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Abstract—We present a stochastic traffic engineering framework for op-
timizing bandwidth provisioning and path selection in networks. The ob-
jective is to maximize revenue from serving demands, which are uncertain
and specified by probability distributions. We consider a two-tier market
structure, where demands in the two markets are associated with different
unit revenues and uncertainties. Based on mean-risk analysis, the optimiza-
tion model enables a carrier to maximize mean revenue and contain the risk
that the revenue falls below an acceptable level. Our framework is intended
for off-line traffic engineering design, which takes a centralized view of net-
work topology, link capacity, and demand. We obtain conditions under
which the optimization problem is an instance of convex programming and
therefore efficiently solvable. We derive properties of the optimal solution
for the special case of Gaussian distributions of demands. We focus on the
impact of demand variability on various aspects of traffic engineering, such
as link utilization, routing, capacity provisioning, and total revenue.

Method Keywords- Mathematical Programming, Economics, Traffic En-
gineering, Demand Uncertainty, Risk

I. INTRODUCTION

Traffic engineering (TE) is a mechanism for traffic and rev-
enue management in networks [4]. Supported by emerging
technologies, especially Multi-Path Label Switching (MPLS),
TE performs provisioning and admission control functions to
optimize network operators’ objectives [3], [8], [7]. The TE
mechanism takes two complementary forms, on-line and off-
line [4], [23]. On-line TE is state-dependent and applies on a
short time-scale. See [21] and [12] for works where the focus
is on distributed traffic engineering and provisioning. Off-line
TE applies on a longer time-scale. Instead of focusing on in-
stantaneous network states and individual connections, the lat-
ter mechanism considers statistical behavior of traffic demands
aggregated over all connections. Combining this demand infor-
mation with a centralized view of network topology and link
capacites, off-line TE selects the topology of routes and provi-
sions resources on the selected routes for carrying the demands.
These decisions are optimized globally for demands of various
service types and origin-destination pairs [2], [16], [19], [22].
The solution of the off-line optimization has been proposed as
a reference point for on-line operations. For example, in [22]
capacity preallocated by the off-line TE process is used as the
threshold for on-line admission control. Similarly, in [26] the
off-line provisioning process is used to guide the real-time rout-
ing and admission control.

This paper focuses on the optimization of off-line traffic en-
gineering. In previous work, the problem has been formulated
as a deterministic multi-commodity flow (MCF) model, where
demand of each service and node pair is given as a fixed quan-
tity, such as expected value of forecasted traffic load [16], [22].
The goal is to find an appropriate amount of traffic to admit for
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each demand, and capacitated route(s) to carry the traffic, so that
the carrier’s objective, usually formulated as revenue earned by
serving demands, is optimized subject to network capacity con-
straints.

There is much to be gained from a framework that takes into
account uncertainty about demand and revenue. For instance,
in the deterministic MCF model, revenue derived from carrying
demand is assumed to increase linearly with the amount of ca-
pacity provisioned up to the point where all traffic demand is
satisfied. This approach is incomplete in the presence of uncer-
tainty in demand. When demand is random, if more capacity
is provisioned then the probability that the incremental capacity
will be fully utilized decreases. Consequently, the mean revenue
should be a concave function of the allocated capacity. This
non-linear effect is captured under the framework of probabilis-
tic distributions of demands. Such distributional information is
typically a byproduct of statistical procedures for forecasting
network traffic from measurements [5], [6], [10], [24]. While
this information is obtainable, it has not been used extensively
in the past for the lack of a modeling framework.

In this paper, we develop a stochastic traffic engineering
framework which uses probabilistic distributions of demands as
inputs for off-line optimization. The model captures the afore-
mentioned non-linear effect and also extends off-line traffic en-
gineering in several interesting dimensions. First, the model en-
ables us to assess the impact of statistical variability in demand.
In our numerical studies, we find that, even when mean demands
stay fixed, increasing demand variability significantly affects the
optimal traffic engineered solution. We have observed lower
link utilization and higher link shadow costs. Note that the op-
timal routing is based on link shadow costs [19], so variability
also influences path selection.

Second, the use of distributional information of demands sug-
gests extension of the objective function of traffic engineering
beyond mean revenue. For example, the carrier may be inter-
ested not only in the mean revenue, but also the risk that the
revenue will fall below an acceptable level. This risk is not cal-
culable in the deterministic traffic engineering framework. It
is, however, a major output of our stochastic traffic engineering
framework. Finally, the framework allows the carrier to consider
multiple objectives and their tradeoffs, e.g., maximizing the ex-
pected value and minimizing the risk of revenue shortfall. In
fact, the optimization model developed in this paper is based on
the mean-risk analysis approach, which was first developed in
the finance community to address the needs of balancing growth
and risk in resource allocation [15], [11], [13].

An important aspect of our model is the formulation of de-
mand and revenue under a two-tier market structure. The first
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tier is a wholesale market where bandwidth is sold as a com-
modity, and the second tier is a retail market where bandwidth is
sold as a service. In the wholesale market demand is determinis-
tic, so that there is no risk in revenue generation, but the price for
carrying each unit of bandwidth is low. In the retail market, the
carrier can charge a premium price, but the demand is stochas-
tic, so that there exists the risk of revenue shortfall. By prop-
erly dimensioning bandwidth provisioned for each market, the
carrier can maximize mean revenue at its acceptable risk level.
Our numerical studies show that these decisions are affected by
demand variability. As variability increases, more bandwidth
is provisioned to satisfy stochastic retail demands and less for
wholesale. Such a two-tier market structure is not uncommon in
the telephone industry, but has not yet been fully developed in
data transport. It is important to point out that in our modeling
framework the existence of the wholesale market may be readily
removed, in which case the stochastic demand in the retail mar-
ket becomes the sole focus. On the other hand, we can further
generalize the carrier’s interaction with the wholesale market by
assuming that it can both buy and sell (here we only allow sell-
ing) bandwidth in this market. We choose to defer this extension
to a future publication in order to focus on the many aspects of
the simpler model here.

