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1. Introduction

In this paper, we develop a bandwidth provisioning scheme for a service network that satisfies the “on de-
mand” customers. This sets the stage for providing bandwidth to serve customers with long-term contracts.
Consider two broad categories of demand:

1. Immediate Demands

2. Forward Demands

Immediate Demand (ID) is the traditional category where customers make requests for bandwidth and expect
the resources immediately. One advantage to traditional service is that there are historical records and statisti-
cal techniques for forecasting demand, which is expected to be stable, and describing its statistical properties,
such as distributional information on arrivals and holding periods. One disadvantage however, is that there
are corresponding expectations on the part of customers for a high quality of service, i.e., low blocking rates.

Forward Demand (FD), on the other hand, is the service category that is expected to grow rapidly with the
increased availability of bandwidth in the Internet’s infrastructure and universal high-capacity access to the
Internet. Consider the following examples of application services that will create FD. Schools that offer
distance learning, such as MIT or U.C. Berkeley, want to have bandwidth available from the campus to each
learning site commencing at 10 am every Monday and Thursday during the term. Large corporations want
contracts for guaranteed bandwidth supply for carrying internal communication traffic. Other carriers lease
capacity for an extended period of time to defer capital investment in infrastructure.

We model the ID requests as multi-class Poisson. Say there aren ID classes, with classi characterized
by (λi, µi, bi), whereλi is the Poisson rate of arrivals,1/µi is the mean holding time of individual de-
mands, andbi is the bandwidth demand on individual requests. We leave open for the present the matter
of the distributions of the holding periods. An example of bandwidths demanded by differing classes is
{64 kps, 128 kps, 256 kps, 384 kps}.

FD requests are indexed byi, and thej-th request is characterized by(Rj , Sj , Tj , bj), whereRj is the time
that the request is made,Sj is the start time of the bandwidth demand,Tj is its termination time, andbj is the
bandwidth requested.

We do not propose any specific statistical model for FD, in part because it is in a nascent stage, data is unavail-
able and also, as with any new service, the demand rates are unstable and unpredictable. It is our expectation
that the holding timesTj − Sj with be typically longer than in ID, and that the requested bandwidthsbj will
also be larger.

Indeed if the holding timesTj − Sj last for several hours or days, then there are important consequences on
the modelling of ID. It becomes necessary to incorporate time dependencies, particularly in the arrival rates
λi. We propose to consider time inhomogeneous Poisson processes, i.e.,λi ≡ λi(t) for i = 1, . . . , n.



This paper focuses on a strategy to satisfy the ID customers. A provisioning methodology is developed to
allocate the least amount of bandwidth needed to accommodate the QoS requirements of the ID customers,
so that more capacity can be made available to serve the forward demand.

This provisioning scheme is developed first for a single customer class. Each member of this class requests a
unit amount of resources and has identical demand characteristics that only depend on the current price. An
asymptotic provisioning solution is obtained for the steady-state single class case. Next, the demand function
for this single class case is allowed to depend on time. In this time-varying single class case an approximation
technique is employed to develop a provisioning solution. The results for the single class steady-state and
time-varying cases are then generalized to a multiple class case. This generalization allows for multiple cus-
tomer classes each requesting distinct amounts of bandwidth and each having unique demand characteristics.
Armed with the single class results and techniques of reversible systems, a multi-class provisioning solution
is realized.

Having provisioned resources for the ID customers, the excess resources are now available to serve forward
demand. In the last section, we specify the mean and variance of the forward demand revenue as functions of
the bandwidth provisioned to the ID customers.

2. Canonical Design Problems for the Erlang Loss Model

Let us first investigate the single customer class case (n = 1). It is assumed that all the customers in this
class request a unit amount of bandwidth(bi = 1) and are governed by the same demand function that is
only a function of the price. Let customers arrive according to a Poisson process, whereλ equals the mean
arrival rate. Moreover, let theholding timefor the unit bandwidth resource be random and assume that
different customers have i.i.d. holding times, where1/µ equals the mean holding time. The unit amount
of bandwidth requested by a customer is called achanneland we defineL to equals the total number of
channels. The resulting queueing model for this single class case is the classical Erlang loss model. Assuming
a homogeneous Poisson arrival rate, it is typically denoted as anM/G/L/L queue. When all channels are in
use, the system is calledblockedand we defineε to equal the probability that the system is blocked.

If there is an infinite amount of bandwidth available, then every customer requesting a channel receives it.
The total number of channelsrequestedby customers at a given time is called theoffered loadand we define
q to equal its mean. It is a function of the aggregate demand for bandwidth. TheM/G/∞ (infinite server
queue) is viewed as the offered load process for bandwidth requests. The steady state distribution for the
M/G/∞ queue lengthQ∞ is Poisson where

Pr(Q∞ = i) =
e−qqi

i!
(1)

for all i = 0, 1, . . . andq = λ/µ. SinceE[Q∞] = Var[Q∞] = q, it follows thatq equals the mean ofQ∞ and√
q equals the standard deviation ofQ∞.

