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Abstract

Rasmussen [2000] describes a hierarchical Bayesian
model for a mixture of Gaussians with a possibly in-
finite number of components. I have implemented his
model for univariate data, along with the Adaptive
Rejection Sampling method of Gilks and Wild [1992].
In this paper I explain some of the difficulties in im-
plementing Rasmussen’s model and clarify some of
the points he leaves vague in his paper. I also explain
my own difficulties in implementing the multivariate
infinite Gaussian mixture model and propose future
work towards modelling audio signals including mu-
sic.

1 Introduction

Dirichlet processes, also known as Chinese Restau-
rant processes, have recently garnered much atten-
tion for their flexibility in modeling mixture processes
with an indeterminate, possible infinite, number of
components. Rasmussen [2000] proposes their appli-
cation to the modeling of data generated from a mix-
ture of an infinite number of Gaussians. Of course,
a finite amount of data cannot come from an infi-
nite number of sources, but the number of Gaussian
components in this model is neither bounded nor set
a priori. It is instead inferred from the data by a
hierarchical Bayesian model.

For this project, I implemented the infinite GMM
(IGMM) as described by Rasmussen [2000] for both
univariate and multivariate data. In addition, these
two systems require the Adaptive Rejection Sampling
method of Gilks and Wild [1992], which I also imple-
mented. Due to time constraints and Rasmussen’s

incomplete description, I have not completely de-
bugged the multivariate IGMM. As a warm up, I
implemented a Gibbs sampler for a predetermined
number of Gaussian components and fixed priors on
the model parameters.

2 Adaptive Rejection Sampling

Gilks and Wild [1992] describe a system for gener-
ating samples from an arbitrary log-concave proba-
bility distribution function (pdf). They further flesh
out their algorithm’s description in [Wild and Gilks,
1993], from which I implemented my routine.

The most straightforward way to draw a sample, x,
from a pdf, p(x), is to draw a sample from the uniform
distribution u ∼ [0, 1] and then to transform it ac-
cording to the cumulative distribution function of x,
x = F−1(u), where F (x) = p(X < x) =

∫ x

−∞
p(x) dx.

For pdfs that do not allow analytical integration,
F (x) could be computed numerically at significant
computational expense. Such an approach is feasible
if the parameters of p(x) do not change, but the in-
tegral must be re-calculated for every setting of the
distributions parameters.

A computationally more efficient means of sam-
pling from complex distributions is known as rejec-

tion sampling. A sample, x0, is drawn from a pro-
posal distribution, q(x), which shares the support
of p(x) and upper bounds p(x) for all x. Another
sample is then drawn from the uniform distribution
u ∼ [0, q(x0)] and is kept as a sample from p(x) if
u < p(x0), otherwise it is rejected and the process
repeated.

Adaptive rejection sampling (ARS) uses a piece-
wise exponential approximation to p(x) as q(x).
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Since p(x) is log-concave, the tangents to log p(x) up-
per bound it. By calculating the tangents only at
proposed points (after two initial evaluations), ARS
reduces the number of times p(x) must be evalu-
ated. Furthermore, q(x) approximates p(x) most ac-
curately around the xs that are most likely, leading
to fewer rejected samples. Even if p(x) is analyti-
cally difficult to integrate, log p(x) is generally easy
to differentiate, because ARS requires both p(x0) and
∂p
∂x |x=x0

to describe the tangents.
The original algorithm only included upper-

bounding the pdf with the tangents to the log-pdf,
but [Wild and Gilks, 1993] includes a lower bound
of the secants inside the log-pdf to further reduce
the number of evaluations of the original pdf. I did
not implement this addition because the IGMM only
draws one sample for a particular parameter setting,
and the bookkeeping associated with the extra set
piecewise functions would surely outweigh any reduc-
tions in pdf evaluation.

One challenge in implementing ARS was avoiding
problems with numerical precision. Since ARS only
requires its evaluation results to be proportional to
p(x), there is a degree of freedom in the offset of the
log-pdf. At one point in the algorithm, points on the
log-pdf must be exponentiated and subtracted from
one another. If their log values are off by more than
36 (ε ≈ 10−16 ≈ e−36) then the addition has no effect
and bad things happen. In order to try to avoid this,
I calculate an offset for all of the log-pdf values that
tries to center them around 0. This generally works,
but occasionally will still fail.

3 The Infinite GMM

Rasmussen [2000] proposes a hierarchical Bayesian
model for sampling from the posterior of a Gaus-
sian mixture model with a possibly infinite number
of components given a collection of data. Figure 1
shows a graphical model representation of the infinite
Gaussian mixture model. The graphical representa-
tion has difficulty showing the dependence of one ci
on all of the other c variables and the integration of
k into the number of means and precisions.