The paper is organized as follows: In Section II we formu-
late the stochastic traffic engineering problem and present the
optimization model. In Section III we discuss the complexity of
obtaining the global optimal solution. In Section IV we derive
properties of the optimal solution that provide important insights
on bandwidth provisioning and routing. In Section V we give
numerical results that show the impact of demand variability on
network traffic engineering. We present our concluding remarks
in Section VI.

II. MODEL

A. Conception

A.1 Demand for Bandwidth

A carrier derives its revenue by delivering traffic demand from
one node to another for its clients. We assume that there are two
markets for the carrier’s transmission capability: a wholesale
market where bandwidth is sold as a commodity; and a retail
market where bandwidth is sold as a service.

In the wholesale market, carriers sell standardized “band-
width pipes”, e.g., DS3 circuits, that have little differentiation
among the vendors. Naturally, only carriers that offers the low-
est price per unit of bandwidth will be selected by buyers. Con-
sequently, the competition in the wholesale market is best chara-
terized by a Cournot game, where every carrier charges the mar-
ket prevailing price that is jointly determined by total capacities
provided by all carriers. In this paper, we assume that there are
many competing suppliers in the wholesale market, so that an
individual carrier cannot dominate demands, and the prevailing
market price cannot be influenced significantly by one carrier’s
tactical decision about how much capacity to bring to the whole-
sale market. The assumption implies that within the short time
scale of our consideration, the carrier can consider as guaranteed
the wholesale revenue, which equals the product of the market
prevailing price per unit of bandwidth and the amount of band-

width it chooses to sell.
In the retail market, rather than offering “raw bandwidth,”

carriers sell services, such as voice, data, and video, based on
the delivery of bandwidth of course. Consequently, customers
choose their preferred carrier not only on the basis of price, but
also other factors, such as the richness of applications and con-
tent that are in the carrier’s service package, as well as quality
at the application level (e.g. clarity of voice or video image),
security and reliability, and even brand name. These features
differentiate carriers and make some more attractive than oth-
ers to certain segments of customers. As differentiation renders
more market power to a carrier over its targeted users, carriers
are allowed to collect a higher price per unit of bandwidth from
the retail market than from the wholesale market. However, the
revenue also becomes more volatile in the retail market because,
instead of serving a small portion of total industry demand, as
is the case with the wholesale market, the carrier now serves a
smaller group of users, whose demand is specific to its network
service.

We digress to observe that in the model here prices are not
influenced by capacity provisioning decisions. It is possible to
couple both through price-demand relationships, for instance, as
in [19].

A.2 Admissible Route Sets

QoS and policy considerations are major constraints on pro-
visioning decisions. The notion of admissible route sets al-
lows these constraints to be taken into account in the optimiza-
tion. Let R(v) denote the set of admissible routes for origin-
destination pair v. Different admissible route sets for wholesale
and retail services between the same node pair are allowed. For
example, routes may be required to have lengths not exceeding
specified thresholds, on account of propagation delay, and there
may also be restrictions on the number of hops, since each hop is
associated with addition switching node and consequent incre-
mental delay. The admissibility of a route may also depend on
policy, which might reflect diverse considerations, such as se-
curity, the capability of switching nodes in the routes to handle
certain services, link capacity, etc. Generating the admissible
route sets is a substantial task in itself. In this paper, as in [16],
we consider that these sets are given.

A.3 Mean-Risk Analysis

In the presence of demand uncertainty, maximizing the mean
revenue, which is implied in the earlier deterministic traffic en-
gineering studies, may not be the best approach for a carrier.
For example, suppose one TE design gives the carrier revenue
of 10000 with probability 0.01, while another TE design gives,
with certainty, revenue of 99. Then many carriers might choose
the second design even though the mean revenue is lower. This
preference for avoiding uncertainty in revenue is formally de-
fined as risk averseness in decision science [11].

Mean-risk analysis, which has been widely applied to finan-
cial asset allocation, addresses the issue of risk averseness by
offering a broader optimization objective. The approach starts
with developing a risk index, which is a quantitative measure of
the risk of revenue shortfall, based on the distributional informa-
tion. It then maximizes the weighted combination of the mean
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revenue and the risk index, i.e., mean−δ∗(risk index), where
δ ≥ 0 is a parameter. Different levels of risk averseness can be
reflected by choosing different values for δ. A high δ value in-
dicates larger willingness to sacrifice the mean revenue to avoid
risk. On the other hand, by setting δ to 0, we can also include the
case that the carrier maximizes the mean revenue only. Notice
that, for any value of δ, the solution that maximizes the above
combination is Pareto optimal in the sense that one cannot im-
prove the mean revenue without increasing the risk, or reduce
the risk without hurting the mean.

There are several candidates for the risk index, many of which
may lead to inferior solutions that are stochastically dominated
by other feasible alternatives. See [13] and [20] for definitions
of stochastic dominance and their relevance to the mean-risk
model. As discussed in [18], there is an important tradeoff be-
tween immunity from stochastic dominance of the optimal so-
lution and tractability of the optimization problem in network
revenue management. For example, variance is a widely used
risk index. In our case, it facilitates the optimization, but the so-
lutions obtained are susceptible to stochastic dominance. Based
on these considerations, we find that the standard deviation of
network revenue is an appropriate risk index for our optimiza-
tion framework.

