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Abstract

One of the major problems in modeling natural
signals is that signals with very similar struc-
ture may locally have completely different mea-
surements, e.g., images taken under different il-
lumination conditions, or the speech signal cap-
tured in different environments. While there
have been many successful attempts to address
these problems in application-specific settings,
we believe that underlying a large set of prob-
lems in signal representation is a representa-
tional deficiency of intensity-derived local mea-
surements that are the basis of most efficient
models. We argue that interesting structure in
signals is better captured when the signal is de-
fined as a matrix whose entries are discrete in-
dices to a separate palette of possible measure-
ments. In order to model the variability in signal
structure, we define a signal class not by a single
index map, but by a probability distribution over
the index maps, which can be estimated from
the data, and which we call probabilistic index
maps. The existing algorithms can be adapted
to work with this representation. Furthermore,
the probabilistic index map representation leads
to algorithms with computational costs propor-
tional to either the size of the palette or the log
of the size of the palette, making the cost of sig-
nificantly increased invariance to non-structural
changes quite bearable. We illustrate the ben-
efits of the probabilistic index map representa-
tion in several applications in computer vision
and speech processing.

1 Introduction

In previous work, a very interesting step in the di-
rection of color-invariance was made by Stauffer et al,
who replace the image intensities with a self-similarity
measure [5,6]. They build a large ”co-occurrence ma-
trix” with an entry for every pair of pixels. This
statistic is computed from a labeled training set, and
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as far as we know their technique is only used in
supervised algorithms. The major problem is the
size of the matrix (105 x 10° entries for a 256x256
image), leading to computational and storage prob-
lems that have so far limited their experiments to
tasks that use small images, e.g., pedestrian detec-
tion. Our representation is considerably more effi-
cient and is easily used in unsupervised algorithms.
It is also easily combined with other causes of vari-
ability in graphical models, e.g., the models devel-
oped by Jojic and Frey [2,3]. However, as our exper-
iments show, our new representation provides much
greater color- and feature-invariance, which helped it
outperform the appearance-based models in unsuper-
vised transformation-invariant clustering tasks.

In speech applications, the most similar approaches,
at least on the surface, seem to be mixture tying ex-
amples. However, these are typically used to reduce
the amount of training examples needed for learning,
and do not in fact provide invariance to local measure-
ments as in the example we give in this paper. Our
model assumes that the palette of measurements in a
particular frequency band can change from utterance
to utterance of the same word, but the indices into the
palette are drawn from a single distribution defined by
an HMM model.

2 Palette indexing

One efficient representation of an image is as the
collection of indices, one index per pixel, that points to
a separate table of possible values the pixels can take.
This representation is heavily used in image formats,
as it drastically reduces the storage requirements. Al-
though the goal is usually storage efficiency, this is
achieved by exploring self-similarity in the image, at
least at the lowest level, which in itself is interest-
ing for other image processing tasks, including image



(d)

Index map |

Palette

o T N S

(a) (b) (o)

il &

Figure 1: Ilustration

understanding. The index table is typically a color ta-
ble, or a palette, but there is no reason why it would
not contain derived features, such as wavelet coeffi-
cients, for example, in which case the representation
may have a higher value in image processing tasks.
The palette can be shared across a collection of im-
ages, e.g. a video sequence, or a set of objects with
similar structure, but different colors.

Furthermore, the same strategy for splitting the
variability in the data between the palette of possi-
ble measurements and the index table associated with
the data is applicable to other natural signals, such as
audio, for example.

In this section, we discuss possible assumptions
on dependencies among variables in such representa-
tions to point out the similarities and differences be-
tween standard techniques based on color/feature his-
tograms and our models based on the idea of complete
or partial palette invariance.

Consider a collection of T I x J signals X =
{X*}L |, where each signal is defined on the domain
{(4,7)]i € 1..1],j € [1..J]}, and the individual pix-
els (or other measurements) are indexed by ¢, i, and
J, e, X = {x}; gl‘])) The following discussion re-
quires at least two different indices, but we use three
to denote the structure in the data we processed in
our experiments. In the case of images, we assume
that ¢ denotes an image in the set we are analyzing,
and ¢, j are pixel indices. In the case of audio signals,
we consider again t to denote different utterances we
are classifying, while 4, j denote the coordinates in the
spectrogram of an utterance, i.e., frequency index and
and frame index, respectively.

Despite the redundancy, we temporarily associate
a separate measurement palette Cj ; and an index sj;
with each local measurement x};. We will later make
the signals share the index maps but not the palettes

(Fig. 1). Each palette C is a table of S color, feature,

energy, or other measurement models, indexed by s.
For example, C(s) = p, could be an [r,g,b]T vector
for the sth color in the table, as customary. Then, the
color of a pixel is x}; = C(s};).

