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Abstract

We present the Progressive Second Price auction, a new decen-
tralized mechanism for allocation of variable-size shares of a resource
among multiple users. Unlike most mechanisms in the economics lit-
terature, PSP is designed with a very small message space, making
it suitable for real-time market pricing of communication bandwidth.
Under elastic demand, the PSP auction is incentive compatible and
stable, in that it has a \truthful" �-Nash equilibrium where all players
bid at prices equal to their marginal valuation of the resource. PSP
is economically e�cient in that the equilibrium allocation maximizes
total user value. With simulations using a protype implementation
of the auction game on the Internet, we investigate how convergence
times scale with the number of bidders, as well as the trade-o� between
engineering and economic e�ciency. We also provide a rate-distortion
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theoretic basis for valuation of bandwidth, which leads naturally to the
elastic demand model that is assumed in the analysis of the mechanism.

Keywords: resource allocation, auctions, game theory, mechanism
design, network pricing.

1 Introduction

Communication networks are characterized by what economists call exter-
nalities. The value a user gets from the network depends on the other
users. The positive externalities are that a communication network is more
valuable if more people are connected. The negative externalities are that
resources are shared by users who { because of distance, population size, or
sel�shness { cannot or will not coordinate their actions su�ciently to achieve
the most desirable allocation of resources. The recognition of this reality in
many aspects of networks and distributed computations has lead in recent
years to the emergence of game theoretic approaches in their analysis and
design [23, 9, 25, 33, 15, 16].

Prices, whether they relate to \real money" in a public network or \funny
money" (based on quotas) in a private system, play a key role as allocation
control signals. In the former case, this role is of course intimately tied to
another, which is to allow a network provider to remain in business [7].

The telephone system and the current Internet represent two extremes
of the relationship between resource allocation and pricing. The resources
allocated to a telephone call are �xed, and usage prices are based on the
predictability of the total demand at any given time. On the Internet, the
current practice of pricing by the maximum capacity of the user's connection
(
at-rate pricing) decouples the allocation (actual use) of resources from the
prices.

In the emerging multiservice networks (ATM, Next-Generation Inter-
net), neither of these approaches are viable. The former because of the wide
and rapidly evolving range of applications (including some which adapt to
resource availability) will make demand more di�cult to predict. And the
latter because, once the 
at fee is paid, there are no incentives to limit usage
since increasing consumption bene�ts the user individually, whereas limiting
it to sustainable levels brings bene�ts which are shared by all. This makes
it vulnerable to the well-known \tragedy of the commons". With 
at pric-
ing alone, the tendency is toward increasing congestion which chases away
high-value users, or increasing prices which exclude low-value users [6], in
both cases leading to decreased network revenue.
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Thus there is a need to develop new approaches to pricing of network
resources. Among the requirements are: sensitivity to the range of resource
requirements (either through a su�ciently rich range of tra�c classes which
are priced di�erently, or by allowing users to explicitly quantify resource
requirements); prices must be dynamically responsive to unpredictable de-
mand (market based system); perhaps most importantly the pricing archi-
tecture should constrain as little as possible the e�ciency trade-o�s of the
policies.

Indeed, the fundamental issue in designing pricing policies is the trade-
o� between engineering e�ciency and economic e�ciency. This trade-o�,
which is more or less constrained by the underlying network technology, has
many dimensions, including:

� how much measurement (from usage to capacity pricing),

� the granularity of di�erently priced service o�erings (e.g. number of
tra�c classes),

� the level of resource aggregation { both in time and in space { at which
pricing is done (per packet/cell or per connection, at the edge of the
network or at each hop), and

� the information requirement (how much a priori knowledge of user
behavior and preferences is required/assumed by the network in com-
puting prices).

An approach which achieves economic e�ciency is the smart-market ap-
proach of [19], wherein each packet contains a bid, and if it is served, pays
a clearing price given by the highest bid among packets which are denied
service (dropped). This approach is incentive compatible in that the optimal
strategy for a (sel�sh) user is to set the bid price in each packet equal to
the true valuation. Each node in the network becomes an e�cient market,
but the engineering cost (sorting packets by bid price, as well as per-packet
and per-hop accounting) could be signi�cant if line speeds are high relative
to the processing power in the router. In [14], users are charged according
to a combination of declared and measured characteristics of tra�c. By
taking an equivalent bandwidth model of resource utilization, and assuming
appropriate tra�c models, a menu of pricing plans indexed by the declared
tra�c can be o�ered which encourages users to make truthful declarations
(e.g. of the mean rate), and also encourages the users' characterization ef-
forts to be directed where they are most relevant to the network resource
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allocation. As the pricing is relative, [14] does not aim to address the prob-
lem of determining the actual monetary values of the market price (that
users would be willing to pay). Another pricing scheme which incorpo-
rates multiplexing gain is formulated in [12]. These and a number of other
schemes are summarized in [11], in a comprehensive view of the connection
establishment process, which identi�es the user-network negotiation as the
key \missing link" in network engineering/economic research. In terms of
our taxonomy of the previous paragraph, this is part of the information re-
quirement trade-o�. Indeed, in the absence of formal mechanisms to deal
with the information problem, complex and (at least intuitively) undesirable
things happen. For example, some providers o�er expensive \front of the
book" rates to uninformed customers, and lower \back of the book" rates to
informed customers who may be about to defect to another carrier (see [7]
and also the recent wars between AT&T and MCI in consumer long-distance
service in the United States). In [34], it is argued that architectural consid-
erations such as where charges are assessed should take precedence over the
pursuit of optimal e�ciency, and edge pricing (spatial aggregation in terms
of our taxonomy) is proposed as a useful paradigm.

In this paper, we propose a new auction mechanism which accommodates
various dimensions of the engineering-economics trade-o�. The mechanism
applies to a generic arbitrarily divisible and additive resource model (which
may be equivalent bandwidth, peak rate, contract regions, etc., at any level
of aggregation.) It does not assume any speci�c mapping of resource allo-
cation to quality of service. Rather, users are de�ned as having an explicit
monetary valuation of quantities of resource, which the network doesn't or
can't know a priori. Thus, in terms of our trade-o� taxonomy, this mech-
anism aims for unlimited granularity, 
exibility in the level of aggregation
and minimal information requirement.