In the context of this single class, unit bandwidth, classical Erlang loss model, we can discuss three canonical
design problems:

1. The Quality of Service (QoS) Problem.

2. The Provisioning Problem.

3. The Pricing Problem.

In the next section, we generalize these basic problems to the case of a multi-class bandwidth model.

The first of three problems is thequality of service (QoS) problem. It can be described graphically by the
following block diagram. Formally the problem statement is as follows: Given the number of channelsL
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Figure 1:The quality of service (QoS) problem.

and the mean of the offered load q, what is the resulting probability of blockingε experienced by the single
customer class?

An exact solution to the QoS problem was obtained by Erlang [2]. The solution is the classicalErlang
blocking formula. It states that ifL is the total number of channels available andq is the mean of the offered
load then the blocking probability equals:

βL(q) =
qL

L!

/
L∑

i=0

qi

i!
. (2)

We can rewrite this formula as a conditional probability of the offered load process and obtain:

βL(q) = P (Q∞ = L |Q∞ ≤ L ) = P (L− 1 < Q∞ ≤ L |Q∞ ≤ L ). (3)

What isprobabilisticallyclear (using the theory of time reversible Markov chains, see Kelly [7]) butphysi-
cally paradoxical is that the infinite server queue which experiences no congestion gives complete insight into
the analysis of systems with blocking. Also this conditional form is quite useful in the heavy traffic analysis
needed for the provisioning problem.

Now we relax the constraints on the arrival process and let customers arrive according to a non-homogeneous
Poisson process where at timet, λ(t) equals the mean rate of the non-homogenous Poisson process. The
offered load process{Q∞(t) | t ≥ 0 } for this time varying case is theMt/G/∞ queue. At timet, the
Mt/G/∞ queue has a Poisson distribution or

P (Q∞(t) = i) =
e−q(t)q(t)i

i!
, (4)

wheneverQ∞(0) has a Poisson distribution, which includesQ∞(0) = 0. Moreover, assuming that the
holding times are exponential, the mean of the time varying offered load process is then:

d

dt
q(t) = λ(t)− µ · q(t). (5)

Now that the distribution of the time varying offered load process is known, how does one find a solution
to the QoS problem? The modified offered load (MOL) approximation is employed to give an approximate
solution to the time-varying QoS problem. GivenL channels, ifQL(t) equals the number of channels in use
at timet, then

Pr(QL(t) = L) ≈ βL(q(t)) = P (Q∞(t) = L|Q∞(t) ≤ L). (6)

whereq(t) solves the above differential equation. This result can be found in Jagerman [5]. Error bounds for
this approximation are given by Massey and Whitt [11]. The MOL approximation is at its best during periods
of small blocking probabilities, which in practice is when such approximations are most useful.

The second canonical problem is theprovisioning problem, which is the main thrust of this paper. Formally
the problem statement is as follows: Given a mean offered loadq, what is the smallest numberL of channels
needed to guarantee a QoS probability of blocking less thanε?

We use the work on server staffing in Jennings, Mandelbaum, Massey and Whitt [3] as motivation to develop
a provisioning solution. IfL is the amount of provisioned bandwidth that satisfies the single class QoS
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Figure 2:The provisioning problem.

constraint, thenL should at least be as big as the mean of the offered load. It is also reasonable to add extra
capacity to handle random demand fluctuations bigger than the mean. In this spirit we set the number of
channels equal to the mean plus some multiplex of the standard deviation of the offered load or

L(q, x) = d q + x
√

q e. (7)

Where we differ from [3] is in our selection ofx. The inverse of the Gaussian tail distribution is useful
for approximate solutions to provisioning problems for delay systems but not for loss systems. The more
appropriate function to use is suggested by the work of Jagerman [6].

Recall that the probability of blockingε equals the following conditional probability:

βL(q) =
P (Q∞ = L)
P (Q∞ ≤ L)

(8)

whereQ∞ has a Poisson distribution. If we scale up the mean of the offered load, then we have the asymptotic
result

lim
q→∞

√
q · βL(q,x)(q) =

φ(x)
Φ(x)

= “P (N(0, 1) = x |N(0, 1) ≤ x)” (9)

whereN(0, 1) has a normal distribution or formally

φ(x) =
1√
2π

e−x2/2 and Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt. (10)

This result can be found in Jagerman [6].

Now we define an important special function. Letψ be the inverse function toφ/Φ, where for allx > 0

φ(ψ(x))
Φ(ψ(x))

= x. (11)

The properties of theψ function are of utmost importance to our analysis of the provisioning problem. We
now explore several of the key properties forψ.