The reader may wish to take note of two popular approaches
for handling risk, namely, the von Neuman - Morgenstern [25],
[11] expected utility model and the mean-variance model due to
Markowitz [15]. Also, robust optimization [17] is a technique
related to the latter approach, which proactively addresses un-
certainties in the model data of engineering systems.

B. Model Formulation

We formulate the network as a collection of nodes and links
(N ,L), where link l ∈ L has bandwidth Cl. Let V = {(vi, vj) :
vi ∈ N , vj ∈ N} be the set of all node pairs. V1 ⊂ V is
the collection of node pairs between which there are retail de-
mands, and V2 ⊂ V is the collection of node pairs between
which wholesale of bandwidth is admissible.

Retail demand between v ∈ V1 is characterized by a ran-
dom distribution, with its Probability Density Function (PDF)
denoted by fv(x), and Cumulative Distribution Function (CDF)
denoted by Fv(x). Let dv(v ∈ V1) be the amount of capacity
provisioned to serve retail demand between v. The provisioned
quantity, dv , can be routed on one or more admissible routes.
Denote the admissible route set for v ∈ V1 by R1(v) and let
ξr(r ∈ R1(v)) be the amount of capacity provisioned on route
r. Then:

dv =
∑

r∈R1(v)

ξr. (1)

Denote by Tv the random retail demand between node pair v.
Then

xv(dv) = min(Tv, dv) (2)

is the amount of retail demand that is actually carried between v.
Note that the revenue earned by the carrier is based on the car-
ried demand. Let mv(dv) and s2

v(dv) be the mean and variance
of xv , respectively. Then

mv(dv)=
∫ dv

0
xfv(x)dx+dvF̄v(dv)=

∫ dv

0
F̄v(x)dx (3)

and

s2
v(dv) =

∫ dv

0
x2fv(x)dx+ d2

vF̄v(dv)−m2
v(dv)

= 2
∫ dv

0
xF̄v(x)dx−m2

v(dv), (4)

where F̄v(x) ≡ 1 − Fv(x). Notice that

∂mv

∂dv
= F̄v(dv) ≥ 0,

∂s2
v

∂dv
= 2[dv − mv(dv)]F̄v(dv) ≥ 0,

i.e., both the mean and variance of carried demand increase with
the amount of bandwidth provisioned. Their maximum values,
denoted by mv(∞) and s2

v(∞), are the mean and variance of the
demand between v, respectively. Let πv be the revenue earned
for each unit of retail traffic carried between v. The total rev-
enue derived from serving retail demand between v is a random
variable πvxv(dv), for which the mean is πvmv(dv) and the
variance is π2

vs
2
v(dv).

Likewise, let yv be the amount of bandwidth provisioned for
wholesale between v ∈ V2,

yv =
∑

r∈R2(v)

φr, (5)

where R2(v) is the admissible route set for v ∈ V2 and φr is the
amount of provisioned bandwidth on route r to carry wholesale
traffic. Suppose ev is the unit wholesale price between node pair
v. Then the wholesale revenue is evyv .

The carrier’s total revenue is the following function of deci-
sion variables dv and yv:

W =
∑

v∈V1

πvxv+
∑

v∈V2

evyv. (6)

We invoke the mean-risk framework, and assume that the car-
rier wants to balance maximization of the mean revenue, E(W ),
with minimization of the risk of revenue shortfall, with the lat-
ter represented by the standard deviation,

√
V ar(W ). Thus the

objective function is formulated as:

Θ = E(W ) − δ
√
V ar(W ) (7)

where δ ≥ 0 is an input parameter that reflects the extent to
which the carrier is willing to trade expected revenue with the
risk of revenue loss.

The overall optimization model is as follows:

maxΘ(dv, yv, ξr, φr) =E(W )−δ
√

V ar(W )

=
∑

v∈V1

πvmv(dv)+
∑

v∈V2

evyv−δ

√ ∑

v∈V1

π2
vs

2
v(dv) (8)

subject to:
∑

r∈R1(v)

ξr = dv (v ∈ V1)
∑

r∈R2(v)

φr = yv (v ∈ V2) (9)
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∑

r∈R1(v):l∈r

ξr+
∑

r∈R2(v):l∈r

φr ≤ Cl l ∈ L (10)

0 < d̄v ≤ dv (v ∈ V1), (11)

0 ≤ ξr (r ∈ R1(v)), (12)

0 ≤ yv (v ∈ V2), 0 ≤ φr (r ∈ R2(v)) (13)

Here, we comment on parameter d̄v in (11), which is defined
as the minimum amount of bandwidth that must be provisioned
for retail demand between v. The value of d̄v is determined
by the grade of service that the carrier offers to its retail cus-
tomers. For example, the requirement that the blocking rate of
a retail demand be kept below some threshold can be translated
into the condition that dv be greater than a suitably chosen value
of d̄v . Notice that with fixed link capacities, it may be infeasible
to satisfy the minimum amount requirement of some demands.
Should this situation arise, the carrier has to supplement its in-
stalled capacities by buying bandwidth from other carriers. As
discussed in Section I, our model can be extended to cover this
scenario. Let pl be the price of buying unit bandwidth on link
l, and bl be the amount to buy, which is a decision variable. We
can integrate buying decisions into the model by generalizing
the revenue function in (6) to be

Ŵ = W −
∑

l∈L
plbl,

and replacing W with Ŵ in the objective function (7). Con-
straints in (10) should also be changed to

∑

r∈R1(v):l∈r

ξr+
∑

r∈R2(v)

φr ≤ Cl + bl l ∈ L (14)

The generalized model makes it always feasible to provide min-
imum quantity guarantee for retail demands and its output rec-
ommends the optimal amount of bandwidth to buy on each link.
Nevertheless, the extended model that incorporates the carrier’s
buying decisions is not the focus of this paper, as has been men-
tioned in Section I. Consequently, we will analyze the original
model in (8)-(13), and assume that the guaranteed grade of ser-
vice is such that a feasible solution exists for the existing link
capacities.

