

The six matrices in S;(U) and S3(U) form the set S(U). To obtain the curve ¥*(U), we
first calculate 1* for the case U = 0, where ¢* is the maximal % such that ¢T is feasible.
To find 9* we solve a series of feasibility problems, where we try values of ¥ to determine
if they are feasible. Each feasibility problem has two sets of constraints. The first set, the
traffic requirement constraints, ensure that the traffic demand between any OD pair is fully
satisfied. The second set (the capacity constraints) ensures that the total flow passing through

any individual link of the network does not exceed the capacity of that link.

11



For any OD pair [u,v], the traffic requirement constraint is:

Z xﬁy = tyy
PEPyy
where t,, is the traffic demand from node u to node v, P,, is the set of working paths from

node u to node v in the network and zf is the amount of flow sent from node u to node v

through working path p.

The capacity constraint for a given link (4, j) € E is:
(> Fah,) <y
r pEPuv
where ¢;; is the capacity of (4, 5) link, I is the set of all OD pairs in G and 6% is an indicator

function which is equal to one if path p uses link (4, 7) and is zero otherwise.

The set of all constraints of type one and two, together with all nonnegativity constraints

(P, > 0), form the feasibility problem (FP).

Z b =ty for all w,v €V (FP)
PEPyy
DD dhah,) <ey for all (i,5) € E
I pePuy

2, >0 forall wy,veVandforallpel

Note that ¢ appears on the right hand side of the first set of constraints in our model.

To find 1* the values (t,,) are substituted by (1t,,) for some 1) € IRT. The feasibility of (FP)
can be checked in polynomial time using the Simplex algorithm. The only task is to find the

maximum 1 value such that (FP) remains feasible.

Returning to our example, the bound on U, from the previous section, is Upyge, = 0.2. We
consider the points U = §Umaz, 2Umas 5 3Umaz » §Umaz > 3Umass 2Umazs 2Umaz » SUmaz
and for each of these points, we derive U*(U). Let \Ilf(m)(U), \IJ{(L?,)(U) and \IJT(273)(U) be
the maximal values for ¥ such that ¥T1(1,2), ¥T1(1,3) and T1(2, 3) are feasible, respectively.
Then let \Ilg(l)(U), \113(2)(U) and \113(3)(U) be the maximal values for v such that 1ta(1), 1t2(2)
and te(3) are feasible, respectively. These six optimization problems are identical to the first

one performed to obtain 1*. After performing these optimization problems:
UH(U) = min{ ¥, 5)(U), U1 3(U), ¥iga,3)(U), U1y (U), Uy (U), 5y (U) }-

In Table 1 we present these results. We note, by comparing \Ilf(m)(U) and \Pg(l)(U), that

the normalization we have used does prevent an increase in traffic at a node from masking

12



U 0.025 | 0.050 | 0.075 | 0.100 | 0.125 | 0.150 | 0.175 | 0.200
\IJT(l,2)(U) 11.721 | 11.721 | 11.721 | 12.208 | 12.208 | 12.208 | 12.208 | 12.208
vl 173)(U) 11.721 | 11.721 | 11.721 | 11.721 | 11.721 | 11.721 | 11.721 | 11.721
@{(273)(U) 11.721 | 11.721 | 11.721 | 11.721 | 11.233 | 11.233 | 11.233 | 11.233
\Ilg(l) (U) | 12.055 | 12.117 | 12.178 | 12.238 | 12.299 | 12.360 | 12.421 | 12.497
\113(2) (U) | 12.055 | 12.117 | 12.178 | 12.238 | 12.299 | 12.360 | 12.421 | 12.497
\113(3)(U) 11.705 | 11.416 | 11.157 | 10.898 | 10.655 | 10.426 | 10.198 | 10.000

Table 1: The 9* values for the three node example

the effect of OD pair traffic shifts. We can also begin to see how we might use this measure
as a network desgin tool. In the table, U*(U) = \113(3)(U) for all values of U, implying that
node 3 is the bottleneck. If we were to add capacity, we should add it at this node. This is
important because it tells the designer on which links capacity should be added to improve

network lifetime.

11.8
11.6
114
11.2
11
W *(U) 10.8
10.6
10.4
10.2
10
9.8 T T T T T T T T T T
0.00 002 004 006 008 010 012 014 016 018 0.20 0.22

U

Figure 2: The lifetime function U*(U) for the three node example

5 Lifetime Comparison between Several Topologies

In this section we derive the U*(U) curves for a dual ring, chordal ring, Manhattan Street and
hierarchical network. The first three networks are regular topologies. The hierarchical network

has six nodes in the lower layer, and two in the upper layer.

All of the networks have 8 nodes and bidirectional links. For each link ¢;; = 1000, so that the

capacity in each direction is 500. All of the nodes have switching capabilities, except in the

13



hierarchical network where only the nodes in the upper layer can forward traffic between nodes.