In the most likely auction scenaria, users would be aggregates of many

ows data 
ows for which bulk capacity is being purchased for e.g. Virtual
Paths, Virtual Private Networks, or edge capacity [2, 31].

We begin in Section 2 by formally presenting the design of our Progres-
sive Second Price auction mechanism for sharing a single arbitrarily divisible
resource, and relating it to classical mechanism design from the economics
litterature. In Section 3, after describing our model of user preferences
and the elastic demand assumption, we prove that PSP has the desired
properties of incentive compatibility, stability, and e�ciency. The section
concludes with simulation results on the convergence properties, and the
e�ciency trade-o�s. Appendix A describes an information theoretic basis
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for valuations of the type that are assumed in the analysis of Sections 3, as
one possible justi�cation.

2 Design of an Auction for a Divisible Resource

2.1 Message Process

Following [36], it is useful to expose the design in terms of its two aspects:
realization, where a message process that enables a certain allocation ob-
jective is de�ned; and Nash implementation, where allocation rules are de-
signed with incentives which drive the players to an equilibrium where the
(designer's) desired allocation is achieved.

In this section we de�ne the message process. Here we make the fun-
damental choice which will constrain the subsequent aspects of the design.
Our �rst concern here is with engineering. For the sake of scalability in a
network setting, we shall aim for a process where a) the exchanged messages
are as small as possible, while still conveying enough information to allow
resource allocation and pricing to be performed without any a-priori knowl-
edge of demand (market research, etc.); and b) the amount of computation
at the center is minimized.

Given a quantity Q of a resource, and a set of players I = f1; : : : ; Ig,
an auction is a mechanism consisting of: 1) players submitting bids, i.e.
declaring their desired share of the total resource and a price they are willing
to pay for it, and 2) the auctioneer allocating shares of the resource to the
players based on their bids.

Player i's bid is si = (qi; pi) 2 Si = [0; Q]� [0;1), meaning he would like
a quantity qi at a unit price pi. A bid pro�le is s = (s1; : : : ; sI). Following
standard game theoretic notation, let s�i � (s1; : : : ; si�1; si+1; : : : ; sI), i.e.
the bid pro�le of player i's opponents, obtained from s by deleting si. When
we wish to emphasize a dependence on a particular player's bid si, we will
write the pro�le s as (si; s�i).

The allocation is done by an allocation rule A,

A : S �! S
s = (q; p) 7�! A(s) = (a(s); c(s));

where S =
Q
i2I Si.

The i-th row of A(s), Ai(s) = (ai(s); ci(s)), is the allocation to player
i: she gets a quantity ai(s) for which she is charged ci(s). Note that p is a
price per unit and c is a total cost.
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An allocation rule A is feasible if 8s,
X
i2I

ai(s) � Q

and 8i 2 I,
ai(s) � qi;

ci(s) � piqi:

Remark a: The above formulation is a generalization of what is usually
meant by an auction. The latter is the special case where aw(s) = Q for
some winner w 2 I and ai(s) = 0; 8i 6= w, i.e. the sale of a single indivisible
object to one buyer, for which the theory is well developed [22, 24]. In our
approach, allocations are for arbitrary shares of the total available quantity
of resource. Equivalently, one could slice the resource into many small units,
each of which is auctioned as an indivisible object. But in a practical imple-
mentation of auctions for sharing a resource, a process of bidding for each
individual unit would result in a tremendous signaling overhead. More im-
portantly, since the users would be bidding on a discrete grid of quantities,
analytical predictions of outcomes could be misleading since they could be
sensitive to the particular choice of grid1.

Remark b: Most of the mechanism design literature in Economics
makes use of the following \Revelation Principle":

Given any feasible auction mechanism, there exists an equivalent2

feasible direct revelation mechanism which gives to the seller and
all bidders the same expected utilities as the given mechanism.
([24], Lemma 1)

In this sharing context, a direct revelation mechanism would be one where
each user message consists of the user's type, which is the valuation3 of the
resource over the whole range of their possible demands, i.e. a function
�i : [0; Q] ! [0;1), and the budget (see Section 3.1). A consequence of
revelation principle is that the mechanism designer can restrict her atten-
tion to direct revelation mechanisms, �nd the best mechanism in terms of

1For a more detailed discussion of this point, see [4] p. 34, and references therein.
2By equivalent, in [24] it is meant that, at some equilibrium, all players get the same

utility. There may be other, possibly ill-behaved, equilibria.
3The valuation of a given amount of resource is how much the user is willing to pay for

that quantity. The inverse of the valuation is the user's demand function, giving a desired
quantity for each price.
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her (economic) e�ciency objectives, and then { if necessary { transform it
into an equivalent mechanism in the desired message space. This is conve-
nient because one can exclude the in�nitely many mechanisms with larger
message spaces, without fear of missing any better designs. The design pro-
cess is usually the solution of an optimization (mathematical programming)
problem. For this reason, in the litterature, mechanism design problems are
mostly solved for cases where the space of users' types is one dimensional,
or at most �nite dimensional [21], using message spaces that are of the same
dimension.

In our sharing problem, the conventional approach is unsatisfactory in
two ways:

� First, a user's type is in�nite-dimensional, as we do not restrict the
valuation functions beyond some very general assumptions (see Sec-
tion 3.1), and so the conventional \programming" approach of de-
riving the mechanism from the revelation principle would lead to an
intractable problem.

� Second, the conventional (direct revelation) approach, even if it was
tractable, implies that a single message (bid) can theoretically be in-
�nitely long, because it has to contain a description of the function �i.
Clearly, this is not desirable in a communication network, where sig-
naling load is a key consideration. For engineering reasons, we choose
a message space that is 2-dimensional. Therefore, a given message can
come from many possible types, so there is no single way to do the
transformation from the direct revelation mechanism to the desired
one.

Thus, unlike most of the mechanism design literature, we will take a di-
rect approach, where we posit an allocation rule for our desired message
space, and then show that it has an equilibrium, and that the design objec-
tive is met at equilibrium4 . This is equivalent to guessing the right direct-
revelation-to-desired-mechanism transformation and building it into the al-
location rule from the start.