III. SOLUTION STRATEGY

Given that all constraints of the above model are linear, the
difficulty of finding the global optimum depends on the shape
of the objective function Θ. If Θ is concave in all nonlinear
variables dv(v ∈ V1), the model falls into the class of concave
maximization problem. In this case, the global optimum can be
found efficiently with existing standard algorithms, which facil-
itates the implementation of our framework.

In general, Θ is not concave everywhere if δ > 0, as can be
verified by considering a restricted case with only one nonlinear
variable. Despite this inconvenience, in this section, we show
that in many circumstances, the model can still be solved as a
concave maximization problem. Our approach is based on two
theorems developed in III-A and the subsequent analysis in III-
B.

A. The Shape of the Objective Function

In the following, we use mv and s2
v to represent mv(dv) and

s2
v(dv), as defined in equations (3) and (4), respectively. We

also omit the argument dv in the distribution functions, and use
Fv , F̄v, and fv to represent Fv(dv), F̄v(dv), and fv(dv), respec-
tively. Lemma 1 is the basis for the proofs of Theorems 1 and
2.
Lemma 1 For any v ∈ V1 and dv ≥ 0,

Fvs
2
v ≥ (dv − mv)2F̄v. (15)

Proof: Because fv ≥ 0, from equations (3) and (4):

∂(Fvs
2
v)

∂dv
= 2FvF̄v(dv − mv) + fvs

2
v

≥ 2FvF̄v(dv − mv) − fv(dv − mv)2

=
∂[(dv − mv)2F̄v]

∂dv
. (16)

Since Fvs
2
v = (dv − mv)2F̄v = 0 at dv = 0,

Fvs
2
v ≥ (dv − mv)2F̄v for all dv ≥ 0. ✷ (17)

We show in Theorem 1 that Θ is unimodal in every dv .
Theorem 1 For v ∈ V1, given fixed values for dv′(v′ �= v),

∂Θ
∂dv

=
{

≥ 0 if 0 ≤ dv ≤ d̂v

< 0 if dv > d̂v
, (18)

d̂v = sup{dv :
(dv − mv)2

s2
v +Ψv

≤ 1
δ2 }. (19)

where Ψv =
∑

v′ �=v(πv′/πv)2s2
v′ , and d̂v is the unique solution

to (19), i.e., d̂v is calculated by solving the equation obtained by
replacing ≤ by =.
Proof: Let S2 = V ar(W ) =

∑
v∈V1

π2
vs

2
v ,

∂Θ
∂dv

= πv
∂mv

∂dv
−δ

∂S

∂dv
=πvF̄v−δπvF̄v

(dv − mv)
S/πv

= πvF̄v[1 − δ
(dv − mv)√
s2

v +Ψv

]. (20)

Notice that by Lemma 1,

∂[
(dv − mv)√
s2

v +Ψv

]/∂dv =
Fv(s2

v +Ψv) − (dv − mv)2F̄v√
(s2

v +Ψv)3
≥ 0.

(21)
Therefore (dv −mv)/

√
s2

v +Ψv] monotonically increases from
0 to +∞ as dv goes from 0 to +∞. It follows that d̂v as defined
by (19) is unique, and ∂Θ/∂dv >,=, or < 0, depending on
whether dv <,=, or > d̂v. ✷

Holding (19) at equality and applying the Implicit Function
Theorem,

∂d̂v

∂Ψv
=

dv − mv

Fv(s2
v +Ψv) − (dv − mv)2F̄v

≥ 0, (22)

indicating that d̂v increases with Ψv . This result will be used in
III-B.
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Clearly, any maximum point of Θ can be reached only in areas
where dv ≤ d̂v for all v ∈ V1. Theorem 2 shows that Θ is
concave in this region. Before presenting the theorem, we first
specify the second-order derivatives,

∂2Θ
∂d2

v

= −πvfv[1 − δ
(dv − mv)

S/πv
]

−δ πvF̄v

S/πv
[Fv−(

(dv−mv)
S/πv

)2F̄v] v ∈ V1, (23)

and for v �= v′,

∂2Θ
∂dv∂dv′

=
δ

S3π
2
vπ

2
v′(dv − mv)F̄v(dv′ − mv′)F̄v′ (24)

Theorem 2 : Let H(Θ) be the Hessian matrix of Θ.
If

∂Θ
∂dv

= πvF̄v[1 − δ
(dv − mv)

S/πv
] ≥ 0 for all v ∈ V1 (25)

then H(Θ) is negative semi-definite.
Proof:

H(Θ) =
(

H1 0
0 0

)
(26)

where H1 is a square matrix of dimension n = |V1|, and its
entries are ∂2Θ/∂dvi

∂dvj
(vi, vj ∈ V1). Other elements that

take the zero value correspond to second-order derivatives with
respect to linear variables in the objective function. H(Θ) is
negative semi-definite if and only if H1 is negative semi-definite.