Furthermore, we can think of each measurement
model Cj;(s) as the parameters of a distribution
p(x|C(s)) over all possible measurements, x. For ex-
ample, C(s) could be defined as the mean p, and the
covariance matrix ®, of a Gaussian distribution over
the observation x};,

P(ng‘cfj(sﬁj)) :N(X§j§ﬂs»‘1>s)a (1)

where x}; could be a vector with the color coordi-
nates in a suitable color space, or a vector of Gabor
coeflicients, or a vector of quantitative texture descrip-
tors, vector of spatial and temporal derivatives, energy
measurement in a speech spectrogram, cepstrum co-
efficient, or any other vector describing a signal at a
particular location.

First, we show how some of the traditional image
and speech representations map into our notation.

Color palette and image compression.

In many image formats, it is assumed that each
image has its own color table, i.e.,

Ch = 0112 == C},J—l = C}J = c' = {l‘i f:l
6%1 = 0122 = ... = C%,J—l = C%J = c* = {Hg f:l
ClTl = ClTQ == C;J—l = CITJ = ch = {NsT}f:r

This representation is useful when each image contains
a relatively small number of colors, but sampled from a
large portion of the color space. Then, a small number
of colors, e.g., S = 256, are found that represent all
the colors in the image most faithfully. Each entry
in the palette is a 24-bit color, but in each location
i,7 in the image, only the 8-bit index s;; is stored,



yielding almost a three-fold compression, as the size
of the palette is negligible in comparison with the size
of the image. Usually, each image has a separate color
palette, although the palettes can also be shared.

Spatially-invariant color or feature distribution
models Lots of simple image understanding tools rely
on color or feature histograms. Faced with the huge
variability in the visual data, these algorithms typi-
cally assume that images or their portions are as sim-
ilar as the distribution of colors present in them, and
they ignore the spatial configuration of the colors. In
our notation this idea can be summarize into an as-
sumption that a collection of similar images shares the
same color model for all pixels

Clll = C%2 == C]j:,]_l = C?J = C. (2)

This model is usually captured either by a mixture of
Gaussians or a color/feature histogram.

Speech HMMs In speech models, signal is typically
represented as a sequence of states, whose joint distri-
bution is modeled by a Markov model. States, which
we denote by c¢; are associated with frames (index j
in our notation) and describe Gaussian distributions
over the frequency content (indexed by 4 in our nota-
tion). We can replace the direct Gaussian observation
model with the indexed model, so that p(x{;|C{;(s};)))
decribes local measurments, as above, but ¢; influ-
ences the indices s through p({sf;}/_, |c}). Traditional
HMMs (including mixture-tying models) can be seen
as a special case where p({sf;}/_;|c!) is deterministic.

3 Palette-invariant models

We can derive a new class of models that assume
that indices s are dependent on the coordinates i, j,
but this information is shared across the collection of
images. For example, if we assume that index s;; for
each location in the image is shared across the entire
collection
and the palette C? for each image is shared across all
locations 1, 7,

6{1 = sz = ... = ij = C;,Jfl = C?J = Ct7 (4)

we obtain a basic palette-invariant model which as-
sumes a fixed spatial arrangement configuration of the
features, but the features themselves can arbitrarily
change from one image to the next. For example, Fig.

2 shows an index map that describes a whole class
of objects. The index map was learned from 50 ex-
amples of car images, using the algorithm we will de-
scribe shortly. In the same figure, we show the inferred
palettes for 8 detected car images outside our train-
ing set. One useful property of the palette-invariant
model is that it equates the images taken under differ-
ent overall level of illumination, however, as shown in
our example, the objects with different surface prop-
erties but similar spatial structure are also considered
similar under this model. The basic palette-invariant
model can be extended in several ways, but the most
important concept that we would like to focus on in
this paper is the introduction of the variability in the
index map.

Modeling uncertainty: probabilistic index
maps (PIM) . We can relax the hard assumption in
(3) and allow the indices that model the same location
in the image to vary, but follow the same distribution

p(sgj =s)= p(sfj =s5)=..= p(sij = 5) = pi;(s),
(5)
where location-dependent distributions p;; describe
the levels of variability in different locations of the im-
age, and the overall distribution over the index maps
S = {si;} is

p(S) = [ pis (si)) (6)

1,35t

For example, if the image collection X are the
frames from a video of a tree that moves slightly in
the wind while the illumination conditions are varying
considerable due to the cloud movement, then added
level of variability in the index map (p;;) helps capture
the flutter of the leaves, still allowing generalization of
the image under varying illuminations. This variabil-
ity is separate from the intra-image appearance vari-
ability captured in the individual palettes, and tends
to model intra-class structural variability instead.

