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We develop an optimization framework for the network service provider to manage
profit in a two-tier market environment, a retail market where bandwidth is provisioned
to serve uncertain demand and a wholesale market where bandwidth is bought and sold as
commodity. Our model is built upon mean-risk analysis. We discuss the selection of a risk
index that is consistent with stochastic efficiency criteria. We conduct numerical studies
to investigate the influence of the network size and service provider’s risk averseness on
bandwidth management, and profit implications of the bandwidth wholesale market.

1. Introduction

This paper gives a framework for service providers’ network profit management. The
framework incorporates models of several facets of the task facing service providers. It
also includes several key mechanisms for achieving management objectives. For instance,
models and techniques for macro-level bandwidth management in support of these objec-
tives are developed and presented here.

Uncertainty in (traffic) demand underlies the need for careful network profit manage-
ment. In our models we use probabilistic distributions of demands as inputs. Obtaining
such distributional information is in itself a major effort. On the other hand, forecasting
and estimating traffic demand have been extensively studied, and much is known about
relevant techniques [3], [5], [16].

Uncertainty breeds risk. A service provider must concern itself not only with mean
profit and the strategies for its maximization, but also with the risk of profit falling
below acceptable levels. Calculating risk and managing it are important components of
network profit management, and also of this work. The optimization model in this paper
incorporates a risk index. The rationale for its selection draws extensively from the mean-
risk analysis that was originally developed in the finance community to address the needs
of balancing growth and risk in portfolio management [6], [9]. As a recent derivative
of the mean-risk analysis, robust engineering extends the approach to areas like power
capacity expansion, aircraft scheduling, and minimum-weight structural design [11]. Risk
in networking has its own characteristics. Risk is highly dependent on network scale,
which is a theme that we develop further in our numerical studies. At the most basic
level, the heterogeneity of demand between node pairs and capacity of links contributes
to the variability of risk. Also, risk varies with service type, and, quite logically, this
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fact is reflected in market structure. This is exemplified by the two-tier market structure,
which parallels a pair of contrasting services that is modeled here. Also note that service
providers have varying attitudes towards risk, some being more averse to risk than others.

Considerable attention is given in this paper to find an appropriate measure of risk
to use in the mean-risk approach. There are several candidates for such a risk index,
which is incorporated in the objective function in the profit maximization. Some of these
candidates, such as the variance of profit, lead to inferior solutions that are stochastically
dominated by other feasible solutions. On the other hand, there are candidates, such
as the Tail Value at Risk (TVaR), which are stochastically efficient but rather difficult
to handle analytically and in the optimization. We show that the standard deviation of
network profit is a good compromising measure of risk.

Turning to mechanisms for enabling risk-aware profit management, bandwidth man-
agement is at the top of our list. We note that in this paper, bandwidth sharing and
management is at a high, macro-level, and rather different from that considered at the
connection or packet levels. Stochastic traffic engineering [12] and the emerging technol-
ogy of MultiProtocol Label Switching(MPLS) are primary enablers. The optimization in
our model is with respect to the topology of the paths serving end-to-end demands and
the amount of provisioned bandwidth on these paths, among other decision variables.

An important aspect of our model, and one that also leads to a mechanism for managing
risk, is the two-tier market structure that was alluded to earlier. The first tier is a retail
market where bandwidth is sold as a service. The second tier is a wholesale market where
bandwidth is bought and sold as a commodity. The buying and selling of bandwidth is
an important facility for bandwidth and profit management. Demand is deterministic in
the wholesale market, so that there is no risk in profit management, but the price for
carrying each unit of bandwidth is low. In the retail market the service provider can
charge a premium price, but the demand is stochastic, so that there exists the risk of
profit shortfall. By proper dimensioning of bandwidth provisioned for each market, the
service provider can maximize mean profit at his/her acceptable risk level. We should
point out that in our modeling framework the existence of the wholesale market, which is
not widely established in today’s marketplace, may be readily removed, in which case the
stochastic demand in the retail market becomes the main focus. One of the goals of our
work is to provide a platform for quantifying the cost-benefit tradeoffs that the wholesale
market brings to profit management in telecommunications.