Symmetrical traffic matrices are applied to all of the networks. The set S has two elements:

0 9 6 2 10 3 7 11 0 9 18 5 12 16 5 21
9 0 11 3 19 6 14 22 9 0 12 3 8 11 3 14

6 11 0 2 13 4 9 15 18 12 0 6 15 21 6 27

. 2 3 2 0 4 1 3 4 . 5 3 6 0 4 6 2 7
T =119 19 13 4 0 7 16 25 Li)=119 g 15 4 0 14 4 17
3 6 41 7 05 8 16 11 21 6 14 0 6 24

7 14 9 3 16 5 0 18 5 3 6 2 4 6 0 7

11 22 15 4 25 8 18 0 | (21 14 27 7 17 24 7 0 |

In the implementation process, the following routing strategies in terms of the maximum hop
limits have been considered . For dual ring example, seven-hop path limit is selected, which in
our example it would provide all possible paths between any OD pair in the network. In the
remaining examples, four-hop path limit was considered to be significantly sufficient to provide

a large number of working paths between any OD pair in the network.

5.1 Dual ring

Dual rings were first used in data networks, such as FDDI [13], [7], to make the networks more
reliable. They are now used to make SONET networks [11] and newly installed, long haul
fiber networks more reliable. Dual rings are therefore entrenched in our telecommunications

networks.

Figure 3 is the topology of the dual ring in our example.

Figure 3: The eight node dual ring topology
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5.2 Chordal ring

It has long been recognized that dual rings can be improved. Chordal rings [12] were studied in
the early 80’s. They have the same number of links as the dual rings, but can be more reliable

and have a smaller average distance between nodes [6].

Figure 4 is the topology of the chordal ring in our example.

Figure 4: The eight node chordal ring topology

5.3 Manhattan Streets

At present, mesh networks, with the same number of links as dual rings, are being considered to
replace these ring. One of the first regular, two-connected mesh networks was the Manhattan
Street Network (MSN) [8]. This network is a grid of directed links that form rows and columns
and is conceptually constructed on the surface of a torus. The adjacent rows and columns in
this network have flows in opposite directions. These networks are much more reliable than the
two-connected ring networks and have a shorter distance between nodes [3]. Unlike the chordal
rings, there is a strategy for increasing the number of nodes in the MSN without rewiring the

entire network [9].

MSN’s with bidirectional links have also been studied [2], [1]. The bidirectional MSN is the

basis for our undirected network.

Figure b5 is the topology of the MSN in our example.
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Figure 5: The eight node Manhattan Street Network Topology
5.4 Hierarchical undirected network

Our hierarchical network also has eight nodes. Six of the nodes are lower layer nodes (represent-
ing local access switches) and two are higher layer nodes (representing core network switches)
as shown in Figure 6. The lower layer switches cannot switch traffic between two other nodes.
A link between two lower layer nodes can only carry traffic that originates at one of the nodes
and is destined for the other. This type of switching architecture is commonly used in the

current telephone network.

Figure 6, is the topology of the hierarchical network in our example.

Figure 6: The eight node hierarchical network example
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5.5 Lifetime comparison

Figure 7 is a plot of ¥(U) as a function of U for the four topologies. According to our metric,
there is one network, the chordal ring, that can clearly support more growth than the others.
There is also an example of two networks, the bidirectional loop and the Manhattan Street
Network, that have different evaluations depending upon whether we want to plan for uni-
form growth or want to plan for perturbations of the traffic. There is also one network, the

hierarchical network that is clearly inferior to the others, and will sustain the least growth.

—e—Dual ring

—=— Chordal ring

—e— Hierarchical

—>— Manhattan street

Figure 7: The lifetime function U*(U) for the four topologies

It is important to understand that lifetime is not only a function of the topology. It de-
pends very much also on the initial traffic, i.e., on the set of initial traffic matrices § =
{[T1(3, )], [T2(%, 5)], ---, [Tn (4, §)]}. The implication of this fact is that the choice of optimal

topology from the point of view of lifetime depends on the initial traffic load.
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Figure 8: The lifetime function U*(U) for the hierarchical and Manhattan Street topologies
based on only T} (4, )

130 (-
125 1-

12.0 -

——Hierarchical
—=- Mamhattan Street

115 -
W)
LL0 v e
D05 v e
10.0 : : : : : : : ‘
0.000 0015 0.030 0.045 0.060 0.075 0.090 0.105 0.120
u

Figure 9: The lifetime function U*(U) for the hierarchical and Manhattan Street topologies
based on only Ts(%, )
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In figures 8 and 9 which demonstrate that the lifetime of a network is dependent on the
initial traffic load distribution. In Figure 8 we compare between the lifetime function of
the hierarchical and the Manhattan Street topologies where the set of initial traffic matrices
(S) has only one element - the matrix 77(, ), while in Figure 9, we compare between the
lifetime of these two topologies under the case S = {[T2(%, j)]}. Clearly, the results in Figure 8
demonstrate better lifetime for the Manhattan Street topology, while the results of Figure 9

show the opposite.