4Our aim is to to show that we can use this smaller message space and still achieve our
objective.
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Figure 1: Exclusion-compensation principle: the intuition behind the PSP
rule

2.2 Allocation Rule

De�ne, for y � 0

Q
i
(y; s�i) =

2
4Q�

X
pk�y;k 6=i

qk

3
5
+

: (1)

and

Qi(y; s�i) = lim
�&y

Q
i
(�; s�i) =

2
4Q�

X
pk>y;k 6=i

qk

3
5
+

:

The \progressive second price" (PSP) allocation rule is de�ned as follows:

ai(s) = qi ^ Q
i
(pi; s�i); (2)

ci(s) =
X
j 6=i

pj [aj(0; s�i)� aj(si; s�i)] ; (3)

where ^ means taking the minimum.
Remark a: For a �xed opponent pro�le s�i, Qi(pi; s�i) represents the

maximum available quantity at a bid price of pi. The intuition behind

PSP is an exclusion-compensation principle: player i pays for his allocation
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so as to exactly cover the \social opportunity cost" which is given by the de-
clared willingness to pay (bids) of the users who are excluded by i's presence
(see Figure 1), and thus also compensates the seller for the maximum lost
potential revenue. Note that this amounts to implicitly assuming that the
bid price accurately re
ects the marginal valuation �0i on the range [ai; qi].
In other words, by this rule the auctioneer is saying to the player: \if you
bid (qi; pi), I take it to mean that in the vicinity of qi, �i can be approxi-
mated by a line of slope pi." This is the (built-in) transformation from the
direct-revelation mechanism to the desired message process discussed in the
second remark at the end of Section 2.1.

The charge ci increases with ai in a manner similar to the income tax in
a progressive tax system. For a �xed opponent pro�le s�i, imagine player i
is increasing qi, starting from 0. The �rst few units that player i gets will be
taken away from the lowest clearing opponent (i.e. m = argminjfpj : aj >
0g), and player i will pay a price (marginal cost) pm per unit. When am
reaches 0, the subsequent units that player i gets will cost him pm0 > pm,
where m0 is the new lowest clearing player, the one just above m. The
PSP rule is the natural generalization of second-price auctions (or Vickrey
auctions). In a Vickrey auction of a single non-divisible object, each player
submits a sealed bid, and the object is sold to the highest bidder at the bid
price of the second highest bidder, which is what happens here if qi = Q; 8i.
This is widely known to have many desirable properties [35, 24, 4], the most
important of which is that it has an equilibrium pro�le where all players bid
their true valuation. As we will presently show, this property is preserved
by the PSP rule in the more general case of sharing an arbitrarily divisible
resource, and this leads to stability (Nash equilibrium). The PSP rule is
analogous to Clarke-Groves mechanisms [3, 8, 20] in the direct-revelation
case.

Remark b: When two players bid at exactly the same price, and they
are asking for more than is available at that price, (2) punishes both of them.
For example, if Q = 100 and s1 = (4; 60) and s2 = (4; 70), the allocations
would be a1 = 60 ^ (100� 70) = 30, and a2 = 70 ^ (100� 60) = 40. Since
the bid prices are equal, there is no \right" way to decide who to give the
remaining capacity to. One could divide it equally, or proportionally to their
requests, etc. For the subsequent analysis, it turns out it is simpler to not
give it to either one (of course, it will be allocated to the lower bidders if
there are any). This is just a technicality since by deciding this, we ensure
that it will never happen (at equilibrium), since the users will always prefer
to change their prices and/or reduce their quantity.
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Considering the computational complexity of PSP, a straightforward im-
plementation would at worst, sort the bids in time I log I , perform (2) in
linear time, and (3) can be done in time I2. Thus, the complexity of com-
puting the allocations is O(I2).

3 Analysis of the Progressive Second Price Auc-

tion

3.1 User Preferences

Since the allocation rule A is given by design, the only analytical assump-
tions we make is on the form of the players' preferences.

Player i's preferences are given by his utility function

ui : S �! (�1;1)
s 7�! ui(s):

Player i has a valuation of the resource �i(ai(s)) � 0, which is the total
value to her of her allocation. Thus, for a bid pro�le of s, under allocation
rule A, player i getting an allocation Ai(s) has the quasi-linear utility

ui(s) = �i(ai(s))� ci(s) (4)

which is simply the value of what she gets minus the cost.
In addition, the player can be constrained by a budget bi 2 [0;1], so

the bid si must lie in the set

Si(s�i) = fsi 2 Si : ci(si; s�i) � big: (5)

In the proofs of the following section, we will assume that users have
elastic demand, that is:

Assumption 1 For any i 2 I,
� �i(0) = 0;

� �i is di�erentiable,

� �0i � 0, non-increasing and continuous

� 9
i > 0, 8z � 0, �0i(z) > 0) 8� < z; �0i(z) � �0i(�)� 
i(z � �).
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The last item says that as long as the valuation is strictly increasing, it must
also be strictly concave (with minimum curvature 
i). However, it is allowed
to \
atten" beyond a certain amount of resource.

Functions of this (concave) form have wide applicability as models of
resource valuation, and can be justi�ed from the economic standpoint (di-
minishing returns) as well as from information theoretic standpoint { see
Appendix A. For examples of valuations satisfying Assumption 1, see Sec-
tion 3.4 and Appendix A.

3.2 Equilibrium of PSP

The auction game is given by (Q; u1; : : : ; uI ; A), that is, by specifying the
resource, the players, and a feasible allocation rule. We analyze it as a
strategic game of complete information [4].

De�ne the set of best replies to a pro�le s�i of opponents bids: S�i (s�i) =
fsi 2 Si(s�i) : ui(si; s�i) � ui(s

0
i; s�i); 8s0i 2 Si(s�i)g. Let S�(s) = Q

i S
�
i (s�i).

A Nash equilibrium is a �xed point of the point-to-set mapping S�, i.e. a
pro�le s 2 S�(s). In other words, it is a point from which no player will
want to unilaterally deviate. Such a point is what is most accepted as a
consistent prediction of the actual outcome of a game, and has been re-
peatedly con�rmed by experiments, as well as a wide range of theoretical
approaches. Indeed, in a dynamic game, where players recompute the best
response to the current strategy pro�le of their opponents, this iteration
can only converge to a Nash equilibrium (if it converges at all). In addition,
an important trend in modern game theory is the development of learning
models, and there too, it has been shown that Nash equilibria result also
from rational learning through repeated play among the same players [13].