In a recent paper [12], we modeled a wholesale market in which the service provider is
allowed to sell bandwidth. This paper extends the model by allowing the service provider
to buy bandwidth as well. A central theme of [12] is the effect of demand uncertainty
on network traffic engineering. In this paper the focus is different, with network profit
management the dominant theme. Also new are the choice of risk index, the analysis of
stochastic efficiency and the trade-off between the latter and tractability. The numerical
studies of the implications of variations of service providers’ risk averseness is new here.
Also new are studies of the efficient frontier and the benefits of the wholesale market to
service providers operating networks with diverse capacity levels.

The framework of this paper has the potential of providing the basis for studies of
key future developments in the telecommunications industry. For instance, if the indus-
try structure stabilizes to one with several competing service providers with distinct and



possibly overlapping footprints, then a reasonable proposition is that, under certain con-
ditions, resource sharing among all or a subset of these service providers will benefit not
only the participating service providers but society and consumers also. Such resource
sharing could take place under the aegis of multilateral agreements. Such agreements
will also cover investments and profit sharing. Modeling frameworks will be needed to
quantify the value proposition from such bandwidth sharing agreements. Also, effective
techniques for allocating profits from use of shared resources will be needed [1], [4], [8].
We believe that the framework presented here can be extended and enhanced in natural
ways to handle such challenges. In the present model the wholesale market with which
the service provider interacts may be viewed as a proxy for the combination of all the
other participating service providers. Clearly this view leads to dynamic, game-theoretic
iterations composed of actions and reactions of the players, in which the basic moves by
each player may be computed by an extension of the present model.

The paper is organized as follows. In Section 2, we present a general formulation of
the problem. The modeling of the risk factor in the objective function is discussed in
detail in Section 3. In Section 4, we develop several numerical examples to illustrate some
implications of our model. Conclusions are given in Section 5.

2. Problem Formulation

2.1. Two-Tier Market

Our framework features a two-tier market structure. The first tier is a retail market
where bandwidth is sold as services, such as voice, data, and video. Both the user base
of the service provider and the usage rate of its customers are subject to random fluctu-
ation, introducing uncertainties in the bandwidth demand and retail revenue. We reflect
uncertainties in our framework by letting demands be random variables.

The second tier is a wholesale market where bandwidth is sold as standardized com-
modity, e.g., DS3 circuits. In our framework the market is an alternative source of revenue
to the service provider where it can sell bandwidth wholesale. The market also provides a
short-term supply of capacity to the service provider, where it can buy bandwidth to aug-
ment installed capacity in its network to serve retail demand. In this sense, the wholesale
market provides a mechanism for many service providers to share resources and revenue,
like the ones proposed in [1] and [8], and can be supported by an appropriate emerging
engineering architecture [2].

We assume that the service provider under consideration is one of many participants
in the wholesale market. Hence no service provider can dominate total demand and
supply, and thereby significantly influence bandwidth price. This implies that the service
provider’s revenue from wholesale and cost of buying bandwidth follow deterministically
from its buying and selling decisions.

As a result of guaranteed wholesale revenue, the service provider has no incentive to
provision bandwidth to (uncertain) retail demand unless its unit revenue is higher than
the wholesale price, which is the case we assume in this paper.

2.2. Admissible Route Sets
QoS and policy considerations are major constraints on provisioning decisions. The
notion of admissible route sets allows these constraints to be taken into account in the



optimization. Let R(v) denote the set of admissible routes for origin-destination pair v.
Different admissible route sets for wholesale and retail services between the same node
pair are allowed. For example, routes may be required to have lengths not exceeding
specified thresholds, on account of propagation delay, and there may also be restrictions
on the number of hops, since each hop is associated with an addition switching node and
consequent incremental delay. The admissibility of a route may also depend on policy,
which might reflect diverse considerations, such as security, the capability of switching
nodes in the routes to handle certain services, link capacity, etc. Generating the admissible
route sets is a substantial task in itself. In this paper, as in [10], we assume that these
sets are given.