The data, {yi}, are assumed to have come from the
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Figure 1: A graphical model representing the infinite
gmm.

following generative model.

yi | ci ∼ N (µci
, s−1

ci
), (1)

where ci is an integer from 1 to k, the number of
mixtures, and sj are the precisions of the data, or
inverse variances. The following priors are put on
the parameters to yi,

µj ∼ N (λ, r) sj ∼ G(β,w−1), (2)

where G(·) is the gamma distribution having shape
parameter β and mean w−1. These hyper-parameters
are controls by a second level of hyper-parameters,

λ ∼ N (µy, σ
2
y) r ∼ G(1, σ−2

y ) (3)

β−1 ∼ G(1, 1) w ∼ G(1, σ2
y) α−1 ∼ G(1, 1), (4)

where µy and σ2
y are the mean and variance of the

data itself.
Rasmussen apparently uses a differently parame-

terized version of the gamma pdf than Matlab does,
causing me a number of difficulties. Using his defini-
tion of the mean of the gamma pdf, and the pdf of
β when β−1 ∼ G(1, 1), I was able to infer the proper
transformation between then two. It appears that his
definition of the gamma pdf is

p(x | α, θ) = GR(α, θ) =
xα/2−1e−αx/2θ

Γ(α/2)(2θ/α)α/2
, (5)

having E[X] = θ. Matlab’s gamrnd, on the other
hand, uses the pdf,

p(x | α, θ) = GM (α, θ) =
xα−1e−x/θ

Γ(α)θα
, (6)
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having E[X] = αθ. The parameterizations of these
two pdfs differ by the factor of 1

2 on α and in the
factor of 1

α on θ.
All of these priors are conjugate, except for those

on α and β, which need to be sampled using ARS, as
described in Section 2. The log-posterior of β is

log p(β|s1, . . . , sk) = C − k log Γ(
β

2
) −

1

2β

+
kβ − 3

2
log

β

2
+

k
∑

j=1

β

2
(log sj + logw) −

βsjw

2

(7)

and the log-posterior of α is

log p(α | k, n) =C + (k − 3/2) logα

−
1

2α
log Γ(α) − log Γ(n+ α). (8)

The derivatives of both of these with respect to β and
α are easily computable, noting the presence in Mat-
lab of the function psi for computing the digamma
function, ψ(x) ≡ ∂

∂x log Γ(x).
The exact order in which the posteriors should be

sampled during Gibbs sampling is unclear from Ras-
mussen [2000]. Sampling from most of the posteriors
can happen in any order, but gets tricky with the ad-
dition and subtraction of new Gaussian components.
In order to speed sampling and convergence to the
true posterior, one would like to sample all of the ci
parameters at once. The sampling of the cis could
involve adding or removing a Gaussian, which should
in turn affect all subsequent samples. Any time a
component is not added or removed, however, it does
not affect the other samples, and no changes need to
be made.

One possible solution to this problem is to sam-
ple only one ci each iteration, but this wastes com-
putation and time as the values for other parame-
ters will be highly correlated in adjacent samples.
The opposite approach would be to loop over the
cis, adding and removing Gaussians as necessary, be-
fore sampling ci+1. This method is not particularly
well-suited to a Matlab implementation, as that loop
would be very slow.

I chose instead a middle path, in which I drew
as many cis as possible up to the first addition of

a Gaussian. The uniformity of these calculations
makes them easily vectorizeable. Once a Gaussian
was added, I resampled all of the other parameters
and then started from the ci where I had left off. This
procedure strikes a balance between efficiency of im-
plementation in Matlab and speed of convergence.

4 Multivariate Case

On the whole, adapting the models of Section 3 to
multivariate data is relatively straightforward. The
normal variables yi, µj , and λ become multinormal
random vectors. The gamma variables sj , r, and w
become Wishart random matrices. And the variables
dealing with mixtures, α, ci, and k remain the same.
Certain care must be taken in the order of matrix
multiplications, for example in the posterior mean of
a multinormal, and the posterior mean of a Wishart
variable involves a sum of outer products instead of
just a sum of squares, but there aren’t many concerns
beyond these except for the exact parameterization
of the Wishart distribution used.

As unclear as Rasmussen [2000] was on the gamma
pdf, when generalizing to multivariate data, he gives
even less information about his parameterization of
the Wishart distribution. The Wishart distribution
is the conjugate prior to the precision matrix of the
multinormal distribution. Rasmussen claims that the
gamma priors on sj , r, and w may be replaced by
Wishart priors without any further changes.