Of course, probabilistic index map models p(S) can
be more complex, for example, they can encode extra
dependencies among indices sﬁj We will later show
this in a speech model.

Free energy of a probabilistic index map (PIM)

Here, we derive the inference (E step) and the pa-
rameter update rules (M step) for the model that
uses variable index map described by (5) and sample-
independent color maps (4). In this model, each ob-
servation has a separate index sﬁj but the prior p;;(s)
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Figure 2: A palette-invariant Generative model In this model pixel values at every pixel in each input image
(the third row) are determined by the acording one of possible distribution (an entry in the palette). Every
image has its one palette (which can be approximated from the data)The decision which palette entry to chose is

dictated by the global index map (left side)

for each location is shared among the observed images.
The free energy is

Po= YD ogal{sh)) - ™
S al{siyhtos [ T] o1ty € T ois(sty)]

4,55t
The true posterior is factorized, so we can set
q({sij}) = Il ;a(si;) with the bound being tight.
Thus,

F o= > q(sh)logq(st;) —

0,5,t s

- Z (ZQ(SZ)) logpij(sij) -
_ZZ ZJ ) log p( U|Sl]7ct) (8)

3,75t st ij

The resulting E step that optimizes the bound wrt
qis
q(si;) o pij (si;)p(xi; st C")- (9)
Assuming a Gaussian model in each entry of the
palette Ct(s) = {u, ®.}, we obtain the following up-
date rules for the M step:

pij(sij =s) = %ZQ(SZ =) (10)

P i alsi; = s)x
Hs = ( 8) (11)
2 (f = s)[xi; — mellxi; — pi]”

o Zij Q(SZ‘ =)

We show these equation to emphasize the fact that
the index maps are inferred based on the general ten-
dency of the measurements to cluster together, but

the actual cluster means and variances are estimated
independently for different portions of the data, e.g.,
different images can have completely different palettes
but the inferred index values tend to be the same.

4 Probabilistic index maps in
complex graphical models

The factorized form of the posterior discussed in
the previous section is actually exact when there are
no additional hidden variables, but in general, factor-
ization can be used as an approximation not only to
make inference and learning more tractable for com-
plex graphical models, but also to modularize the in-
ference engine. In this section, we develop two exam-
ples of complex graphical models.

The first model captures image structure using
probabilistic index map representation, but has an
additional hidden variable denoting image transfor-
mation, as well as an image class. Thus, learning in
this model allows for unsupervised clustering of images
that is both transformation- and palette-invariant.

The second model captures speech signals in a way
that is invariant to various types of signal noise that
change the distribution over measurements in utter-
ances.

4.1 Transformed mixtures of
probabilistic index maps

Adding both the mixing variable ¢ and the trans-
formation variable T, we can construct a transformed
mixture of PIMs (TMPIM), with the joint probability
distribution for the t-th image

p(X|T*, S*)p(S*|c")p(T)p(c"). (12)
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Figure 3: Aligning two images with different colors and
features. The first two images in the first column of (a)
show two different images of a child taken on different
days. One image is in color and the other one is black and
white. The third image int he column shows the result
of BW image alignment. The middle two columns show
the probabilistic index map in terms of its components
p(sij = k) using a palette with only five entries. The last
column shows the probabilistic index map in terms of the
palettes inferred in two images. In (b), we contrast the
probabilistic index map p(s;;) (top row) which describes
both images and the inferred index maps ¢'(s;; = k) for
individual images.

The observation distribution is defined as
logp(X]|S, T) =
=5 2 (%) = ) R, (%5 — )
+log [27®,.,, |, (13)

where T(ij) are the coordinates into which ij maps
under T. If not handled properly, this part of the gen-
erative model will be the main source of intractability,
as maximizing it jointly over color distribution param-
eters (u,, ®,) and transformations T will be required.
To transform the above into a more tractable compu-
tation, we rearrange the summation so that we first
sum over all pixels that map to color s = 1, then as
those that map to color s = 2, and so on:

log (XS, T) =
S
*% D h=1 Zi,j\sT(m:k [(Xm Hy) @y 1(XZJ Hr)

+log |27 ® ], (14)

Without the loss of generality, and for the sake of no-
tational simplicity, we will focus on the case of a gray
level (scalar) pixels !, in which case we can write