2.3. Model Formulation

In our formulation, the extent of the resources that the service provider can make
available to itself is represented by the notion of extended network. An extended network
is represented by a graph G = (N, £), where A/ and L are collections of nodes and links,
respectively. Given the opportunity of buying bandwidth, the link set £ is a union of Ly
and Ly, where the former is the set of installed links on which the service provider owns
deployed capacity, and the latter is the set of virtual links on which the service provider
has the option to buy capacity. The two sets are not necessarily mutually exclusive. Let
C; be the capacity that the service provider owns on link /, which is an input parameter,
and b; be the amount of capacity that the service provider buys on link /, which is a
decision variable. Then C; =0 forl € L — Ly, and by = 0 for [l € L — L. Assume the
market price for buying capacity on link [ € Ly is p; per unit of bandwidth. Then the
service provider incurs a expense of 37, L, piby, for buying bandwidth, and the amount
of bandwidth on each link [ at the service provider’s disposal is C; + b;.

Let V = {(v;,v;) : v; € N,v; € N'} be the set of all node pairs. V; C V is the collection
of node pairs between which there are retail demands, and Vy C V is the collection of
node pairs between which wholesale of bandwidth is feasible.

Retail demand between v € V) is characterized by a random variable, with its Proba-
bility Density Function (PDF) denoted by f,(z), and Cumulative Distribution Function
(CDF) denoted by F,(x). Let d,(v € V) be the amount of capacity provisioned to serve
retail demand between v. The provisioned quantity, d,,, can be routed on one or more ad-
missible routes. Denote the admissible route set for v € V; by Ry (v) and let &.(r € R1(v))
be the amount of capacity provisioned on route r. Then d, = Z &.. We require that

reRi(v)
0 < d, <d, for all v € V;, where d, is defined as the minimum amount of bandwidth that
must be provisioned for retail demand between v to satisfy the grade of service (GOS)
that the service provider offers to its retail customers. Denote by 7T, the random retail
demand between node pair v. Then ¢,(d,) = min(7,,d,) is the amount of retail demand
that is actually carried between v. Note that the revenue earned by the service provider
is based on the carried demand. Let m,(d,) and s?(d,) be the mean and variance of t,,

my(dy) = /Odv va(:v)d:c—i-dvFv(dU):/Odv F,(z)dx

) = [ " 22 (2)da + 2 (dy)—m2(dy) =2 | Y oFy(@)dz—m2(dy), (1)



where F,(r) = 1 — F,(z). Note that

amv(dv) T as?;(dv) _ "
Pt = Fy(d) > 0, and Z2 L = 3(d, — my(d)Fo(dy) > 0. @)

Let m, be the revenue earned for each unit of retail traffic carried between v. The total
revenue derived from serving retail demand between v is a random variable ,t,(d,), for
which the mean is m,m,(d,) and the variance is 72s2(d,,).

Similarly, let y, be the amount of bandwidth provisioned for wholesale between v € Vs,
Yo=Y ¢, where Ry(v) is the admissible route set for v € V, and ¢, is the amount

reRa(v)
of provisioned bandwidth on route r to carry wholesale traffic. Suppose e, is the unit
wholesale price between node pair v. Then the wholesale revenue is e,y,.

The service provider’s profit equals combined revenue from serving retail demand and

selling capacity, minus the cost of buying bandwidth,

W= Z Tyty+ Z €olp— Z by (3)
ve V) veVs 1Ly

Due to random retail demand, ¢,(v € V;) are random variables, and consequently so is
W. We formulate the service provider’s objective, denoted by O, as a function of W. The
formulation of © should reflect service provider’s desire to increase average profit and
reduce the risk of profit shortfall due to the randomness of W.