A more general (and hence weaker) notion of stability is the existence
of an �-Nash equilibrium. Let the �-best replies be S�i (s�i) = fsi 2 Si(s�i) :
ui(si; s�i) � ui(s0i; s�i)� �; 8s0i 2 Si(s�i)g. An �-Nash equilibrium is a �xed
point of S�.

In a dynamic auction game, � > 0 can be interpreted as a bid fee paid
by a bidder each time they submit a bid. Thus, the user will send a best
reply bid as long as it improves her current utility by �, and the game can
only end at an �-Nash equilibrium.

De�ne
Pi(z; s�i) = inf fy � 0 : Qi(y; s�i) � zg : (6)
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Thus, for �xed s�i, 8y; z � 0,

z � Qi(y; s�i)) y � Pi(z; s�i) (7)

and5

y > Pi(z; s�i)) z � Qi(y; s�i): (8)

The graph of Pi(:; s�i) is the \staircase" shown in Figure 1, and that of
Qi(:; s�i) is obtained by 
ipping it 90 degrees.

It is readily apparent that

ci(s) =
Z ai(s)

0
Pi(z; s�i) dz: (9)

The key property of PSP is that, for a given opponent pro�le, a player
cannot do much better than simply tell the truth, which in this setting means
bidding at a price equal to the marginal valuation, i.e. set pi = �0i(qi). By
doing so, she can always get within � > 0 of the best utility.

Let Ti = fsi 2 Si : pi = �0i(qi)g, the (unconstrained) set of player i's
truthful bids, and T =

Q
i Ti.

Proposition 1 (Incentive compatibility) Under Assumption 1, 8i 2 I,
8s�i 2 S�i, such that Qi(0; s�i) = 0, for any � > 0, there exists a truthful
�-best reply ti(s�i) 2 Ti \ S�i (s�i).

In particular, let

Gi(s�i) =

�
z 2 [0; Q] : z � Qi(�

0
i(z); s�i) and

Z z

0
Pi(�; s�i) d� � bi

�
:

Then with vi = [supGi(s�i)� �=�0i(0)]
+ and wi = �0i(vi), ti = (vi; wi) 2

Ti \ S�i (s�i).

The truthful best reply can be found in a straightforward manner, as
illustrated in Figure 2.
Proof: Fix s�i 2 S�i. Let zi = supGi(s�i) and yi = �0i(zi).

By de�nition of zi, 9fz(n)g � Gi(s�i) such that limn z(n) = zi. Hence bi �
limn

R z(n)
0 Pi(�; s�i) d� =

R zi
0 Pi(�; s�i) d� � ci(ti; s�i), where the equality comes

from the boundedness of Pi and the Lebesgue dominated convergence theorem, and
the second inequality from (9) and (2). Thus ti 2 T \ Si(s�i).

5Actually, since Qi(:; s�i) is upper-semi-continuous (jumps up), we have z �

Qi(y; s�i), y � Pi(z; s�i)
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Q

iθ’

t i

ci = 

ui =

Figure 2: Truthful �-best reply

Next we show that ti 2 S�i (s�i). First, zi = limn z(n) � limnQi(�0i(z(n)); s�i) �
Qi(limn �

0
i(z(n)); s�i), where the inequalities follow respectively from z(n) 2 Gi(s�i),

and the upper semi-continuity ofQi(:; s�i). Now by the continuity of �0i, Qi(limn �
0
i(z(n)); s�i) =

Qi(�
0
i(zi); s�i) = Qi(yi; s�i), hence

zi � Qi(yi; s�i): (10)

Now, we claim that ai(ti; s�i) = vi. Indeed, if zi = 0 then vi = 0 and ai(ti; s�i) = 0.
If zi > 0, then by (10), Qi(yi; s�i) > 0 and since by hypothesis Qi(0; s�i) = 0, we
have �0i(zi) = yi > 0. Also, zi > 0 implies vi < zi. Therefore, by Assumption 1,
we have wi = �0i(vi) > �0i(zi) = yi. Hence, since Q

i
(:; s�i) is non-decreasing,

Q
i
(wi; s�i) � lim�&y Qi

(�; s�i) = Qi(yi; s�i) � zi > vi. Thus, by (2),

ai(ti; s�i) = vi (11)

Now 8si 2 Si(s�i),

ui(ti; s�i) � ui(s)

= �i(ai(ti; s�i)) � �i(ai(s)) � ci(ti; s�i) + ci(s)

=

Z ai(s)

ai(ti;s�i)
[Pi(z; s�i)� �0i(z)] dz:

=

Z ai(s)

zi

[Pi(z; s�i)� �0i(z)] dz +
Z zi

vi

[Pi(z; s�i)� �0i(z)] dz
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�
Z ai(s)

zi

[Pi(z; s�i)� �0i(z)] dz � � (12)

where the inequality follows from (zi � vi) � �=�0i(0) and the fact that �0i is non-
increasing. Thus, it su�ces to show that the integral is � 0.

If zi < ai(s), take any z 2 (zi; ai(s)]. By the de�nition of zi, z 62 Gi(s�i). Now
si 2 Si(s�i) implies bi � ci(s) =

R ai(s)
0 Pi(�; s�i) d� �

R z
0 Pi(�; s�i) d�. Therefore,

we must have z > Qi(�0i(z)), which by (8), implies �0i(z) � Pi(z) and the integrand
in (12) is � 0 as desired.

Suppose zi � ai(si). Since �0i is non-increasing, Qi(:; s�i) is non-decreasing and

Pi(:; s�i) � 0, any point to the left of zi is in the set Gi(s�i), 8z < zi; z 2 Gi(s�i),
hence z � Qi(�0i(z); s�i) which by (7), implies �0i(z) � Pi(z; s�i), so the integrand

in (12) is � 0 as desired. 2

Figure 3 shows the utility function of player 4, u4(s4), in a PSP auction
with I = 5 players, with s�4 �xed, and a valuation �4(q) = 10q. The plateaus

correspond to the points where q4 � Q4(p4; s) =
h
Q�P

fj:pj>p4g aj(s)
i+
,

and a4(s) can no longer be increased at that bid price { see (2). At bid prices
p4 > p5, the utility decreases when a4 > Q � q5, because after that point,
each additional unit of resource is taken away from player 5, and thus costs
p5, which is more than �04 its value to player i. Thus, each additional unit
starts bringing negative utility. This is what discourages users from bidding
above their valuation. Proposition 1 is illustrated by the fact that for any
given quantity q4, the utility u4 is maximized on the plane p4 = �04 � 10.