S
1
logp(X|S, T)=—2 > di, (15)

dy, =T (Sy)'[¢, (X — ) + log 2m¢x] (16)

where we use S}, to denote the binary image indicating
for each pixel if it is assigned to palette entry k or not,
and T(S%) is the transformed version of this binary im-
age. These binary images and image X are represented
as one-dimensional vectors of pixels (unwrapped im-
ages), so that the distance di can be written as an
inner product. Palette entry parameters pyg,¢r are
scalar, and the sum of a vector and a scalar is defined
as adding the scalar to all elements of the vector, i.e.,
X+ pu =X+ pE, where E is the vector of ones. With
this transformation of the observation likelihood and
the variational approximation of the posterior,

q" = q(c")q(S"|c")g(T*| "), (17)

a(5'c") Hq (1), (18)

The cost of inference in a PIM-based transformed
model is linear in the number of entries in the palette.
Typically, a very small number of entries is sufficient
(5-8). In addition, the treatment of the transforma-
tional variability in inference can be based on FFTs
as in our previous work or usual multiresolution ap-
proaches used in vision. We feel that for the UAI
audience we can omit the update rules for brevity.
The iterative optimization consists of iterating (a) op-
timization of the color or feature palette ({uy, @k })
for each image; (b) inference of the variational pos-
terior for each image (posterior distribution over the
segmentation map, transformation that aligns the im-
age with the current guess at PIM p(S]|c), and the
posterior distribution over the class ¢ for each image);
and (c) re-estimation of the class PIMs p(s|c) and the
prior p(c). All of these steps are performed by mini-
mizing the free energy of the model.

The resulting algorithm is illustrated on a mini two-
image dataset in Fig. 3. In order to align a color
image of a child with another gray-level image, we

train a single-class TMPIM model which brings the

"When the covariance matrix ®; is diagonal, the Ma-
halanobis distance breaks into a sum of distances between
scalars, and if ®, is not diagonal, it can be diagonalized
by SVD, so both cases can be reduced to the case of scalar
observations x;;.



two images into alignment with respect to the shared
probabilistic index map. An example of unsupervised
clustering images with TMPIM is given in the exper-
imental section.

5 PIM in speech HMM models

As mentioned above, PIM can be used instead of
a direct Gaussian observation models in HMMs for
speech recognition. If we denote the hidden states by
03»7 for the t-th utterance in a training set, then the
PIM p(S) can be modeled as

p(S) = Hp(SEjICE) (19)

The energy palettes in the spectrogram are shared
across frames but are different in different frequency
bands, i.e., Cf; = Cf, allowing the model to be invari-
ant to various types of frequency-dependent noise.

The model is trained using a variational posterior
that decouples joint distribution g(ct,..,c%) over all
states from the posterior distribution over the indices
[L: j a(s};), leading to an efficient estimation that al-
ternates between a forward backward algorithm on the
state sequence and the palette and index inference.

6 Experimental results and
conclusions

Vision examples The probabilistic index map is
a universal image representation that can find its way
into many existing computer vision algorithms. To il-
lustrate its benefits, we applied the representation in
two typical computer vision tasks: background sub-
traction and transformation-invariant image cluster-
ing.

In Fig. 4 we show that PIM representation al-
lows for background subtraction based on a single
frame, rather than on tracking incremental changes
in a continuous video stream. An 8-index PIM model
is learned by minimizing its free energy on the small
collection of background images (Section 3). Then, for
each new test image, the color palette is inferred and
the pixel-wise free energy FZJ is estimated. The fore-
ground detection is then given in terms of the bumps
in the energy profile, shown in the last column in (c-
f). To better illustrate what is happening ”under the
hood,” the middle column shows the expected back-
ground image B! using the inferred color palette for
each test image,

E[bgj} = Z(I(Sfj = k). (20)
k

Note, however, that the free energy also depends on
the inferred variance for each palette entry.

It is interesting to compare the use of PIM repre-
sentation with standard appearance models in more
complex graphical models. Here, we use Frey and
Jojic’ transformed mixtures of Gaussians (TMG) for
comparison, as this model captures variability in both
appearance and transformation, and has been shown
to be successful at unsupervised image clustering [2].
This model has been extended to capture dynamic
properties of the scene as well as multiple layers of
objects [3]. Sections 3 and 4 illustrate that our prob-
abilistic index map representation can be used in sim-
ilar situation as a simple pixel-wise Gaussian model,
and so our new models should be equally easily ex-
tensible as TMG. However, as we show in Fig. 5,
PIM representation leads to superior illumination in-
variance at a low extra computation cost. Using the
200 images from the dataset published with the TMG
algorithm (Fig. 4a in [2]), the transformed mixture
of probabilistic index maps was able to automatically
cluster the data in (a) into two clusters representing
two different people with an error rate of only 2.5%. In
contrast regular mixture of Gaussians and TMG had
much poorer error rates of 40.5% and 26%, respec-
tively. All three techniques were applied in a com-
pletely unsupervised fashion.