To summarize, the above discussion leads to the following optimization model:

maX@(W(dv:yvagﬁng,bl)) (4)
subject to:
Z 57" = dv (U € V1)7 Z (br = Yo (U € V2)a (5)
'I'ER1(U) TERQ(’U)
Z §T+ Z ¢'r SCl+bl (ZEL)’ (6)

re R (v)iler reRa(v)ier

0<dv de (U €V1)7 Ogyv,fr,¢r,bl, (U€V2,T€R1(U) or R?(U)a l GEV)' (7)

We defer the discussion of the objective function to the next section. As for constraints,
(5) specifies bandwidth provisioning for both retail and wholesale demands on admissible
routes; (6) limits the total amount of provisioned bandwidth from exceeding the sum of
installed and purchased link capacities. In (7), d, is defined as the minimum bandwidth
that must be provisioned for retail demand between node pair v. The value of d, is
determined by the grade of service that the service provider offers to its retail customers.
The equation also constrains all decision variables to be non-negative.



3. Modeling Risk

In the presence of demand uncertainty, maximizing the mean profit may not be the
goal of the service provider. For example, a decision that guarantees a profit of $99 may
be more favorable than the one that generates profit of $10000 with probability 0.01 and
zero profit with probability 0.99, though the latter yields a higher mean profit. This
means the risk of profit shortfall plays an important role in a service provider’s decision-
making, and should be accounted in the modeling. In this section, we develop an objective
function that features both the maximization of mean profit and the containment of profit
risk. We review the two relevant risk modeling frameworks in Section 3.1 and discuss our
formulation in Section 3.2.

3.1. Relevant Frameworks for Risk Modeling
3.1.1. Mean-Risk Model

Mean-risk analysis, which has been widely applied to financial asset allocation, ad-
dresses the issue of risk averseness by offering a broader optimization objective. The
approach starts with developing a risk index, which is a quantitative measure of the risk
of profit shortfall, based on the distributional information. It then maximizes the weighted
combination of the mean profit and the risk index, i.e., mean — 6 * (risk index), where
0 > 0 is a parameter. Different levels of risk averseness can be reflected by choosing
different values for §. A higher value of § indicates greater willingness to sacrifice the
mean profit to avoid risk. On the other hand, by setting ¢ to 0, we can also include the
case that the service provider maximizes the mean profit only.

3.1.2. Stochastic Dominance

Stochastic dominance theory defines a partial ordering of random variables based on
their probability distributions [7]. Let W; and W5 be two random variables, which, in our
problem, represent profits under two different bandwidth management decisions. Then W;
stochastically dominates W5 to the first degree iff the former renders the service provider
a better chance to exceed any profit target w, i.e.,

Yw, Pr(Wy > w) > Pr(Wy > w). (8)

Furthermore, W, stochastically dominates W, to the second degree iff

o o0
[T P> Qe > [T Pr(w, > 0d¢ v (9)
w w

We consider a solution to our problem to be stochastically efficient if the corresponding
profit distribution is not dominated in either degree. Note that it suffices to prove effi-
ciency by showing that the profit distribution is not subject to second-degree dominance,
which, by definition, is a necessary condition for dominance in the first degree.

3.2. Formulation of the Objective Function

We formulate the objective function as an instance of the mean-risk model with a con-
straint that the optimal solution is stochastically efficient. Whether the latter constraint
can be satisfied depends on the characteristics of the profit distribution and the choice of
the risk index. A common approach is to use variance as the risk index. If the profit is



normally distributed, a solution that maximizes (mean - dxvariance) is provably stochas-
tically efficient [7]. For other distributions, the optimal solution to the mean-variance
model can be stochastically dominated, which, for our problem, will be shown in Section
3.2.1. On the other hand, applying other risk measures that guarantee stochastic effi-
ciency, such as Tail Value at Risk defined in Section 3.2.2, leads to models that are too
complex to solve. As a compromise, in Section 3.2.3 we propose standard deviation as
the risk measure.