Apply equations (23) and (24), and note that
S2 = π2

vs
2
v +

∑
v′ �=v π

2
v′s2

v′ for any v ∈ V1, we have

H1 = −H1a − δ

S3H1b − δ

S3H1c, (27)

where elements of matrix H1a, H1b, and H1c, denoted corre-
spondingly as ha(i, j), hb(i, j), and hc(i, j). H1a and H1b are
diagonal matrices with

ha(i, i) = πvi
fvi

[1 − δ
(dvi

− mvi
)

S/πvi

], and

hb(i, i) = π4
vi
F̄vi

[s2
vi
Fvi

− (dvi
− mvi

)2F̄vi
]. (28)

hc(i, i) = π2
vi
F̄vi

Fvi
(
∑

v �=vi

π2
vs

2
v), and for i �= j,

hc(i, j) = −π2
vi
π2

vj
(dvi

− mvi
)F̄vi

(dvj
− mvj

)F̄vj
. (29)

H1a is positive semi-definite by assumption, and H1b is pos-
itive semi-definite by Lemma 1. To prove that H(Θ) is nega-
tive semi-definite, it suffices to show that H1c is positive semi-
definite, i.e., for any real vector %X of dimension n = |V1|,

%XTH1c
%X =

∑

v∈V1

x2
vπ

2
vF̄vFv(

∑

v′ �=v

π2
v′s2

v′)

−
∑

v′ �=v

xvxv′π2
vπ

2
v′(dv − mv)F̄v(dv′ − mv′)F̄v′ ≥ 0. (30)

This is true because by Lemma 1,
√

F̄vFvF̄v′Fv′s2
vs

2
v′ ≥ (dv − mv)F̄v(dv′ − mv)F̄v′ , (31)

and by the A-G Mean Inequality(a2 + b2 ≥ 2ab),
∑

v

x2
vπ

2
vF̄vFv(

∑

v′ �=v

π2
v′s2

v′)

≥
∑

v′ �=v

π2
vπ

2
v′xvxv′

√
F̄vFvF̄v′Fv′s2

vs
2
v′ . ✷ (32)

B. Discussions on Solution Procedures

The two theorems in the last section define a set:

Ω ≡ {dv(v ∈ V1) : d̄v ≤ dv ≤ d̂v}, (33)

over which Θ is concave. The set Ω also contains all local maxi-
mum point(s) of Θ. The model is a concave maximization prob-
lem if Ω, or its intersection with the feasible region, is a convex
set. In this case, we can find the global optimum efficiently.

The set Ω may or may not be convex, depending on demand
distribution functions. In case Ω is not convex, we can still
solve the model as a concave maximization problem under cer-
tain conditions. Consider d̂v(v ∈ V1) in Theorem 1, which are
obtained by solving:

[d̂v − mv(d̂v)]2

s2
v(d̂v) + Ψv

=
1
δ2 , where Ψv =

∑

v′ �=v

(
πv′

πv
)2s2

v′(dv′).

(34)
Since d̄v > 0 is the minimum amount of guaranteed bandwidth
for v, and s2

v′(dv′) increases with dv′ ,

Ψ̄v =
∑

v′ �=v

(
πv′

πv
)2s2

v′(d̄v′)

is the lower bound of Ψv . Suppose that for each v, we solve (34)
by using Ψv = Ψ̄v and denote the solution by d̂e

v , i.e.,

[d̂e
v − mv(d̂e

v)]
2

s2
v(d̂e

v) + Ψ̄v

=
1
δ2 . (35)

Then d̂e
v ≤ d̂v because as mentioned in III-A, d̂v that solves (34)

increases with Ψv. Consequently, the polyhedra

Ωe ≡ {dv(v ∈ V1) : d̄v ≤ dv ≤ d̂e
v}

is a subset of Ω. If Ωe is large enough to contain the global op-
timum, the model can be solved by exercising a concave maxi-
mization algorithm on the polyhedra.

We now discuss conditions for the global optimum to be
“trapped” inside Ωe. Define

kv =
Ψ̄v

s2
v,∞

,

where 1/kv is the ratio of the maximum variance of the revenue
from node pair v to the minimum variance of the revenue from
all other node pairs. Because s2

v,∞ ≥ s2(d̂e
v),

1
δ2 =

[d̂e
v − mv(d̂e

v)]
2

s2
v(d̂e

v) + Ψ̄v

≤ [d̂e
v − mv(d̂e

v)]
2

(k + 1)s2
v(d̂e

v)
.
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By Lemma 1,

1
δ2 =

[d̂e
v − mv(d̂e

v)]
2

s2
v(d̂e

v) + Ψ̄v

≤ Fv(d̂e
v)

(k + 1)F̄v(d̂e
v)
,

so

Fv(d̂e
v) ≥ kv + 1

kv + 1 + δ2 .

If kv � δ2 for each v, then Fv(d̂e
v) ≈ 1, and it becomes cer-

tain that Ωe contains the global optimum. For example, when
kv = 20, δ = 1, then Fv(d̂e

v) ≥ 0.95. This means that within
Ωe, the amount of bandwidth provisioned to serve a demand
can vary from the minimum amount required to 95% quantile
of the demand distribution. For most networks, a solution that
maximizes revenue will fall into that region. Especially when
wholesale is allowed and the wholesale price is more than 5%
of retail price, exceeding the expected incremental revenue that
the carrier can get by provisioning bandwidth beyond the 95%
quantile. Therefore, the model can be optimized by performing
concave maximization over Ωe.

For the condition kv � δ2 to hold, either δ is small (in an ex-
treme case when δ = 0, d̂e

v = ∞), or kv is large. The latter cor-
responds to situations where the contribution of each node pair
to the variance of total revenue is insignificant. This happens
when the network has many node pairs, and the total revenue is
not dominated by the revenue from an individul pair, which is
the case that we consider in subsequent analysis.

If the above condition does not apply, the model becomes a
global optimization problem, which no general algorithm can
solve efficiently. Development of specialized procedures is un-
der consideration.

IV. ANALYSIS

A. Necessary Condition and Its Implications

In this section, we apply a Lagrangian method and discuss
the implications for the optimal solution based on the first-order
necessary condition.