Theorem 1 If ψ is the inverse ofφ/Φ, then it is strictly decreasing with

ψ(y) + y > 0 (12)

for all y > 0. Moreover,ψ is the unique solution to the nonlinear differential equation

ψ′(y) =
−1(

ψ(y) + y
)
y
, (13)

with the initial conditionψ(
√

2/π ) = 0.

Proof: We first show thatψ solves the differential equation. Starting with the identity
∫ ∞

0

e−t2/2+ψ(y)t dt =
1
y
, (14)
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we differentiate both sides byy and get

ψ′(y) ·
∫ ∞

0

te−t2/2+ψ(y)t dt =
−1
y2

, (15)

which gives us

−1
y2

= −ψ′(y) ·
∫ ∞

0

eψ(y)t · d

dt
e−t2/2 dt

= ψ′(y)
(

1 + ψ(y) ·
∫ ∞

0

e−t2/2+ψ(y)t dt

)

= ψ′(y)
(

1 +
ψ(y)

y

)
.

and the differential equation forψ follows from this identity.

Using the above identity (14) and integration by parts, we have

y + ψ(y) =
1∫∞

0
e−t2/2+ψ(y)dt

+ ψ(y) (16)

=
1 + ψ(y)

∫∞
0

e−t2/2+ψ(y)dt∫∞
0

e−t2/2+ψ(y)dt
(17)

=

∫∞
0

te−t2/2+ψ(y)dt∫∞
0

e−t2/2+ψ(y)dt
(18)

which shows thaty + ψ(y) > 0 and completes the proof.

Theψ function is the inverse of the hazard function. Because theψ function solves a simple ordinary differen-
tial equation, we can easily compute it numerically. Moreover,ψ is a generic function so we can precompute
a lookup table of values forψ(x) that can be used for all provisioning problems. We use a second order
Runge-Kutta method to computeψ(x), based on the following approximation:

ψ(t + ∆t) ≈ ψ(t)− ∆t

(t + ∆t/2)
(
t + ∆t/2 + ψ(t)−∆t/

(
2t(t + ψ(t))

)) (19)

Given theψ function, we can construct anasymptotic channel provisioning solution. If ε = βL(q) and we set
L = d q + x

√
q e, then

ε ≈ 1√
q
· φ(x)
Φ(x)

implies x ≈ ψ(ε
√

q). (20)

Making this approximation an equality gives us

L = d q + ψ(ε
√

q)
√

q e. (21)

If we define`(x) ≡ x + ψ( ε
√

x )
√

x. We can show from the properties forψ that

`(0) = 0 and `(L/(1− ε)) ≥ L. (22)

By the continuity of̀ , there must exist some0 < q ≤ L/(1− ε) where`(q) = L. Given the properties ofψ,
we have

L = q + ψ( ε
√

q )
√

q > q(1− ε). (23)

Define the carried load to be the mean number of customers that are admitted for service. IfL is the actual
number of channels that gives a steady state offered load ofq and a QoS ofε, then the carried load isq(1− ε).
This is consistent with the above inequality.
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We now turn our focus to the time varying single class provisioning problem. An approximate provisioning
solution can be realized via the modified offered load approximation combined with theψ function. The so-
lution takes the same form as above. The number of provisioned channels equals the mean of the offered load
plus some multiple of the standard deviation of the offered load. The approximate time-varying provisioning
solution is:

L(t) ≈ q(t) + ψ
(
ε
√

q(t)
)√

q(t) (24)

whereq solves the differential equation

dq

dt
(t) = λ(t)− µ · q(t). (25)

The provisioned number of channels,L(t), is a continuous function of time due to the continuity ofψ and
q(t). SinceL(t) is set according to offered loadq(t), which is an expected value, it is possible that the actual
number of users in the system exceeds the desired number of channels as specified by equation 24. This
property is a unique by-product of the dynamic provisioning of network capacity. We define this scenario
as aghost state, and apply the followingnon-preemptive servicediscipline when the system reaches a ghost
state:

• The excess channels process their last customers until their jobs are complete.

• During this period no new jobs are admitted.

Figure 3 is the state transition diagram for the single class customer case. It defines three distinct type
of states: nonblocking states, blocking state and ghost states. If the system is in a nonblocking state then a
transition to and from that state due to an arrival or service is allowed. While in a blocking state, any transition
from this state due to an arrival is not permitted. In the ghost states a transition due to an arrival into a ghost
state is forbidden. Only a transition due to a service from a ghost state is allowed.

blocking
state

0 1 LtLt−1 Lt+1

bx=B max

non−blocking
states

ghost
states

● ● ● ● ● ●

bx=B tbx=B t−b

Lmax

Figure 3:State transition diagram for the single class case.