6 Application to an IP Backbone Network

We now consider the realistic IP backbone network presented in Figure 10. This network is
similar to the part of the AT&T IP backbone network of 2Q2000 (provided in [4]) which is
connected by OC48 links (all of the links are 2.4 Gbps in each direction).

Seattle

Cambridge

Minneapolis

Sacramento
R D
L P e — >

San Francisco v v
X O
Los Angeles' . Bridgeton
‘ . . Atlanta
‘ Phoenix ‘ .

San Diego .
Dallas

. Houston Orlando

New York

Pittsburgh

Washington

Austin

Figure 10: The IP backbone network

As discussed in Section 3, a proper way to apply the measure is in an hierarchical way, and at
each layer to apply the measure to nodes and links of the same type. This way, we can expect
the uniform shift principle to apply. Then, in Figure 11, we assign a number to each of the
nodes of Figure 10. These numbers are then used in Figure 12 to present the OD traffic matrix
we have used. The numbers in Figure 12 were randomly chosen and they do not represent any
real measured traffic. The choice of symmetric traffic is also arbitrary and our model is also
applicable to asymmetric traffic. We applied our procedure for this IP backbone network and

we obtained the lifetime curve of Figure 13. The following assumptions were made: (1) the

19



hop limit &£ = 4, (2) the number of working paths between any OD pair was unlimited, and (3)

only node traffic shifts was considered.

From observing the lifetime curve, we conclude the following: The topology can tolerate some
shifts, but for U > 2, the lifetime is getting close to one. We provided lifetime values of less
then one to see how fast the curve decays. Of course, U*(U) values of less than 1 means that

the current topology cannot support such traffic shifts.

Node Number Node Name Node Number Node Name

1 Cambridge 14 Houstin

2 Hartford 15 San Diego

3 New York 16 Los Angeles
4 Philadel phia 17 San Francisco
5 Pittsburgh 18 Sedttle

6 Detroit 19 Minneapolis
7 Chicago 20 Omaha

8 Washington 21 Kansas City

9 St. Louis 22 Bridgeton
10 Atlanta 23 Denver
11 Orlando 24 Salt Lake City
12 Dallas 25 Sacramento
13 Austin 26 Pheonix

Figure 11: Node numbers

We also note that for the case U = 0, when lifetime ends 12 links become saturated together.
The links are: (8,10), (10,12), (7,17), (17,18), (7,9), (7,21), (17,25), (9,20), (12,21), (17,23),
(9,17), (9,12). This means that when the lifetime (assuming no shifts) reaches its end, signifi-
cant investment will be required as long-range link such as Chicago - San Francisco will require
upgrade. On the other hand, for the case U = 1.3, only five links become saturated (7,17), (7,9),
(17,25), (12,23), (9,12), when lifetime ends, again, the link (7,17) (San Fransisco-Chicago)is

still one of the links that reaches saturation and requires upgrade.

7 Conclusions

We have presented a new measure for comparing networks. The measure determines which
networks are likely to last longer if the traffic grows in a uniform manner, and which networks

are likely to last longer under shifts in load.