The Lagrangian takes the following form:

Λ =
∑

v∈V1

πvmv +
∑

v∈V2

evyv−δ

√ ∑

v∈V1

π2
vs

2
v

+
∑

v∈V1

χ1
v(

∑

r∈R1(v)

ξr−dv)+
∑

v∈V2

χ2
v(

∑

r∈R2(v)

φr−yv)

+
∑

l∈L
λl(cl−

∑

r∈R1(v):l∈r

ξr−
∑

r∈R2(v):l∈r

φr) (36)

It follows that the first-order necessary conditions are (using
results in (20)):

∂Λ/∂dv =πvF̄v[1 − δ πv(dv−mv)
S ]−χ1

v ≤ 0

dv(∂Λ/∂dv)=0, dv ≥ 0, χ1
v ≥ 0 (v ∈ V1)




 (37)

∂Λ/∂yv =ev − χ2
v ≤ 0

yv(∂Λ/∂yv)=0, yv ≥ 0, χ2
v ≥ 0 (v ∈ V2)




 (38)

∂Λ/∂ξr =χ1
v −

∑
l:l∈r λl ≤ 0

ξr(∂Λ/∂ξr)=0, ξr ≥0, λl ≤0 (r ∈ R1(v))




 (39)

∂Λ/∂φr=χ2
v −

∑
l:l∈r λl ≤0

φr(∂Λ/∂φr)=0, φr ≥0, λl ≥0 (r ∈ R2(v))




 (40)

As in [19], λl is interpreted as the link shadow cost, which re-
flects the marginal value of capacity on link l. It is a critical
quantity that unifies routing and bandwidth provisioning deci-
sions. Specifically,
1. By (39), for any route r0 ∈ R1(v), ξr0 > 0 only when

∑

l∈r0

λl = min
r∈R1(v)

∑

l∈r

λl,

suggesting that traffic for retail demand is carried solely on the
minimum cost path(s) of all the admissible routes, where path
costs are obtained by summing link costs, and link costs are
given by λl. This is also true for routing of wholesale traffic, as
implied by (40).
2. We define χ2

v = minr∈R2(v)

∑
l∈r λl as the opportunity cost

of carrying wholesale traffic between v ∈ V2. By (38), ev is
the lower bound of χ2

v and yv > 0 only when ev = χ2
v . This

means in order to provide bandwidth for wholesale between v,
the opportunity cost has to be at its lower bound, which requires
low shadow costs of links on v’s admissible routes.
3. Similarly, we define χ1

v = minr∈R1(v)

∑
l∈r λl as the op-

portunity cost of carrying retail demand between v ∈ V1.
By (37), the optimal quantity to be provisioned is determined
at the point where the marginal increase of mean revenue,
πvF̄v , compensated by the marginal change of risk, δπv(dv −
mv)/

√∑
v∈V1

π2
vs

2
v , equals the opportunity cost, χ1

v .

B. Truncated Gaussian Distribution

When demand between a node pair comes from many inde-
pendent individual sources, the total demand can be approxi-
mated by the Gaussian distribution. We will make this assump-
tion in what follows. Of course, the distribution needs to be re-
stricted to nonnegative values, and the PDF should also be nor-
malized properly so that the total probability over the restricted
sample space is unity. As a result, we will consider the Trun-
cated Gaussian Distribution characterized by the following PDF
function:

fv(x) =
1√

2πσvGv

e−(x−µv)2/2σ2
v x ≥ 0 (41)

where the normalizing parameter is:

Gv =
Erfc(−τv)

2
and τv =

µv√
2σv

. (42)

As before, dv is the amount of bandwidth provisioned to carry
retail demand between v. Then the mean and standard deviation
of carried demand can be derived as

mv(dv) =
1√

2πσvGv

∫ ∞

0
min(x, dv)e−(x−µv)2/2σ2

vdx

= µv + γ(d̃v), (43)
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s2
v(dv) =

∫ ∞
0 min(x2, d2

v)e
−(x−µv)2/2σ2

vdx
√
2πσvGv

− m2
v

= σ2
v [1 − Erfc(d̃v)

2Gv
− γ2(d̃v) +

√
2d̃vγ(d̃v)

− d̃v + µ̃v√
πGv

e−µ̃2
v ], (44)

where d̃v = (dv − µv)/
√
2σv , µ̃v = µv/

√
2σv , and γ(d̃v) =

[e−µ̃2
v − e−d̃2

v +
√
πd̃vErfc(d̃v)]/

√
2πGv .

The following inequalities provide important insights of the
optimal solution.
Theorem 3 Let Fv(x) be the CDF of the distribution specified
by (41), Then

a)
∂(mv/dv)

∂dv
≤ 0 (45)

b)
∂mv

∂σv
≤ 0 if dv ≤ 2µv (46)

c)
∂F̄v

∂σv
≥ 0 if dv ≥ (1 +

e−µ2
v/2σ2

v

Gv
)µv (47)

Proof: a) Since F̄v(x) decreases in x, from (3),

∂(mv/dv)
∂dv

=
dvF̄v −

∫ dv

0 F̄v(x)dx
d2

v

≤ 0

b) From (3) and (41)

mv =
1√

2πGv

[
∫ (dv−µv)/σv

−µv/σv

(σvt+ µv)e−t2/2dt

+ dv

∫ +∞

(dv−µv)/σv

e−t2/2dt] (48)

∂mv

∂σv
=

e−µ2
v/2σ2

v

√
2πGv

[1−e
dv(2µv−dv)

2σ2
v ] − mv

Gv

∂Gv

∂σv
(49)

∂Gv

∂σv
=

µv√
2πσ2

v

e−µ2
v/2σ2

v ≥ 0, so (50)

∂mv

∂σv
≤ 0 if dv ≤ 2µv .