Now we discuss our final design problem. Viewing price as a mechanism to control the offered load, the

Pricing
Problemε

q = ?
L

Figure 4:The pricing problem.

pricing problemreduces to finding an offered loadq that yields a QoS blocking probabilityε given a total of
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L channels. This problem was addressed by Keon and Anandalingam [8] and for the case of a constant arrival
rate, Courcoubetis and Reiman [1]. Also, a Gaussian-distribution approximation based approach is proposed
by Lanning, Massey, Rider and Wang [9] for single-service models, and hazard function approximation based
approach is introduced for multi-service models in Hampshire, Massey and Wang [4].

3. Generalization to the Multi-Class Bandwidth Model

The single class results can be generalized to a multiple customer class setting. Suppose that we have a
heterogeneous set of customers, where each class requests differing amounts of bandwidth. Letλ1, . . . , λn,
1/µ1, . . . , 1/µn, andb1, . . . , bn be respectively, the call arrival rate functions, random call holding times,
and the amount of bandwidth requested for then different classes of customers indexed byi. If there is
an unlimited amount of available bandwidth, then all the classes behave like a collection ofn-independent
infinite server queues. We can then define an offered load model, whereQ

(i)
∞ (t) denotes the random number

of customers simultaneously usingbi units of bandwidth. It then follows that eachQ(i)
∞ is anM/G/∞ queue

with a Poisson distribution where for each classi, Q
(i)
∞ equals theM/M/∞ queue length in steady state. If

we letR equal the offered load of the total requested bandwidth, then

R =
n∑

i=1

biQ
(i)
∞ (26)

whereE[Q(i)
∞ ] = Var[Q(i)

∞ ] = qi = λi/µi. Consequently,

E[R] =
n∑

i=1

biqi and Var[R] =
n∑

i=1

b2
i qi. (27)

Let B be the total amount of available bandwidth. We can then formulate a carried load model whereQ
(i)
B (t)

equals the random number of customers simultaneously usingbi units of bandwidth at timet, given an
admission control policy that rejects any arriving customer requesting more bandwidth than is available.

We now reconsider the QoS problem for multiple customer classes. The blocking for classj customers equals

(ε1, ... , εn) = ?QoS
ProblemB

(b1, ... , bn)

(q1, ... , qn)

Figure 5:The multi-class bandwidth quality of service (QoS) problem.

the probability of the event that
∑n

i=1 biQ
(i)
B is greater thanB − bj .

Since theQ(i)
∞ (t)’s are mutually independent Poisson random variables, we know that the probability given

above is some generic functionβ(i)
B : <n → < of theqi(t)’s whereqi(t) = E[Q(i)

∞ (t)]. Let q = (q1, ..., qn)
andb = (b1, ..., bn). In general, ifQ1, . . . , Qn are a collection of mutually independent Poisson random
variables withqi ≡ E[Qi], if we defineβ

(j)
B to be

β
(i)
B (q,b) = Pr


B − bi <

n∑

j=1

bjQ
(j)
B



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= Pr


B − bi <

n∑

j=1

bjQ
(j)
∞ ≤ B

∣∣∣∣∣∣

n∑

j=1

bjQ
(j)
∞ ≤ B




=
Pr

(
B − bi <

∑n
j=1 bjQ

(j)
∞ ≤ B

)

Pr
(∑n

j=1 bjQ
(j)
∞ ≤ B

) ,

andq = (q1, . . . , qn). Then this equals the steady state blocking probability for classi. This result follows
from time reversibility as discussed in Kelly [7].

We now consider the capacity provisioning problem with time-varying arrival rates for multiple services. In
this case, the blocking at timet for classj customers equals the probability of the event that

∑n
i=1 biQ

(i)
B (t)

is greater thanB(t)− bj . The modified offered load approximation for this probability is defined to be

Pr

(
n∑

i=1

biQ
(i)
B (t) > B − bj

)
≈ Pr

(
n∑

i=1

biQ
(i)
∞ (t) > B − bj

∣∣∣∣∣
n∑

i=1

biQ
(i)
∞ (t) ≤ B

)
. (28)

One justification for this approximation is that it gives the exact answer when the arrival rates are constant
and the system is in steady state. Thus an approximate QoS solution is :

β
(i)
B (q(t),b) = Pr


B − bi <

n∑

j=1

bjQ
(j)
∞ (t) ≤ B

∣∣∣∣∣∣

n∑

j=1

bjQ
(j)
∞ (t) ≤ B




=
Pr

(
B − bi <

∑n
j=1 bjQ

(j)
∞ (t) ≤ B

)

Pr
(∑n

j=1 bjQ
(j)
∞ (t) ≤ B

) .