The pdf of the Wishart written out explicitly was
quite hard to find. Mardia et al. [1979] mention
it almost in passing and do not describe its mean
or any properties that would be useful for match-
ing Matlab’s implementation to Rasmussen’s descrip-
tion. Matlab’s documentation was also sorely lack-
ing, as it didn’t even describe its own parameteriza-
tion, although one can experiment with the function
(wishrnd) to estimate its mean. I did manage to find
a slightly more complete description of the Wishart
pdf in Box and Tiao [1973], which includes its mean
and describes its conjugacy to the multinormal and
its posterior density given observations.

For conjugate priors, an incorrect parameterization
meant drawing from a slightly inaccurate pdf. The
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biggest problem, however, was in defining the poste-
rior on β, which remains a scalar. In d dimensions,
(β + d − 1)−1 ∼ G(1, 1), so if we define a new vari-

able y ≡ β − d+ 1, then p(y) ∝ y−3/2 exp
(

1
2y

)

. The

posterior density over y is then,

p(y | S1, . . . , Sk,W ) ∝ (y + d− 1)−3/2|W |(y+d−1)k/2

× exp

(

d

2(y + d− 1)

)(

y + d− 1

2

)(y+d−1)kd/2

×
k

∏

j=1

|Sj |y/2−1 exp
(

− (y+d−1) Tr(WSj)
2

)

∏d−1
i=0 Γ

(

y+i
2

)
. (9)

β can be recovered by sampling y from the above
posterior and then taking β = y + d− 1.

As mentioned above, I wasn’t able to fully de-
bug the multivariate IGMM, particularly the Wishart
distribution. The current bugs include β being too
small, wishrnd drawing matrices that aren’t positive
definite, and numerical precision problems in ARS.

The function W(β,W ) requires that β ≥ d. β’s
posterior, however, keeps it in the range β ≥ d −
1, which often generates errors from wishrnd. The
inverse Wishart distribution, however, does not place
such a restriction on its shape parameter, so perhaps
either I could switch to using that as the prior on
Σj = S−1

j and the other Wishart variables, or I could
further manipulate β to remain in the valid region.

I’m not at all sure why wishrnd would generate
matrices that are not positive definite. The func-
tions from Matlab’s statistics toolbox and from David
Shera’s MCMC Matlab toolbox both have the same
problem. It could be that the covariance argument
to the function is itself not positive definite, but the
functions would complain if that were the case. If
W is not positive definite, the |W | term in Equa-
tion (9) will explode when taking the log of the pos-
terior, leading to failed ARS runs.

5 Results

In order to test the system, I gave it some simple data
from a GMM with 2 components. 500 data points
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Figure 2: One sample drawn from the posterior of
the IGMM

were drawn from the following distribution

yi ∼
1

3
N (−3, 1) +

2

3
N (3, 10), (10)

where N (µ, σ2) describes a single Gaussian.
Since Gibbs sampling only draws one parameter

at a time, samples close to one another in time will
tend to be correlated. In order to measure this corre-
lation, which depends on the dataset at hand among
other things, I measured the autocovariance of each
of the model parameters as a function of lag between
samples. See Figure 3 for plots of autocovariance
versus lag for all of the model hyper-parameters. It
seems from this plot that samples separated by 700-
800 other samples are independent of one another.

Also see Figure 2 for an example of a sample drawn
from the IGMM given this dataset plotted over the
histogram of the data points. For this particular sam-
ple, there are 10 represented components, although
the two correct components dominate the others.
Also for this sample α = 1.79, implying that the un-
represented components make up only α

n+α = .4% of
the probability mass.

6 Discussion and Future Work

This project shows a working version of the Infi-
nite Gaussian Mixture Model for univariate data and
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Figure 3: The autocovariance of model hyper-
parameters as a function of lag between samples.

an implementation of Adaptive Rejection Sampling.
The IGMM performs well in estimating the original
parameters of a two-Gaussian mixture without any
externally supplied prior information.

Once I get the bugs worked out of the multivariate
IGMM, I plan to apply it to the case of clustering
audio data. Using mel-frequency cepstral coefficients
(MFCCs) to represent audio, I would like to address
the questions of how many Gaussians best describe a
song, an artist, a style of music, all music, assuming
that the MFCC frames are IID draws from a GMM.
Since the IGMM has no prior assumptions and does
not suffer from over-fitting, it would not require cross-
validation to determine such numbers.

Another question I would like to answer is whether
or not there are real clusters of MFCC frames, or
whether they are spread out on a continuum. This
question could be asked about any dataset. The
IGMM should help answer it by either consistently
picking the same parameters for certain Gaussians, if
there are clusters, or by spreading the distribution of
parameters around, in the case of a continuum.
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