In all image experiments we report in this paper,
we only used color or gray-level intensity as image
features. This makes it easier to separate the ben-
efits of the probabilistic image map representation
from the wise choice of local image features. To use
other features, we can form an extended feature vec-
tor that concatenates the color information with other
local measurements. As the model allows for learning
the covariance structures ¢, for various entries in the
palette, (or even more complex probability distribu-
tions), the feature selection occurs naturally, and some
indices may tend to model smooth areas of uniform
color, while others will capture uniformity in texture
features, despite the high variance in color. In our
future research, we plan to apply this approach on
unsupervised clustering of photographs.

Speech recognition We trained 11 digit models
on the total of 22 noise-free utterances from the same
speaker in the Aurora database. In order to properly
compare to the basic HMM model, we first trained a
standard HMM model with various number of states,
until we found that it performs the best with 10 states,
yielding a recognition error of 32.5% on the test set
with 44 utterances, which had 4 different types of



noise (non-white, i.e., the noise affected different parts
of the spectrogram differently). Then, we trained a
PIM-based HMM with 10 states as well on the same
training data. The PIM palettes, which are reesti-
mated for each training and test sample, had 7 entries
in total. The recognition error rate on the test data
was a substantially lower 18%.

In both vision and speech examples, the improve-
ment over the baseline is not due to increased complex-
ity of the PIM-based models. In the speech example,
for instance, we tried HMMs with various numbers of
the states and compared with the best one. In the im-
age clustering example, if the number of clusters in the
model is increased, the TMG model starts separating
the two faces only after the complexity is substantially
higher than the TMPIM model’s complexity. More
importantly, the TMG model with a large number of
classes has no way of identifying which of the clusters
model the same face.

7 Conclusions

We have presented a novel representation of real-
valued natural signals in which the observed signal
values are assumed to share a palette locally (e.g., in
a single image), while the indexing structure is shared
globally, e.g., across a collection of images. The dis-
tribution over the indices is assumed to encode the
spatial and/or temporal signal structure for an ob-
ject class, while the actual measurement palettes are
treated as hidden variables that change freely from
signal to signal. This is in stark contrast with the
usual approaches to modeling real-valued signals. For
instance, in previous work, we modeled the basic ap-
pearance change using mixtures of Gaussians or fac-
tor analysis and added additional variables to cap-
ture spatial transformations of the appearance. Oth-
ers have derived similar methods, with reasonable suc-
cess, e.g., [1]. In this paper, we propose to use density
functions over real values only to capture local mea-
surements, while the signal structure for a certain class
is defined as a distribution over discrete variables. Our
experiments indicate that this strategy leads to an in-
creased invariance to non-structural changes, such as
illumination change, non-white audio noise, and even
complex changes such as re-painting various surfaces
of the object. We plan to test our models with differ-
ent types of measurements, e.g, texture features rather
than colors in images, as well as to use different prob-
ability models for the joint distribution over indices

p(9).
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(a) The entire training data (20 images):

(b)
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Figure 4: Illumination-invariant background subtrac-
tion. The background model is trained using only the
20 images shown in (a). The learned index map is
shown in (b). Rows (c)-(d) show the images with dras-
tic illumination changes, the recomputed background
to match the the new conditions and the result of the
background subtraction. The situations PIM model
can handle include low illumination (c), image sat-
uration (d), color channel malfunction (e), or even
a switch to a different set of measurements, such as
IR, or as in (f), gray-level images. Note that in all
cases the recovery from the illumination change is in-
stantaneous, and that the color training data had no
examples remotely similar in intensities to the test ex-
amples.

(d) Examples of inference in the TMPIM model

Figure 5: Unsupervised clustering using transformed
mixtures of probabilistic index maps (TMPIM). TMPIM
clusters are represented by two distributions p(S|c),
shown as probability maps for index k=1,...,5. TMPIM,
with its clustering accuracy of 97.5%, compares favor-
ably to the standard mixture of Gaussians model that
had a clustering accuracy of only 59.5% and the TMG
technique [2] with accuracy of 74%. In (b) we show
inferred variational posterior ¢(S|c), the palette means,
the synthesized image and the aligned input for three
images.