We now reconsider the provisioning problem for multiple customer classes. Ifqi is the mean offered load

(b1, ... , bn)

Provisioning
Problem(ε1, ... , εn)

(q1, ... , qn)
B = ?

Figure 6:The multi-class bandwidth provisioning problem.

for customers requestingbi units of bandwidth, then the multiple class provisioning problem is to answer the
question: What is the smallest amountB of bandwidth needed to guarantee a probability of blocking less
thanεi for each classi?

Recall thatR is the offered load of the total requested bandwidth. IfB is the amount of provisioned bandwidth
that satisfies the multi classes QoS constraints, thenB should be at least as big as the mean of the offered load
R. It is also reasonable to add extra capacity to handle random demand fluctuations bigger than the mean. In
this spirit we set the amount of bandwidth equal to the mean plus some multiplex of the standard deviation
of the offered load. As in the single class case, we scale up the offered load of each class. In this limiting
regime an asymptotic provisioning solution is found. If

B(η, x) ≡ η ·
n∑

i=1

biqi + x

√√√√η ·
n∑

i=1

b2
i qi (29)
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whereη is a scaling factor for the offered loads, then we have the limiting result:

lim
η→∞

√
ηβ

(i)
B(η,x)(q,b) =

bi√∑n
i=1 b2

i qi

· φ(x)
Φ(x)

, (30)

whereφ andΦ are defined the same as for the single class case. This limiting result can be found in the papers
of Reiman [13] as well as Mitra and Morrison [12]. Sinceψ is a decreasing function, then the constraint
β

(i)
B (q,b) ≤ εi asymptotically implies

bi√∑n
i=1 b2

i qi

· φ(x)
Φ(x)

≤ εi ⇒ x ≥ ψ


 εi

bi

√√√√
n∑

i=1

b2
i qi


 . (31)

Our provisioned amount of bandwidth must satisfy the QoS conditions for all of the classes. Thus ifx satisfies
all the QoS conditions, then

x ≥ max
1≤i≤n

ψ


 εi

bi
·
√√√√

n∑

i=1

b2
i qi


 (32)

which is equivalent to

x ≥ ψ


 min

1≤i≤n

εi

bi
·
√√√√

n∑

i=1

b2
i qi


 . (33)

Making this inequality an equality, we have the provisioning solution:

B =
n∑

i=1

biqi + ψ


 min

1≤i≤n

εi

bi
·
√√√√

n∑

i=1

b2
i qi




√√√√
n∑

i=1

b2
i qi. (34)

This result leads to an asymptotic rule of thumb which states:

Asymptotic Rule of Thumb: The dominant QoS classes are the ones with the smallestεi/bi

ratio.

Satisfying their requirements provides more than enough bandwidth for all the other classes.

These results can be generalized to the time varying arrival case. The approximate time-varying provisioning
solution at timet is

B(t) =
n∑

i=1

biqi(t) + ψ


 min

1≤i≤n

εi

bi
·
√√√√

n∑

i=1

b2
i qi(t)




√√√√
n∑

i=1

b2
i qi(t) (35)

where eachqi(t) solves the differential equation

d

dt
qi(t) = λi(t)− µi · qi(t). (36)

These results are due to the modified offered load approximation. The bandwidth functionB(t) is a contin-
uous function of time. Service discipline assumptions need to be made as in the single class case. During
times of capacity reduction customers hold their resources until their job is complete. Also during this period
no knew customers of that class are admitted for service. Figure 7 is the state space transition diagram for a
system with two classes of customers. It is assumed that class 2 customers request more bandwidth,bi, than
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2  y = B(t) 

b
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max
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n1

= state (n 1,n2) 

= arrival transitio ns

= service transitio ns

Figure 7:State transition diagram for the two-class case.

the first class. This figure defines four distinct type of states: nonblocking states, class 2 blocking states, class
1 and 2 blocking states and ghost states. If the system is in a nonblocking state then a transition to and from
a state due to an arrival or a service is allowed for both classes. While in a class 2 blocking state, transitions
from these states due to an arrival of a class 2 customer is not permitted. In the class 1 and 2 blocking states
transitions from these states due to an arrival of a class 1 or class 2 customer is not permitted. In the ghost
states a transition due to an arrival of either class into the ghost state is forbidden. Only a transition due to a
service is allowed in ghost states.

Before we conclude this section, we state for completeness the general multiple class bandwidth version of
the pricing problem. Given the desired QoS probability of blockingεi for each classi requestingbi units

Pricing
Problem

(b1, ... , bn)

(ε1, ... , εn)
(q1, ... , qn) = ?