c) From (41)

F̄v =
1√

2πGv

∫ ∞

(dv−µv)/σv

e−t2/2dt (51)

∂F̄v

∂σv
=

(dv − µv)√
2πGvσ2

v

e−(dv−µv)2/2σ2
v

− 1√
2πG2

v

∂Gv

∂σv

∫ +∞

(dv−µv)/σv

e−t2/2dt (52)

Because e−x2/2 >
1√
2π

∫ ∞

x

e−t2/2dt for all x ≥ 0,

∂F̄v

∂σv
≥ e−(dv−µv)2/2σ2

Gv
[
(dv − µv)√

2πσ2
v

− ∂Gv

∂σv
/Gv], (53)

By (50), the right hand side equals

e−(dv−µv)2/2σ2

√
2πσ2

vGv

[dv − (1 +
e−µ2

v/2σ2
v

Gv
)µv], (54)

which leads to the conclusion.✷
Theorem 3 has the following implications:
Equation (45) shows that the ratio of the mean carried traf-

fic to the provisioned capacity decreases when more capacity is
provisioned to carry the demand. Notice that this trend of de-
clining return from bandwidth provisioning is not specific to the
truncated Gaussian distribution assumption, as can be seen from
the proof.

The mean carried traffic also decreases when the standard de-
viation of the demand distribution increases, provided that the
provisioned capacity does not exceed the critical value in (46).
Higher variability will reduce the mean carried traffic, because
the risk that the demand falls below the mean value becomes
dominant. When the demand distribution is close to the Gaus-
sian distribution, then the threshold is unlikely to be violated
unless the network is extremely under-loaded. For example, in
the numerical study of the next section, we let µv ≥ 2.75σv

to minimize the impact of truncation. In this case, exceeding
the threshold value requires provisioning bandwidth up to the
99.5% quantile of the demand distribution, which is not likely
in data networks.

The last inequality (47) shows the influence of demand vari-
ability on bandwidth provisioning. To understand its implica-
tion, we refer to the necessary condition in (37) and let δ = 0,
so

πvF̄v = χv
1.

To maintain the equality when ∂F̄v/∂σv ≥ 0 and σv increases,
one has to increase dv (notice that ∂F̄v/∂dv ≤ 0) to neutralize
the impact on πvF̄v by σv increase, or raise χv

1 , which makes
the bandwidth between v more expensive. Of course, the result
is premised on the condition in (47), which is usually satisfied
in networks that are not over-loaded. For example, as we set
µv ≥ 2.75σv , the impact of e−µ2

v/2σ2
v/Gv can be ignored. So

the condition is met when the amount of bandwidth provisioned
to serve a demand is more than the mean of its distribution in
the optimal solution.

V. NUMERICAL STUDIES

In this section, we study the effects of uncertainty in demand
on traffic engineering through numerical examples. We first de-
scribe the network topology and base case scenario in section
V-A. In V-B, we discuss the impact of demand variability on
stochastic traffic engineering design.

A. Framework and Base Case

We consider a sample network which has 12 nodes and 14
bidirectional links. The network topology, as well as indices of
nodes and links are shown in Figure 1. We assume that retail de-
mands are symmetric in both directions for each node pair, and
subject to the Truncated Gaussian distribution which has been
discussed in the previous section. We keep µv ≥ 2.75σv for all
v ∈ V1. In this case, µv and σv approximately equal the mean
(mv) and standard deviation (sv) of the demand distribution, and
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Fig. 1. Network Topology

are used to approximate these parameters in the following anal-
ysis.

We assume demand distributions for all origin-destination
pairs have the same mean, i.e., µv = µ̄ for all v ∈ V1. Let
hv be the minimum number of hops between node pair v ∈ V1.
Then

∑
v∈V1

µvhv = µ̄
∑

v∈V1
hv is an estimate of average

bandwidth demand for the retail service. We define the ratio
of this quantity to the total installed network capacity to be the
network load factor, denoted by ρ, i.e.,

ρ =
µ̄

∑
v∈V1

hv∑
l∈L Cl

. (55)

Note that for a given network topology and link capacities, µ̄
and ρ are uniquely determined by each other. In the following
discussions, we will vary ρ.

The variability of retail demand is characterized by the coef-
ficient of variation, defined by

CVv =
σv

µv
. (56)

Below, for a given µv , we vary CVv , and thus the standard de-
viation σv .

We make the following assumptions to create a base case sce-
nario.

1. All links have 150 units of installed capacity, except links
6, 7, 12, 13 and 14, which have 200 units. The latter links are
given higher installed capacities since they are likely to carry
more traffic on account of their central locations.
2. Retail demand and opportunities of bandwidth wholesale are
ubiquitous in the network, i.e., V1 = V2 = V . The load factor
of the network is ρ = 0.65. All retail demands have the same co-
efficient of variation, which is set at CVv = 0.1. Consequently,
µv = 8.7, and σv = 0.87 (v ∈ V1).
3. The unit price for carrying retail demand (πv) is proportional
to the distance between the originating and terminating nodes,
where the distance for node pair v is measured by hv , i.e., πv =
κhv with κ = 50. The unit wholesale price (ev) is 10% of the
unit retail price for the same node pair, i.e., ev = 0.1πv

4. The risk parameter is set at δ = 0.5.
5. A path between node pair v is an admissible route for both
retail and wholesale traffic if and only if the number of links on
this path does not exceed hv + 2, i.e., the minimum number of
hops plus 2.

variability
increase

shadow cost
increase

more bandwidth for

retail demand

link utilization

decrease

mean revenue
decrease

less bandwidth

to wholesale

Fig. 2. Result Summary
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Fig. 3. Bandwidth Provisioned for Retail Increases with Variability

B. Implications of Demand Variability

We start with the base case, and increase demand variability
by increasing the coefficient of variation from 0.1 to 0.2, 0.3,
and 0.35. All other parameters are kept unchanged from the
base case. Figure 2 summarizes various important implications
of increasing demand variability on the optimal design. Detailed
explanations follow.