Remark: When the players have linear valuations and no budget con-
straint (bi = 1), PSP becomes identical to a second-price auction for a
non-divisible object. Then the existence of a Nash equilibrium follows di-
rectly from incentive compatibility.

Note that in PSP, the incentive compatibility (optimality of truth-telling)
is in the price dimension, for a given quantity. With the message space we
have designed, there is no single \true" quantity to declare, the optimal
quantity depends on opponent bid prices. Were the message process such
that players declared a price and a budget (rather than desired quantity),
it may have been possible to design an allocation rule A such that they are
inclined to reveal their true budget, thus obtaining incentive compatibility in
both dimensions, and hence equilibrium. But such a rule A would likely not
have a simple closed form like (2) and (3). In essence, the computational load
of translating budgets into shares would be centralized at the auctioneer,
thus making the system less scalable to large numbers of users. On the
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Figure 3: Utility u4(s4) for s1 = (100; 1), s2 = (10; 2), s3 = (20; 4), s5 =
(20; 7), s6 = (30; 12)

other hand, decentralization has a cost too, which is the signaling overhead
resulting from players possibly adjusting bids based on opponent bids in the
iterated game. Our design is based on the premise that the latter approach
is the more scalable of the two (indeed that was the reason for choosing a
small message space).

The next property is that the truthful best reply is continuous in op-
ponent pro�les (this can be seen in Figure 2: as the \staircase" is varied
smoothly, the point of intersection with �0i moves smoothly, provided �0i is
not 
at { which is given by the last time item in Assumption 1). To prove
that, we will need the following:

Lemma 1 8s; s0 2 S; 8y; z � 0; 8� > 0, if jjs�i � s0�ijj < � then

Qi(y + �; s�i) + �
p
I � Qi(y; s

0
�i) � Qi(y � �; s�i)� �

p
I; (13)

and
Pi(z + �

p
I; s�i) + � � Pi(z; s

0
�i) � Pi(z � �

p
I; s�i)� �: (14)

Proof: First, jjs�i�s0�ijj < � implies
P

k jq0k�qkj < �
p
I , and pk+� > p0k > pk��.

Thus,
P

k qk1fpk+�>yg + �
p
I � P

k q
0
k1fp0k>yg �

P
k qk1fpk��>yg � �

p
I: Then,

using (1) and the identity (a + b)+ � (a)+ + (b)+, the �rst result follows.
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For any y < Pi(z; s0�i), by (7), we have z > Qi(y; s0�i) � Qi(y � �; s�i) � �
p
I,

which by (8), implies y � � � Pi(z + �
p
I; s�i). Letting y % Pi(z; s0�i), we get

Pi(z; s
0
�i) � Pi(z + �

p
I; s�i) + �.

For any y > Pi(z; s
0
�i), by (8), we have z � Qi(y; s

0
�i) � Qi(y + �; s�i) + �

p
I,

which by (7) implies y + � � Pi(z � �
p
I). Letting y & Pi(z; s0�i), we get

Pi(z; s0�i) � Pi(z � �
p
I)� �. 2

Lemma 2 (Continuity of best reply) Under Assumption 1, 8i 2 I, the �-best
reply ti given in Proposition 1 is continuous in s�i on any subset Vi(P; P ) =
fs�i 2 Si : 8z > 0; P � Pi(z; s�i) � P g, with 1 > P � P > 0.

Proof: Let zi = supGi(s�i). We will show zi is continuous, and the continuity of
vi = [zi��=�0i(0)]+ and wi = �0i(vi) follow immediately (recall that by Assumption 1,
�0i is continuous).

Suppose there is a discontinuity at some s�i. Then, 9�1 > 0, such that 8� > 0,
9s0�i 2 Vi(P ; P ) with jjs�i � s0�ijj < � and jjzi � z0ijj � �1, where z0i = supGi(s0�i).

Suppose zi+ �1 � z0i = supGi(s0�i) (the case z0i+ �1 � zi is handled identically,
with s�i and s0�i interchanged. ). Consider the de�nition of Gi; since �0i is decreas-
ing and Qi(:; s�i) is non-decreasing and Pi(:; s�i) � 0, any point to the left of z0i is
in the set Gi(s0�i), therefore

zi + �1 2 Gi(s
0
�i): (15)

Thus, zi + �1 � Qi(�0i(zi + �1); s0�i) =
h
Q�Pk q

0
k1fp0k>�0i(zi+�1)g

i+
. Therefore,

zi + �1 � Qi(�
0
i(zi + �1) + �; s�i) + �

p
I;

using Lemma 1.
Also, by (7) zi + �1 � Qi(�0i(zi + �1); s0�i)) �0i(zi + �1) > P (zi + �1; s

0
�i). Now

since s0�i 2 Vi(P ; P), this last expression is � P > 0, hence �0i(zi + �1) > 0. Then
using Assumption 1, �0i(zi + �2) � �0i(zi + �1) + 
i(�1 � �2) > �0i(zi + �1) + �, for
� < �1 = �1p

I
^ �1
i, and 0 < �2 < (�1 � �1

p
I) ^ (�1 � �1=
i). Therefore, since

Qi(:; s�i) is non-decreasing,

zi + �2 � Qi(�
0
i(zi + �2); s�i) + �

p
I � �1 + �2

< Qi(�
0
i(zi + �2); s�i): (16)

Now (15) also implies that

bi �
Z zi+�1

0

Pi(�; s
0
�i) d�

�
Z zi+�3

0

Pi(�; s�i) d� +
Z zi+�3

0

�
Pi(�; s

0
�i) � Pi(�; s�i)

�
d� + (�1 � �3)P ;
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and this holds 8�3 < �1. Now, using Lemma 1,

Z zi+�3

0

�
Pi(�; s

0
�i)� Pi(�; s�i)

�
d�

� ��Q+

Z zi+�3

0

Pi(� � �
p
I; s�i) d� �

Z zi+�3

0

Pi(�; s�i) d�

� ��Q�
Z zi+�3

zi+�3��
p
I

Pi(�; s�i) d�

� �(Q + P )�
p
I:

Let �2 =
�1P

(Q+P )
p
I
, and �3 such that 0 < �3 < �1 � (Q + P )�2

p
I=P . Then

bi �
Z zi+�3

0

Pi(�; s�i) d�; (17)

for � < �2.