We are not aware of any previous measures that try to predict the ability of a network to
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1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0[ 44[37] 39| 27| 28[ 46| 16| 46| 48[ 44| 17]| 32| 50( 47| 30| 54| 50( 18| 53] 30| 36| 46{ 18] 39| 34
44| 0] 27( 40| 41] 26| 27( 49| 48| 39| 55| 52 25| 43| 55| 25| 37| 20| 55| 43| 16| 39| 20| 20( 47| 27
37(27] 0] 17(27|31]|52) 53| 55| 32| 27| 22| 22| 41| 32| 56| 68 29| 41| 24| 23| 39| 19| 34| 52| 26
39(40]|17] 0[47[31]27)52|41[41]|33]|19|38[43|52)49| 16[ 37| 52| 33| 43| 36{ 36| 34| 30 32
27(41) 27| 47| 0Of 26| 18| 25| 55{ 18] 31| 30| 35 22| 34| 26| 41 37| 22| 53| 42[ 36| 31| 20| 47| 34
28[ 26| 31| 31| 26 0] 46)39|49[ 16| 24| 18| 20{ 29| 21| 16| 37( 42| 37| 49| 19| 23| 43| 34| 30( 21
46)| 27| 52( 27| 18| 46| 0 44[ 53| 37| 19| 46{ 32| 34| 35| 48[ 53| 19| 39| 22 53| 19| 33| 26 50| 46
16[ 49( 53] 52) 25| 39[ 44| 0]|26|42[26]19| 17| 28[ 47| 27| 25| 35| 26{ 29| 17| 35| 24| 50| 39| 46
46] 48| 55[ 41| 55| 49| 53| 26 0] 53] 29| 37{ 19| 41| 32| 54 20| 52| 40| 29 21| 35| 24| 55| 21| 17
48] 39| 32( 41| 18] 16| 37(42[ 53| 0] 29| 37[52| 37| 32| 49( 49| 42| 44| 55( 29| 35| 32| 43| 23| 32
44[55( 27| 33| 31| 24| 19( 26( 29| 29| 0] 37| 48 37| 33| 36| 25| 40 35| 43| 51| 30| 28| 27| 22| 37
17(52(22] 19| 30| 18[ 46| 19| 37| 37| 37| 0] 24| 39| 30| 51| 35| 23| 43| 45| 40| 47| 22| 48] 24| 54
32[ 25| 22| 38[35[20]32)17]19[{52]| 48| 24| 0[18]|18)|47|31[34]20]20|22(17|44]|37|38[24
50[ 43] 41| 43( 22[ 29| 34| 28| 41[ 37| 37| 39| 18| 0| 34| 45| 46[ 31| 52| 45| 19| 41 44| 16] 33| 32
47]55|32[52| 34| 21| 35[47( 32| 32| 33/ 30{ 18| 34| 0| 27[ 55| 48| 43| 32 45| 27| 30| 33| 53| 20
30| 25| 56| 49| 26| 16| 48] 27| 54{ 49| 36| 51| 47( 45| 27| 0] 65 29| 20| 23| 19( 33| 54| 37| 35| 54
54| 37]| 68| 16[ 41| 37| 53] 25| 20{ 49| 25| 35| 31| 46| 55| 65| 0f 24| 31] 31| 27( 36| 21| 36| 54( 38
50( 20| 29| 37 37| 42| 19| 35| 52 42| 40| 23| 34| 31| 48] 29| 24 0] 52| 42| 33| 43| 18] 46| 44| 35
18| 55[ 41| 52| 22| 37| 39| 26| 40| 44 35| 43| 20| 52| 43| 20| 31| 52| 0f 22| 24| 29[ 47| 18| 36| 46
53| 43| 24| 33| 53| 49| 22| 29| 29 55| 43| 45| 20 45| 32| 23| 31| 42| 22| 0| 48| 29| 54| 48] 42| 52
30[ 16| 23| 43[42[ 19| 53] 17| 21[ 29| 51| 40| 22| 19| 45| 19| 27 33| 24| 48| 0| 51 32| 20| 54| 47
36/ 39| 39| 36| 36/ 23[ 19( 35| 35| 35| 30| 47[ 17[ 41| 27 33| 36| 43[ 29[ 29| 51| 0] 43| 32| 16[ 22
46] 20| 19| 36| 31| 43| 33| 24 24| 32| 28| 22( 44| 44| 30| 54 21| 18] 47| 54 32| 43| 0] 22| 36| 32
18] 20| 34| 34 20( 34| 26| 50| 55| 43| 27| 48| 37| 16| 33| 37| 36/ 46| 18] 48] 20| 32| 22 0] 20| 27
39[47] 52| 30[{ 47[ 30| 50| 39| 21 23| 22| 24| 38 33| 53| 35| 54( 44| 36| 42| 54| 16{ 36| 20| 0[41
34[27] 26| 32| 34[ 21| 46) 46| 17| 32| 37| 54| 24| 32| 20| 54| 38 35| 46| 52| 47( 22{32|27]41| O

00 ~NO® OIS WN B

[

=
o

[N
[

=
N

-
w

=
>

-
[¢)]

=
(2]

[y
~

=
[e2)

-
©

N
o

N
[y

N
N

N
W

N
N

N
[¢)]

N
[e2)

Figure 12: The OD traffic matrix

survive change. However, we believe that this criterion is about to become very important

because of current fiber and Internet technology.

Our measure is a composite of many components. In Section 5 we show how to use the
composite measure to compare topologies. These comparisons can be used to evaluate new
networks or target topologies of an existing network. Earlier, in section 4 we showed how to
calculate the value of the measure and how to view its components to isolate the bottlenecks
in a network. This shows how to make improvements on a new topology before it is installed
or to determine where links should be added in an existing network. This has been achieved
for a network of realistic size in section 6. The main reason for defining and comparing the
networks in Section 5 is to show how our measure is used, not to recommend one topology
over another. Clearly different traffic distributions or different size networks would change the
comparisons. However, it should be noted that the two networks that are currently being used
in our telecommunications networks, the hierarchical network and the bidirectional ring, had

the poorest performance.
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