B

Figure 8:The multi-class bandwidth pricing problem.

of bandwidth and given the amount of bandwidthB, what is the largest offered loadqi that yields a QoS
blocking probability less thanεi? An approximate algorithm for solving this problem is explored in the paper
Hampshire, Massey and Wang [4].
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4. Numerical Results

Numerical results are given for the provisioning problem with two customer classes. These two classes
may have time varying arrival functions. The provisioning problem is solved to determine the amount of
bandwidthB(t) needed at any given time. Next we use this prescribed bandwidth at timet to formulate the
“exact” Markovian loss model. Then at each time step numerically integrate the forward equations for this
model and compute the transient blocking probabilities. Once the blocking probabilities are computed we
compare them to their respective QoS bounds.

The numerical example consists of two heterogenous customer classes. Let customers of the first class arrival
according to a Poisson process with mean rateλ1(t) = 30, requesting 20 units of bandwidth and desiring no
more then 4 percent blocking . Customers of second class arrive according to a nonhomogeneous Poisson
process with mean rateλ2(t) = 40 + 10 sin(2πt/80), requesting 5 units of bandwidth and desiring no more
than 1 percent blocking.

For the numerical results presented the planning horizon is 80 time units. It is assumed that the customer
holding times are mutually independent and exponentially distributed with the mean of a single time unit.

The bandwidth function,B(t), is a continuous function of time. In practice, a service provider changes the
size of the network only at discrete times. The intervals on which the size of the network is held constant are
called provisioning periods. The amount of bandwidth allocated over a provisioning period is the maximum
of B(t) over that provisioning interval. The provisioning periods can be made to be finer and finer. Thus as
the provisioning period becomes infinitesimally small, the continuous provisioning solution is obtained.

The two period provisioning scenario is considered first. The top graph in Figure 9, is a plot of the transient
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Figure 9:Two period provisioning example.

blocking probabilities computed by numerically integrating the forward equations for the Markovian loss
model with ghost states. The lower graph is a plot of the provisioning solutionB(t) which we use to com-
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pute the discrete approximation ofB(t) for exactly two provisioning periods. Notice at time 40 the apparent
discontinuity in the blocking probabilities is reality a discontinuity of thederivativeof the blocking proba-
bilities, which are actually continuous functions of time. This phenomena is due to the generation of ghost
states. At time 40, the amount of provisioned resources decreases instantaneously. This activates the non-
preemptive service assumptions, thus blocking arrivals of new requests. Now compare the transient blocking
probabilities to the QoS targets. It is seen that the transient blocking probabilities are in reasonable range of
the targets. As the number of provisioning periods is increased, the transient blocking probabilities are closer
to the QoS targets. In Figure 10, we consider the case of eight provisioning periods. The derivative disconti-
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Figure 10:Eight period provisioning example.

nuities in the blocking probabilities are caused by the generation of ghost states. The reasoning follows from
above. Finally, turning to the continuously provisioned system, the transient blocking probabilities approach
the desired QoS requirement for each class.

5. Forward Demand Revenue

Given the solution to the provisioning problem, we now consider how to characterize forward demand rev-
enue. ViewingB(t)t ≥ 0 as a deterministic bandwidth provisioning function of time (also of bounded varia-
tion), let{Π (t) | t ≥ 0 } be a random process whereΠ (t) equals the spot price for unit bandwidth at timet.
If R(t, T ) denotes the forward demand revenue that the carrier obtained from timet to T then we can express
this as

R(t, T ) =
∫ T

t

Π (s)dB(s). (37)

Making no assumptions about the distribution of the processΠ , we have

Theorem 2 Let{Π(t) | t ≥ 0 } be a square integrable process and let beB a function of bounded variation

12
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Figure 11:Continuous provisioning example.

on the real line. If we define for allt < T

R(t, T ) ≡
∫ T

t

Π(s)dB(s), (38)

then we have

E [R(t, T )] =
∫ T

t

E [Π(s)] dB(s) (39)

and

Var [R(t, T )] =
∫ T

t

∫ T

t

Cov [Π(r),Π(s)] dB(r)dB(s). (40)

Now we further assume that the spot price follows a geometric Brownian motion process, i.e.:

dΠ (t) = ρ(t)Π (t)dt + σ(t)Π (t)dW (t) (41)

where the Wiener process{W (t) | t ≥ 0 } is standard Brownian motion, andΠ (0) is a square integrable
random variable that is independent of Brownian motion process. We then have:

E [R(t, T )] = E [Π (T )] B(T )− E [Π (t)] B(t)−
∫ T

t

ρ(s)B(s−)E [Π (s)] ds (42)

and

Var [R(t, T )] = E [R(t, T )]2
(

E
[
Π (0)2

]

E [Π (0)]2
exp

(∫ t

0

σ(r)2dr

)
− 1

)

+
E

[
Π (0)2

]

E [Π (0)]2

∫ T

t

E [R(s, T )]2 σ(s)2 exp
(∫ s

0

σ(r)2dr

)
ds

13



+
∑

t<s≤T

E [Π (s)]2 ∆B(s)2
(

E
[
Π (0)2

]

E [Π (0)]2
exp

(∫ s

0

σ(r)2dr

)
− 1

)
,

where∆B(s) ≡ B(s)−B(s−).