3.2.1. Variance

Variance is a natural candidate for the risk index since it has been widely used in
other mean-risk models in literature. Furthermore, using variance in our case leads to an
objective function that is relatively easy to optimize. Nevertheless, as we will demonstrate
in the following, the optimal solution to the mean-variance model can be stochastically
dominated, meaning the solution is not stochastically efficient.

The objective function that uses the variance as the risk index can be written as

O =EW)=Var(W)= > my[my(dy) — 0mysi(dy)]+ D ewtp— > pibi. (10)

UEVI vEVQ leL

Notice that (10) reflects the aforementioned assumption that demands between different
node pairs are independent. Applying (1),

00
ad,

= By (dy)[1 — 207y (dy — my)] = Fy(dy)[1 — 267, /0 " By (x)da]. (11)

The equation 2, [3* F,(z) = 1 has an unique solution, d,, such that

2
8@>0 8—®§Oifdv§dvand 09

o 20 5 2 <0 if d, > d,. (12)

Based on this observation, we impose max(d,, CZ,,) as an upper bound on d,,, which makes
our model a concave maximization problem that can be solved efficiently. If cL, < d,, then
d, = d, by (7). Otherwise, d, < d,, which is a new constraint that reduces the original
feasible region (a polyhedron defined by (5), (6), and (7)) to a convex set on which the
objective function (10) is concave. This additional restriction on d, does not affect the
optimal solution since by (12), increasing d, beyond d, only reduces the value of ©.

The above analysis implies that the optimal solution of the mean-variance model can
be stochastically dominated. Since the optimal value of d, is bounded by max(d,, ci,,),
when the network has more than enough installed capacity to serve every retail demand to
its upper-bound and wholesale is limited, some bandwidth will be left idle in the optimal
solution. In this case, one can generate a new feasible solution by increasing the bandwidth
provisioned to node pairs that are connected by underused links while keeping everything
else unchanged. The new solution always has a better chance to get more profit than the
optimal one and thus stochastically dominates the latter to the first degree.

3.2.2. Tail Value at Risk
Besides variance, other distributional parameters have also been proposed as candidates
for the risk index. Of particular interests are those that guarantee stochastic efficiency of



the optimal solution. One example is the Tail Value at Risk (TVaR), defined as:

TVaR(p) = /O ’ qw (n)dn, (13)

where qw (p) = inf{w|Pr(W < w) > p} is the p-quantile of profit W [7], [14].

We do not use TVaR as the risk index in our model because it cannot be formulated
as an explicit function of decision variables, which makes optimization computationally
difficult. Nevertheless, the consistency between the TVaR and stochastic efficiency helps
us to justify the use of standard deviation as the risk index, which we will discuss next.

3.2.3. Standard Deviation as Risk Index

Our choice of risk index is standard deviation of profit, s(1¥), which is computationally
more tractable for optimization than TVaR. For networks with few node-pair demands,
an optimal solution to the mean-standard-deviation model may still be stochastically
dominated. However, the model is asymptotically compatible with the efficiency criteria
as the number of node-pair demands increases. This property serves our purpose well
since bandwidth transport networks usually have tens or even hundreds of nodes, and
thus a large number of node pairs.

As in (3), the random component of profit W is a summation of many independent
random retail revenues, m,t,(d,). From (2) the variance of each revenue, 72s2(d,), mono-
tonically increases with d,, and thus has a lower bound 72s2(d,) from (7), and an upper
bound 72s%(+o00) = w2var(T,). Therefore, except for some artificially-constructed ex-
treme demand distributions, it is generally true that for every feasible solution

. 7T,3/8,12}/ (d’U)
lim 5 3
‘Vl‘—>+00 Z’UEVI ﬂ-vsy (dU)
This means that Lindeberg’s condition is satisfied, so one can apply the Central Limit
Theorem as follows [13],

W — E(W) _ Evevl Wv[tv(dv) — My (dv)] -
S(W) ZUEVI WSSTQ’
where N(0,1) is standard normal distribution. It follows that if |V,| is sufficiently large,

= 0, V’Ul S Vl.