Now choosing � < �1^�2, (16) and (17) imply thatGi(s�i) 3 (zi+�3)^(zi+�2) >
zi = supGi(s�i), a contradiction. 2

We introduce one additional player, player 0, whose valuation is �0(z) =
p0z, and whose bid can therefore be �xed at s0 = (q0; p0) = (Q; p0). Player
0 can be viewed as the auctioneer, and p0 > 0 as a \reserve price" at which
the seller is willing to \buy" all of the resource from himself. From (1), the
presence of the bid s0 = (Q; p0) implies 8i 2 I; Qi(y; s�i) = 0; 8y < p0. In
particular, setting y = 0, the condition of Proposition 1 holds. Thus, we can
restrict our attention to truthful strategies only, and still have feasible best
replies. This forms a \truthful" game embedded within the larger auction
game, where the strategy space is T � S, the feasible sets are Ti \ Si(s�i),
and the best replies are R�

i(s) = Ti \ S�i (s). A �xed point of R� in T is a
�xed point of S� in S. Thus an equilibrium of the embedded game is an
equilibrium of the whole game.

Proposition 2 (Nash equilibrium) In the auction game with the PSP rule
given by (2) and (3) and a reserve price p0 > 0, and players described by (4)
and (5), if Assumption 1 holds, then for any � > 0, there exists a truthful
�-Nash equilibrium s� 2 T .
Proof: 8s 2 T , 8i 2 I, 8z > 0, we have z > 0 = Qi(p0=2; s�i), which by (8)

implies Pi(z; s�i) � p0=2 = P . Let P = maxk2I[f0g �0k(0). Then, the conditions

of Lemma 2 are satis�ed and t = (v; w) is continuous in s on T . By Assump-

tion 1, �0i is continuous therefore v(q; p) = v(q; �0(q)) (as de�ned in Proposition 1),
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can be viewed as a continuous mapping of [0; Q]I onto itself. By Brouwer's �xed-

point theorem (see for example [10]), any continuous mapping of a convex compact

set into itself has at least one �xed point, i.e. 9q� = v(q�) 2 [0; Q]I. Now with

s� = (q�; �0(q�)), we have s� = t(s�) 2 T . 2

3.3 E�ciency

The objective in designing the auction is that, at equilbrium, resources al-
ways go to those who value them most. Indeed, the PSP mechanism does
have that property. This can be loosely argued as follows: for each player,
the marginal valuation is never greater than the bid price of any opponent
who is getting a non-zero allocation. Thus, whenever there is a player j
whose marginal valuation is less than player i's and j is getting a non-
zero allocation, i can take some away from j, paying a price less than i's
marginal valuation, i.e. increasing ui, but also increasing the total value,
since i's marginal value is greater. Thus at equilibrium, i.e. when no one
can unilaterally increase their utility, the total value is maximized. Formally,
consider a 2 argmaxA

P
i �i(ai). The Karush-Kuhn-Tucker [17] optimality

conditions are that there exists a Lagrange multiplier � such that �0i(ai) = �,
if ai > 0, and �0i(0) � �, if ai = 0.

Assumption 2 For any i 2 I, bi =1, and �0i satis�es
6

�0i(z)� �0i(z
0) > ��(z � z0);

whenever z > z0 � 0.

Given any � > 0, for any �-Nash-equilbrium s� 2 T , let a� � a(s�), and
let a� � mini2I[f0g;ai>0 a

�
i , the smallest non-zero allocation. The following

is the \� version" of the Karush-Kuhn-Tucker conditions.

Lemma 3 Suppose Assumptions 1 and 2 hold. If for some j, a�j >
p
�=�,

then 8i 2 I [ f0g,
�0i(a

�
i ) < �0j(a

�
j ) + 2

p
��:

An immediate corollary is that if a� >
p
�=� then

�� � 2
p
�� < �0i(a

�
i ) < �� + 2

p
��

6If �0i is di�erentiable, the condition is 0 � �00i > �� .
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if a�i >
p
�=� and

�0i(a
�
i ) < �� + 2

p
��;

if a�i = 0, for some �� � 0.

Proof: Suppose �0i(a
�
i ) � �0j(a

�
j ) + 2

p
��. Since �0j(a

�
j ) � �0j(q

�
j ) � p�j , we have

�0i(a
�
i ) � p�j + 2

p
��:

Since a�j > 0, if player i bids at a price above p�j , he can take all of player j's
allocation, without losing anything of his own, i.e. a�i + a�j � Qi(p�j ; s

�
�i): By (7),

this implies
p�j � Pi(a

�
i + a�j ; s

�
�i):

Let qi = (a�i +
p
�=�) and si = (qi; �0i(qi)). Then

ui(si; s
�
�i)� ui(s

�) =

Z a�
i
+
p

�=�

a�
i

�0i(z) � Pi(z; s
�
�i) dz

�
h
�0i(a

�
i +

p
�=�) � p�j

ip
�=�

�
h
�0i(a

�
i )� �

p
�=�� p�j

ip
�=�

�
h
2
p
��� �

p
�=�

ip
�=�

= �

which contradicts the fact that s� is an �-Nash equilibrium. 2

Proposition 3 (E�ciency) Suppose Assumptions 1 and 2 hold. If a� >p
�=�, then

max
A

X
i

�i(ai)�
X
i

�i(a
�
i ) = O(

p
��);

where A = fa 2 [0; Q]I+1 :
P

i ai � Qg.
Proof: (of Proposition 3) Let I+ = fk : ak > a�kg and I� = fk : ak < a�kg. For
i 2 I+, we have �0i(a

�
i ) � �� + 2

p
��. For i 2 I�, we have a�i > ai � 0, therefore

by the lemma, �0i(a
�
i ) > �� � 2

p
��. Therefore,

X
I

�i(ai) � �i(a
�
i ) �

X
I+

�0i(a
�
i )(ai � a�i ) �

X
I�

�0i(a
�
i )(a

�
i � ai)

� (�� + 2
p
��)�� (�� � 2

p
��)�;

where � =
P

I+ (ai � a�i ) =
P

I�(a
�
i � ai). Since � � Q the result follows, with

the bound 4Q
p
��. 2
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Remark a: The condition bi = 1 is su�cient, but not necessary to
achieve e�cient outcomes. In fact with any budget pro�le, e�ciency can
be achieved if the users cooperate. For example, if they all choose a bid
quantity close to what they can actually obtain (which they do if they use
the strategy given by Proposition 1), then the price paid would be p0 per
unit for all the allocations, and if p0 or the shares a�i are not too large,
then budget constraints are irrelevant and a� is e�cient. More generally,
e�ciency is attained if the budgets are not too far out of line with the
valuations, i.e. there are no players with very high demand and very low
budget.