The rest of the section provides the derivation of these formulas.

Lemma 1 If {Π(t) | t ≥ 0 } solves the stochastic differential equation

dΠ(t) = ρ(t)Π(t)dt + σ(t)Π(t)dW (t), (43)

where{W (t) | t ≥ 0 } is standard Brownian motion andΠ(0) is a square integrable random variable that
is independent of the Brownian motion process, then for all0 ≤ s ≤ t

E [Π(t)] = E [Π(s)] exp
(∫ t

s

ρ(r)dr

)
= E [Π(0)] exp

(∫ t

0

ρ(r)dr

)
, (44)

Var [Π(t)]
E [Π(t)]2

=
E

[
Π(s)2

]

E [Π(s)]2
exp

(∫ t

s

σ(r)2dr

)
− 1 =

E
[
Π(0)2

]

E [Π(0)]2
exp

(∫ t

0

σ(r)2dr

)
− 1, (45)

and finally
Cov [Π(s),Π(t)]
E [Π(s)] E [Π(t)]

=
Var [Π(s)]
E [Π(s)]2

. (46)

Proof: For all t ≥ s we have

Π(t) = Π(s) exp
(∫ t

s

σ(r)dW (r) +
∫ t

s

ρ(r)− σ(r)2/2dr

)
(47)

and ifΠ(0) is non-zero then so isΠ(t) for all t ≥ 0. It follows from this representation that the two processes
{M(s, t) | t ≥ s } and{M∗(s, t) | t ≥ s } where

M(s, t) ≡ Π(t)
Π(s)

exp
(
−

∫ t

s

ρ(r)dr

)
(48)

and

M∗(s, t) ≡ Π(t)2

Π(s)2
exp

(
−

∫ t

s

2ρ(r) + σ(r)2dr

)
(49)

are both martingales with respect to Brownian motion. In addition, bothM(s, t) andM∗(s, t) are independent
of Π(s).

From the first martingale, we obtain

Π(t) = Π(s)M(s, t) exp
(∫ t

s

ρ(r)dr

)
(50)

andE[M(s, t)] = E[M∗(s, t)] = 1, hence

E [Π(t)] = E [Π(s)M(s, t)] exp
(∫ t

s

ρ(r)dr

)
= E [Π(s)] exp

(∫ t

s

ρ(r)dr

)
. (51)

For the variance, we have

Π(t)2 = Π(s)2M∗(s, t) exp
(∫ t

s

2ρ(r) + σ(r)2dr

)
(52)
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and so

E
[
Π(t)2

]
= E

[
Π(s)2

]
exp

(∫ t

s

2ρ(r) + σ(r)2dr

)
. (53)

We obtain the desired identity by combining this equation with

E [Π(t)]2 = E [Π(s)]2 exp
(∫ t

s

2ρ(r)dr

)
. (54)

Finally for the covariance, we have

Π(s)Π(t) = Π(s)2M(s, t) exp
(∫ t

s

ρ(r)dr

)
(55)

which gives us

E [Π(s)Π(t)] = E
[
Π(s)2

]
exp

(∫ t

s

ρ(r)dr

)
(56)

and the rest follows.

Now we state and prove our main theorem for this section.

Theorem 3 For all 0 ≤ t ≤ T whereΠ(0) is non-zero, we have

E [R(t, T )] = E [Π(T )] B(T )− E [Π(t)] B(t)−
∫ T

t

ρ(s)B(s−)E [Π(s)] ds (57)

and

Var [R(t, T )] = E [R(t, T )]2
(

E
[
Π(0)2

]

E [Π(0)]2
exp

(∫ t

0

σ(r)2dr

)
− 1

)

+
E

[
Π(0)2

]

E [Π(0)]2

∫ T

t

E [R(s, T )]2 σ(s)2 exp
(∫ s

0

σ(r)2dr

)
ds

+
∑

t<s≤T

E [Π(s)]2 ∆B(s)2
(

E
[
Π(0)2

]

E [Π(0)]2
exp

(∫ s

0

σ(r)2dr

)
− 1

)
, (58)

where∆B(s) ≡ B(s)−B(s−).