N(0,1), as | V1| — +oc. (14)

TVaR(p) = /Opqw(n)dn:/_q:(p) xdFy(x)
an (p) e~ (P)
~ [ UEW) + s(W)nldEy(n) = pIEW) - sV (15)

where gy (p) is the p-quantile and Fiy () is the CDF of N(0,1). Since e~9%®)/2/(p\/27)
changes monotonically from 0 to +oo as p varies from 1 to 0, § = e~ ®)/2/(p\/27) has an
unique inverse p(d). By (15), the solution that maximizes E(W') — §s(W) also maximizes
TV aR(p) for p(d), and thus is stochastically efficient.

Using the standard deviation as the risk index, the objective function in (4) becomes

max Q(W(dva Yo, gra ¢7"7 bl)) = Z vav(dv) + Z €Yy — Z plbl_5 Z 773512;(6111)(16)
’UEV1 ’UEVz lEEV ’UEVl

Though more complicated than the aforementioned use of variance, the optimization of
(16) is still tractable, as shown in [12].



Figure 1. Network Topology

4. Numerical Studies

In this section, we discuss the implications of our model through numerical examples.
We first describe the network topology and base case scenario in Section 4.1. In Section
4.2, we analyze the influence of the service provider’s risk averseness on the optimization
results based on the notion of efficient frontier. In Section 4.3, we examine the impact
of the bandwidth wholesale market. In Section 4.4, we compare differences in optimal
bandwidth management for networks of different sizes.

4.1. Framework and Base Case

We consider a sample network that has 12 nodes and 14 installed and virtual links.
The network topology is shown in Figure 1, where link 4, represented by a dash line, is
a “pure” virtual link that has no installed capacity. We assume that retail demands are
symmetric in both directions and characterized by the Truncated Gaussian distribution,
with support on the nonnegative real line and the following distribution function

Pr(T, <z) = F,(x)

1 z 2792
— _(w_ﬂv) /20
= e vdw, z >0, (17)
V2ro,G, /0 -

where the normalizing parameter is G, = Erfc(—u,/(V20,))/2.

We assume o, = ku, and let x be the same for all v. For small value of x (e.g., k < 1/3)
and positive u,, G, &~ 1, in which case the truncation effect can be ignored and u, and o,
are close approximations to the mean and standard deviation of the demand. In this case,
k is the coefficient of variation. We assume for all v € V1, u, = fi. Let h, be the minimum
number of hops between node pair v € V;. Then YveV, tohy = By, h,. We define
the ratio of this quantity to the total installed network capacity to be the network load,

denoted by p, i.e., p= (B2, cyp, ho)/ (e C1)-
We make the following assumptions to create a base case scenario.

1. All links has installed capacity 200 except link 4 which has zero installed capacity.

2. Retail demand exists between every node pair of the network. Bandwidth buying is
allowed on every installed and virtual link, and wholesale is allowed between node
pairs that are directly connected by these links. For demand distributions, p = 0.7
and k = 0.35, which implies y, = 10.34 and o, = 3.62 for all v € V;.



3. The unit retail price w, = 50h,, where h,, is the minimum number of hops between
node pair v. The unit wholesale price e, = 0.2m,. The unit price for buying
bandwidth b, = 1.05e,(;, where [ is the direct link between v; 2.

4. A path between node pair v is admissible for retail demand iff the number of links
on this path does not exceed the minimum number of hops plus two, i.e., h, + 2.

5. To satisfy GoS requirement, the amount of capacity provisioned to serve each retail
demand should at least equal to the mean demand, i.e., d, = E(T},).