Remark b: (Welfare and E�ciency) A more common measure of e�-
ciency is the social welfare, which is the sum of all the players' utility

P
i ui,

including the seller i = 0. The natural de�nition of the seller's utility is the
value of the leftover capacity a0 = Q�P

i6=0 ai plus the revenue, i.e.

u0 = �0(a0) +
X
i6=0

ci:

Then,
P

i ui =
P

i6=0(�i � ci) + u0 =
P

i6=0 �i + �0(a0) =
P

i �i. Thus,
P

i ui
is equivalent to the e�ciency measure used above, which is

P
i �i. Another

measure is the seller's revenue. Even though PSP is not, in general, revenue-
maximizing, it tends to the revenue maximizing allocations and prices as
demand increases [18].

Remark c: Proposition 3 provides a key to understanding the basic
trade-o� between engineering and economic e�ciency. The smaller �, the
closer we get to the value-optimal allocations. But in a dynamic game,
where players iteratively adjust their bids to the opponent pro�le, a player
will bid as long as he can gain at least � utility (since that is the cost of
the bid), thus a smaller � makes the iteration take longer to converge, i.e.
entails more signaling.

3.4 Convergence

An issue of obvious concern is whether the game converges under dynamic
play: it turns out that it does, when users behave rationally (see Proposition
4 in Chapter 2 of [29]). Moreover, irrational or malicious behavior { like
intentionally trying to prevent convergence by making unnecessary bids {
can always be controlled by setting the bid fee � high enough to make such
behavior prohibitively costly for the culprit.

20



0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

quantity

va
lu

at
io

n

Figure 4: Parabolic valuation with � = 0:5 and q = 70

Another issue is how the convergence time scales with the number of
bidders. We now consider this experimentally using the software described
in Appendix B.

In all our simulations we let Q = 100. For each user, the valuation is
strictly increasing and concave up to a maximum corresponding to a physical
line capacity, and 
at beyond that. Since, as shown by Proposition 3, only
the second derivative of the valuation is needed to measure the e�ciency
of the PSP auction, a second order (parabolic) model is deemed su�cient.
Thus we use valuations of the form:

�i(z) = ��i(z ^ qi)
2=2 + �iqi(z ^ qi);

where qi is the line rate, and �i > 0 (see Figure 4).
We generate our user population with independent random variables

f�0i(0)gI (corresponding to the maximum unit price the user would pay)
uniformly distributed on [10; 20], and �i = �0i(0)=qi, and qi uniformly dis-
tributed on [50; 100]. All players have a budget bi = 100. The bid fee is
�xed at � = 5. Each user has a bidding agent which can submit at most one
bid per second (see Algorithm 1 in Appendix B).

With this set-up, the results are shown in Figures 5-6. Simulations were
run for 11 population sizes ranging from 2 to 96 players. Each point is
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Figure 5: Mean (+/- std. dev.) number of bids { solid line. The dashed
line is I + I2=10.

simulated 10 times with new random valuations for all players. The overall
mean is 11.9 bids per player. From Figure 5, the number of bids seems to
grow as the square of the number of players.

The actual time to converge, shown in Figure 6, grows more slowly, since
the computation of bids is done in parallel by all the players. In fact, for
small numbers of players, the time decreases. This can best be explained as
follows. Suppose there are only two players, with similar valuations. They
will both start by asking for their maximum quantity, at their marginal
valuation (which at their maximum quantity is near zero). Then as each
sees the other's bid, each will reduce the quantity and increase the price a
little bit. And they go on taking turns, gradually raising the market price
until they reach an equilibrium. However if there are 10 players, in between
two bids by the same player, the 9 others will already have bid up the
price, so he will jump to higher price than if there was only one opponent.
Thus the equilibrium market price will be reached more quickly. For large
populations, this e�ect becomes small compared to the sheer volume of bids,
and the convergence time starts to grow.

The trade-o� between signaling and economic e�ciency discussed in light
of Proposition 3 is illustrated by Figures 7-8. Increasing the bid fee speeds
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Figure 6: Mean (+/- std. dev.) convergence time in seconds (for a 1 second
bid interval).

up convergence, at a cost of lost e�ciency. A resource manager should select
a bid fee which optimally balances the two for the particular context.

Figure 8 also illustrates the validity of the lower bound given by Propo-
sition 3.

4 Conclusion

Auctions are one of oldest surviving classes of economic insti-
tutions [...] As impressive as the historical longevity is the re-
markable range of situations in which they are currently used.
[22]

We proposed the progressive second price auction, a new auction which
generalizes key properties of traditional single non-divisible object auctions
to the case where an arbitrarily divisible resource is to be shared. We have
shown that our auction rule, assuming an elastic-demand model of user pref-
erences, constitutes a stable and e�cient allocation and pricing mechanism
in a network context. Even though we are motivated by problems of band-
width and bu�er space reservation in a communication network, the auction
was formulated in a manner which is generic enough for use in a wide range
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of situations. In the sequel to this work, we show that the key results {
namely incentive compatibility, equilibrium, and e�ciency { generalize to a
setting where multiple networked resources are auctioned, with users bid-
ding on arbitrary but �xed routes and topologies [29, 31]. In related work,
we consider the case of stochastically arriving players bidding for advance
reservations (i.e. resources for a given period of time) [29, 30].