Proof: Applying the identities for the mean, variance and covariance ofΠ we obtain

Var [R(t, T )] =
∫ T

t

∫ T

t

Cov [Π(r),Π(r)] dB(r)dB(s)

=
∫ T

t

∫ T

t

Cov [Π(r),Π(s)]
E [Π(r)] E [Π(s)]

E [Π(r)] dB(r)E [Π(s)] dB(s)

=
∫ T

t

∫ T

t

Var [Π(r ∧ s)]
E [Π(r ∧ s)]2

E [Π(r)] dB(r)E [Π(s)] dB(s)

=
∫ T

t

∫ T

t

(
E [Π(0)]2

E [Π(0)]2
exp

(∫ r∧s

0

σ(u)2du

)
− 1

)
E [Π(r)] dB(r)E [Π(s)] dB(s)

= 2
∫ T

t

(
E [Π(0)]2

E [Π(0)]2
exp

(∫ s

0

σ(u)2du

)
− 1

)(∫ T

s

E [Π(r)] dB(r)

)
E [Π(s)] dB(s).
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If we set

x(s) =
∫ T

s

E [Π(r)] dB(r), (59)

then we have
dx(s) = −E [Π(s)] dB(s) and ∆x(s) = −E [Π(s)] ∆B(s). (60)

The rest follows from the next lemma where we set

y(s) =
E [Π(0)]2

E [Π(0)]2
exp

(∫ s

0

σ(u)2du

)
− 1, (61)

sox is a function of bounded variation andy is an absolutely continuous function.

Lemma 2 If x andy are real-valued functions on the interval[t, T ] wherex is of bounded variation,x(T ) =
0 andy is absolutely continuous, then

2
∫ T

t

x(t−)y(t)dx(t) = −

x(0)2y(0) +

∫ T

t

x(t−)2dy(t) +
∑

t<s≤T

∆x(s)2y(s)


 . (62)

Proof: By hypothesis,x is of bounded variation on[t, T ] so it has at most a countably infinite number
of discontinuities, which has measure zero for any measure with no atoms. The measure induced by any
absolutely continuous function likey satisfies this criterion and so

∫ T

t

x(s−)2dy(s) =
∫ T

t

x(s)2dy(s). (63)

A special case of the generalized integration by parts formula for bounded variation functions holds forx2

whens > t, namely

x(s)2 = x(t)2 + 2
∫ s

t

x(r−)dx(r) +
∑

t<r≤s

∆x(r)2. (64)

Settings = T and applying the conditionx(T ) = 0 then gives us

x(t)2 + 2
∫ T

t

x(r−)dx(r) +
∑

t<r≤T

∆x(r)2 = 0. (65)

From these identities the rest follows since
∫ T

t

x(s)2dy(s) =
∫ T

t


x(t)2 + 2

∫ s

t

x(r−)dx(r) +
∑

t<r≤s

∆x(r)2


 dy(s)

= x(t)2(y(T )− y(t)) + 2
∫ T

t

(y(T )− y(s))x(s−)dx(s)

+
∑

t<s≤T

(y(T )− y(s))∆x(s)2

=


x(t)2 + 2

∫ s

t

x(r−)dx(r) +
∑

t<r≤s

∆x(r)2


 y(T )

−

x(t)2y(t) + 2

∫ T

t

x(s−)y(s)dx(s) +
∑

t<s≤T

∆x(s)2y(s)




= −

x(t)2y(t) + 2

∫ T

t

x(s−)y(s)dx(s) +
∑

t<s≤T

∆x(s)2y(s)


 .
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6. Summary

We have presented three canonical problems that arise from the Erlang loss model. These problems have a
natural interpretation for a network service provider. The QoS problem is a classical problem that Erlang
addressed in 1917. The pricing problem is the topic of another paper [4]. Much of this paper was dedicated
to solving the provisioning problem. An asymptotic provisioning solution for a system offering multiple
services was presented. A numerical example was also given in which there were two types of services and
non-stationary demand for the services. It was observed that this provisioning methodology performs as
desired. The provisioning solution is a result of an asymptotic scaling of the offered load. Therefore, we
expect more desirable results as the demand for services increases. In the numerical example we assumed
that the service time distributions were exponential. We should note that our provisioning solution is also
valid for phase-type service distributions, where the mean offered load satisfies a system ofn differential
equations wheren is the number of phases.

The provisioning solution is a planning tool for a network service provider that is offering multiple dif-
ferentiated services that each have unique QoS guarantees. The bandwidth function,B(t), can be used as
schedule for capacity management. Our methodology for computing the provisioned bandwidth schedule is
lightweight and computationally inexpensive. This is because the functionψ can be simply computed from
a lookup table. Therefore we can compute the provisioning schedule in realtime given forecasted demand
for the services. The ability to compute the provisioning solution in realtime is a valuable property of our
methodology.

Once our bandwidth schedule is determined a network provider may now engage in forward contracts with
customers who require capacity some time in the future. Expressions for the mean and variance of the forward
demand revenue are also given.
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