6. Unless otherwise noted, the risk parameter 6 = 0.5.
4.2. Efficient Frontier
Table 1 shows the influence of the service provider’s risk averseness on key model outputs

where § ranges from a conservative value of 2.5 to the most aggressive value of 0 (in which
case the service provider maximizes the expected profit only) in steps of 0.5. The service

Table 1

Changes of Optimal Decisions with Risk Parameter
0 | total buying | % wholesale | wholesale | expected % retail

expense bandwidth revenue retail revenue | revenue

2.5 | 2656.4 24.7% 7034.3 84995.3 92.4%
2.0 | 2833.1 23.6% 6780.2 85638.5 92.7%
1.5 | 3020.9 22.7% 6566.1 86189.6 92.9%
1.0 | 3228.6 21.9% 6363.9 86703.8 93.2%
0.5 | 3428.0 21.1% 6169.4 87155.3 93.4%
0 | 3618.3 20.3% 5983.9 87548.7 93.6%

provider buys more bandwidth when it becomes less concerned about minimizing risk, as
indicated by 36% jump (from 2656.4 to 3618.3) of the total buying expense in column
2. Allocation of total bandwidth to different markets is shown in column 3. In the most
conservative case, 24.7% of total capacity is devoted to wholesale, which earns a lower
but guaranteed unit revenue. This percentage is reduced to 20.3% in the most aggressive
case. Consequently, the service provider’s wholesale revenue drops 15% from 7034.3 to
5983.9 (column 4). This change makes the expected revenue from retail a more significant
portion of total expected revenue, as shown in columns 5 and 6.

The efficient frontier in Figure 2 summarizes the cumulative profit impact of these
changes. Each point represents an optimized combination of mean and standard deviation
of profit at a given ¢ value. It represents the maximum expected profit (defined as reward)
obtainable at a given level of risk (parameterized by the standard deviation), or the
minimum risk the service provider has to take for a given reward.

2Letting the buying price to be slightly higher than the selling price avoids an unreasonable situation
that it costs nothing for one to buy and sell bandwidth between the same node pair. The price difference
can be interpreted as the transaction cost borne by the buyer.
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4.3. The Value of the Wholesale Market

It is quite obvious that having a wholesale market is beneficial to the service provider.
From the optimization point of view, the absence of the market is equivalent to restricting
the general formulation by holding buying and selling quantities to zero. In the following,
we discuss the influence of the price and traffic load on the benefit of wholesale.

We measure changes of mean and standard deviation of total profit by

() — s(17)
(W)

EW)— E(W)

A(EW) = E(W)

) A(SW) =

where W and W are optimized profit with and without the wholesale market, respec-
tively. Figure 3a shows how A(Ey ) varies with the wholesale price (given as a fraction
of the retail revenue) under different network load conditions. When the price is low, the



provider takes advantage of the wholesale market by buying cheap bandwidth to serve
more lucrative retail demand. In this region, an increase in price reduces improvement
of expected profit, as reflected by decreasing A(Ey ). As the price keeps increasing, it
eventually becomes profitable for the provider to sell more and buy less bandwidth in the
wholesale market. At this point, A(Ey ) starts to increase with the price. As the figure
shows, the location of the switching point depends on the network load. In a lightly loaded
network (p = 0.6), A(Ew ) increases even at a very low price level (5% of unit revenue
of retail demand). In a more heavily loaded network (p = 0.8), A(Eyw ) does not start to
increase until the price reaches a relatively high level (20% — 30% of retail revenue).

Figure 3b shows a decreasing trend of A(sy ) with the wholesale price. Low wholesale
price results in a positive A(sy ), indicating profit variation increases as a result of buying
bandwidth to serve more retail demand. As price increases, A(sy) decreases and eventu-
ally becomes negative. This is a reflection of the fact that as bandwidth selling becomes
more profitable, less capacity will be provisioned to retail demand, and variation in profit
is reduced. Since the service provider that operates a more heavily-loaded network buys
more and sells less capacity, A(sy) is always smaller in a lightly-loaded network.

4.4. Influence of Network Scale

We now discuss differences in optimal bandwidth management for networks of various
sizes. We start with the base case and scale installed capacity by a constant () uniformly
across all links. By keeping the load factor p unchanged, we scale the mean retail demand
by the same factor. The scaling of the standard deviation is a little more complex. As the
average volume grows, the variation of retail demands may or may not decrease. Similar
to the “power law” in [3], we scale the standard deviation by ", where h > 0. Tt is
easy to verify that when h = 1, optimal values of all decision variables and the objective
function change proportionately to . In the following example, we set h = 0.5 to model
the situation of decreasing uncertainty to network scale.