An interesting direction of future work is learning strategies, and evolu-
tionary behavior which can emerge from repeated inter-action between the
same players.
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A Information-theoretic basis for the valuation

In general, valuations are simply assumed to be given as external factors.
Indeed, the fundamental assumption in any market theory is that buyers
know what the goods are worth to them. The \elastic demand" or \di-
minishing returns" nature of Assumption 1 is fully justi�ed from a purely
economic standpoint for virtually all resources in everyday life.

In the case of variable bandwidth, we can go even further by better quan-
tifying what the goods are. For a user sending video, say, how much value is
lost when the channel capacity goes from 1.5 to 1.2 Mbps? Ultimately, the
value lies not in the amount of raw bandwidth but in the information that is
successfully sent. Our goal in this section is to give a brief description of how
Information Theory can be used for a bottom-up construction of bandwidth
valuations { based on the fundamental thing the user cares about which is
communication of information { and that such valuations will generally be
of the type in Assumption 1.

Any information source has a function D(:), such that when compressed
to a rate R, the signal has a distortion of at least D(R) [1]. The distor-
tion is the least possible expected \distance" between the original and com-
pressed signals, where the minimization is over all possible coding/decoding
schemes. In this context, we make the distance measure the monetary cost
of the error. This cost can be chosen, for example, to be proportional to
some common measures like the mean squared error, the Hamming distance
(probability of error), the maximum error, etc., or heuristic measures based
on experiments with human perception. Given that modern source-coding
techniques can, given a distortion measure, achieve distortions close to the
theoretical lower bound[5], it is not unreasonable to use the rate-distortion
curve as an indication of the value of the bandwidth share.

Let Di(:) be the distortion-rate function of fXi(t)g, a stochastic process
modeling the source of information associated with user i. Xi is encoded as
Yi which has a rate of R bits per second.

Shannon's channel coding theorem[32] states that Yi can be received
without errors if and only if the channel has a capacity C > R. In our
auction context, user i has capacity (bandwidth allocation) C = ai, and
thus has to su�er a distortion of at least Di(ai). The value of the bandwidth
is then

�i(ai) = �i �Di(ai); (18)

where �i is the value of the full information.
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The relevant properties of the distortion-rate functions are:

� when the rate is greater than the entropy of the source, the distortion
is zero, and

� for many common source models and cost functions, the distortion-
rate function is convex, and has a continuous derivative.

It is easy to see that, with these properties, (18) satis�es Assumption 1.
Example 1: Let fXg be a Bernoulli source, taking two values with

probabilities p and 1� p. Without loss of generality, let p 2 [0; 1=2]. In this
case, since the source is i.i.d, one can de�ne the distortion on a per symbol
basis. Using a Hamming cost function

d(X; Y ) = 1fX 6=Y g;

i.e. assuming it costs one unit of money every time one bit is wrong, we have
the distortion D = Ed(X; Y ) = P (X 6= Y ). the rate-distortion function is

R(D) = [H(p)�H(D)]+ ;

where H(x) = �x log(x)�(1�x) log(1�x), and the distortion-rate function
is the inverse function. It can be easily seen that D(R) is strictly convex and
decreasing for 0 � R < H(p), and D(R) = 0 for R � H(p). The continuity
of D0 on 0 � R < H(p) and R > H(p) is obvious. At the critical point
(R = H(p); D = 0), we have

lim
R%H(p)

D0(R) = lim
D&0

1=R0(D)

= lim
D&0

1= log(D=1�D)

= 0

= lim
R&H(p)

D0(R):

Thus continuity of D0 holds throughout, and Assumption 1 is valid for the
valuation of the form (18) for this source { see Figure 9.

Example 2: Let fXg be a Gaussian source with Markovian time-

dependency, i.e a covariance matrix � =
�
�2rji�jj

�
i;j
; r 2 [0; 1). Suppose we

use the squared error cost, i.e. it costs one unit of money for one unit of en-
ergy in the error signal. Then, we have for low distortionsD � (1�r)=(1+r),
R(D) = 1

2 log
1�r2

D , or

D(R) = (1� r2)�22�2R;
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Figure 9: Distortion-rate based valuation for a Bernoulli p = 1=2 source

and Assumption 1 clearly holds for (18). In the i.i.d. case (r = 0), the
formula holds for all R.

As the source models get more complex, it rapidly becomes impossible
to give closed-form expressions for either R(D) or D(R). Often parametric
forms are available, and the functions can be evaluated numerically. Fortu-
nately, the convexity property extends to a wide class of models, including
for example auto-regressive sources, even when the generating sequence is
non-Gaussian (see [1] for a full treatment of R(D), including the above
cases).

It can happen, e.g. for some video source models, that the R-D curve,
which gives the best (R,D) pairs achievable by any coder/decoder, is not
convex. But, for tractability, practical codecs are usually optimized on a
convex hull of the space of possible (R,D) pairs[26, 27]. Thus, even when
the theoretical D(R) curve is not convex, the actual distortion achieved in
real-life systems almost always varies in a convex manner with the available
bandwidth.
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B Simulation software and bidding algorithm

A prototype software agent based implementation of the auction game,
called TREX, has been developed and extensively used since December 1995.
Much of the intuition behind the mechanism design and the analysis in this
work came from experiments done on this inter-active distributed auction
game on the World Wide Web, using the Java programming language. The
game can be played in real-time by any number of players from anywhere
on the Internet [28].

Each user plays in the dynamic auction game using the following:

Algorithm 1 1 Let si = 0, and ŝ�i = ;. Start an independent
thread which receives updates of ŝ�i.

2 Compute the truthful �-best-reply of Proposition 1, ti 2 Ti \
S�i (ŝ�i).

3 If ui(ti; ŝ�i) > ui(si; ŝ�i) + �, then send the bid si = ti.

4 Sleep for 1 second.

5 Go to 2.

No assumption is made on the order of the turns. Players join the game
at di�erent times, and depending on the execution context of the client
program, the sleep time of 1 second is more or less approximate. This, along
with communication delays which make the times at which bids arrive at
the server and updates at the clients essentially random times, make the
distributed game completely asynchronous.

Algorithm 1 can be described as sel�sh and short-sighted. Sel�sh because
it will submit a new bid if and only if it can improve it's own utility (by more
than the fee for the bid). Thus, the game can only converge7 to an �-Nash
equilibrium. And short-sighted because it does not take the extensive form
of the game into account, i.e. does not use strategies which may result in a
temporary loss but a better utility in the long run.
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