As implied in (47) of Theorem 3 in IV-B, when the variability
for retail demand between v ∈ V1 increases, the optimal solu-
tion provisions more bandwidth, i.e., dv is larger, which may
or may not be accompanied by an increase of the opportunity
cost of the minimum cost route(s). Since the opportunity cost
of a route is the sum of shadow costs of links on that route,
higher route costs imply that the shadow costs of some links are
also higher. In our example, we observe that in general, both
provisioned bandwidth for retail demand and link shadow costs
increase with demand variability, as shown in Figures 3 and 4.
Notice that both increases are notably non-uniform across links
and node pairs, and depend on the locations of links and nodes.
Shadow costs increase faster on “busy” links, i.e., links that are
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on admissible routes of a larger number of node pairs. For node
pairs that are connected by “busy” links, the increase in provi-
sioned bandwidth is relatively small, and in some cases, even
negative. The situation is reversed for links that carry traffic for
a smaller number of demands. Shadow costs stay the same on
these links, and we observe that there are large increases in the
amounts of provisioned bandwidth for retail demands that only
pass through these links.

For networks with fixed capacity, increasing bandwidth provi-
sioned to carry retail demand reduces the amount of bandwidth
for wholesale. This can seen from Figure 5, which shows the
percentage of bandwidth set aside for wholesale on each link.
The figure can also be explained by using the shadow cost argu-
ment. As indicated by the necessary condition (38), it is optimal
to wholesale bandwidth between node pair v ∈ V2 only when
the minimum route cost χ2

v stays at its lower bound. As demand
variability increases, link shadow costs increase, which raises
the minimum route costs above their lower bounds for certain
node pairs. As a result, the amount of bandwidth set aside for
wholesale between these pairs decreases.

Another implication of increasing bandwidth variability is
that it reduces the carried load. The carried load is given by the
ratio of the expected amount of carried demand to the amount
of provisioned bandwidth. For the fixed amount of provisioned

65 %

75 %

85 %

95 %

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Link Utilization

CV=0.1

CV=0.2

CV=0.3

CV=0.35

Link Index

Fig. 6. Link Utilization Decreases with Variability

bandwidth for a given node pair, this quantity decreases as the
variability increases, as indicated by (46) of Theorem 3. More-
over, since the optimal amount of bandwidth provisioned to
carry retail demand generally increases with variability, the car-
ried load decreases even more according to (45) of Theorem 3.
For any link, define the link utilization rate as the ratio of the
mean total retail demand carried on the link to the amount of
bandwidth provisioned for retail service. The aggregated effect
of decreasing normalized carried load of node pairs is reflected
by the decline of link utilization, as shown in Figure 6. No-
tice that utilization of all links decreases as demand variability
increases and the change is also not uniform.

The above shows that when demand variability increases,
bandwidth provisioned to carry retail demands is used less ef-
ficiently, and bandwidth provisioned for wholesale is reduced.
Therefore, it should be no surprise that the expected revenue de-
creases with demand variability. In Figure 7, we vary network
load from 0.30 to 0.80 in 0.15 increments, and plot the expected
revenues as functions of the coefficient of variation. At all load
levels, the expected revenue decreases monotonically as demand
variability increases. Furthermore, we also plot the change of
standard deviation of total revenue in Figure 8. Clearly, when
coefficient of variation increases, the standard deviation of total
revenue increases. Both figures show that demand variation is
detrimental to revenue, reducing the mean revenue and increas-
ing the risk of revenue shortfall.

We end this section by noting that many of above results are
implications of Theorem 3, which is specialized to the case of
normal loading of the network. Different results may emerge
for extreme values of the load factor. For instance, if the net-
work is extremely heavily loaded, then increasing variability
may reduce the optimal amount of bandwidth provisioned to
retail demand. Also for instance, if the network is extremely
lightly loaded, then bandwidth utilization can increase with de-
mand variability. Nevertheless, we consider these scenarios are
unlikely to happen in a properly dimensioned network, and ex-
clude them from our discussions.

VI. CONCLUSION

We have presented and analyzed a stochastic traffic engineer-
ing framework for off-line planning of bandwidth provisioning
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and routing. The framework is based on an optimization model
that uses probability distributions of demands as inputs and
maximizes the weighted combination of the mean revenue and
the risk of revenue shortfall. We discuss properties of the objec-
tive function, and strategies of solving the model as a concave
maximization problem. We consider a two-tier market structure
for demand and revenue. Link shadow costs, which are outputs
of our model, serve as the basis for the optimal bandwidth pro-
visioning and routing in both markets. In our numerical studies,
we analyze the impacts of demand variability on various aspects
of traffic engineering design. We observe significant changes
in shadow costs, link utilization, bandwidth provisioning and
routing with demand variability, and explain their causes and
implications.

Our analysis can be extended in several directions. Differ-
ent carriers, or the same carrier in different situations, may have
different tolerance to the risk of revenue shortall. Therefore, it
is useful to understand how the risk parameter in our model, δ,
affects the outcome of traffic engineering design. It is also im-
portant to study the influence of the grade of service parameter
(d̄v, v ∈ V1), on the optimal solution. Another interesting topic
is to compare the difference between the stochastic traffic en-
gineering model with a deterministic approach with additional
compensation mechanisms [16], and examine the effectiveness

of latter under different circumstances. These issues are cur-
rently being investigated, and will be presented in future publi-
cations.
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