We consider six differently sized networks (v = 0.5,0.75,1,1.5,2, 3) and vary wholesale
price as different fractions of retail revenue. We compare the provider’s buying and selling
activities in Table 2, where the normalized balance of wholesale bandwidth, defined as
(Zvevz Yo — Lyl b))/ Yiely Cy, is reported.

When the wholesale price is low, smaller service providers have negative balances,
indicating that they are net buyers in the wholesale market. Larger service providers
are net sellers who have positive balances. At the low price level, it does not cost much to
buy enough bandwidth to accommodate the most optimistic demand scenario. Smaller
providers buy even more because higher uncertainties in their retail demand imply a better
chance of a large upward demand swing. As the price increases, smaller providers continue
to buy more and sell less bandwidth than large providers, but the difference diminishes.
When the wholesale price is high, providers of all sizes are better-off to provision capacity
to retail demands to the level that is just enough to satisfy GoS, and wholesale the rest.
In our example, the minimum quantity to satisfy GoS is set at mean demand, which is
proportional to the network size. The assumption makes the proportion of bandwidth
provisioned to retail demand more or less equal across networks of different sizes, which
implies that their normalized wholesale balances become uniform. Similar to the previous
subsection, we now consider benefits of wholesale market. The difference in buying and



Table 2

Normalized Wholesale Bandwidth Balance

Network Scale
e/ | Y=05 |y=075|vy=10]|y=15|vy=20|v=3.0
0.10 | —12.13% | —4.18% | 0.45% | 5.80% | 9.05% | 12.89%
0.30 13.92% 17.12% | 18.93% | 20.90% | 22.12% | 23.57%
0.50 28.16% 29.47% | 29.83% | 29.98% | 30.00% | 30.00%

selling activities results in non-uniform A(Ey ) and A(sy) for differently sized networks.
Being relatively heavy buyers, smaller providers enjoy larger improvements in mean profit
when the retail price is low, as shown in Table 3. Larger providers are relatively heavy
sellers who derive more significant benefits from the reduction of profit risk, which is
shown by changes of standard deviation in Table 4.

Table 3
Changes A(FEyw ) for Different Size Networks

Network Scale
e/Ty | Y=05|7y=07|vy=10|vy=15|~v=2.0|v=3.0
0.10 | 11.56% | 9.20% 7.95% | 6.59% | 5.85% | 5.04%
0.30 | 11.35% | 10.87% | 10.64% | 10.43% | 10.33% | 10.27%
0.50 | 18.05% | 18.11% | 18.10% | 18.06% | 18.06% | 18.10%
Table 4
Changes of A(sy ) for Different Size Networks
Network Scale
e/ | Y=05 | y=075| y=1.0 | y=15 | v=20 | y=3.0
0.10 | 42.67% 34.99% 31.28% 27.32% 24.72% 21.21%
0.30 11.92% 7.63% 5.32% 2.64% 0.61% -2.21%
0.50 | —11.03% | —14.13% | —15.68% | —17.76% | —19.34% | —21.60%

5. Conclusion

We have developed an optimization model to support bandwidth management decision-
making in a two-tier market environment. Our model is based on the mean-risk frame-
work, and the stochastic efficiency of the optimal solution is strongly influenced by the
choice of the risk index. We have discussed the tradeoffs of employing different distri-
butional information to characterize risk and proposed the use of standard deviation of



total profit. In our numerical studies, we have analyzed the impacts of service provider’s
risk averseness on various aspects of bandwidth management decision-making. We also
have discussed profit improvement brought about by the presence of the wholesale market
under various market and network conditions.

Our model can be extended and applied in several directions. It can be used not only
to support decision-making of a single network service provider, but also to characterize
interactions of multiple service providers in a wholesale market.
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