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Abstract—We propose Polar Coordinate Routing (PCR) to
create multiple paths between a source and a destination in
wireless networks. Our scheme creates paths that are circular
segments of different radii connecting a source and a destina-
tion. We propose a non−euclidean distance metric that allows
messages to travel along these paths. Using PCR it is possible to
maintain a known separation among the paths, which reduces the
interference between the nodes belonging to two separate routes.
Our extensive simulations show that while PCR achieves a known
separation between the routes, it does so with a small increase in
overall hop count. Moreover, we demonstrate that the variances
of average separation and hop count are lower for the paths
created using PCR compared to existing schemes, indicating a
more reliable system. Existing multi−path routing schemes in
wireless networks do not perform well in areas with obstacles
or low node density. To overcome adverse areas in a network,
we integrate PCR with simple robotic routing, which lets a
message circumnavigate an obstacle and follow the trajectory
to the destination as soon as the obstacle is passed. 1

I. INTRODUCTION

In wireless networks geographic routing techniques follow
the most direct path to a destination. However, there are
instances where the direct path is not sufficient and multiple
paths are needed to connect a source and a destination.
Multiple paths offer several advantages.

• Sending data through multiple paths to a destination
increases reliability of data delivery.

• In a congested network, setting up multiple paths may
reduce congestion in the network.

• When data is segmented into multiple parts, and each data
segment is transmitted to the destination on a separate
path, multiple paths prevent an adversary from intercept-
ing the complete set of data.

While multiple paths between a source and a destination
offer a few advantages, they also require precautions. For
example, if the paths between the source and the destination
are close to each other, there will be interference between these
paths. On the other hand, when these paths are spread out in
a network in order to maintain a higher separation, the total
number of hops may increase beyond an acceptable level.

Unfortunately existing solutions for multi−path routing in
wireless networks do not necessarily offer a good solution in

1This material is based upon work partially supported by the Defense
Advanced Research Projects Agency and Space and Naval Warfare Center,
San Diego, under Contract No. N66001-08-C-2012.

terms of path separation, average number of hops etc. There is
some work in the wireless networking domain that shows how
to forward messages on a trajectory, however this solution has
not been tested for multiple paths. Moreover, it does not offer
a good solution to circumnavigate obstacles and the areas with
low node density.

In this paper we present a simple way to form circular
arcs between a source destination pair. We present a simple
non−Euclidean distance metric using which messages can
be forwarded through the nodes that are closest to these
arcs. We also show that the arcs maintain a high level of
separation, which reduces the possibility of interference. We
integrate our message forwarding scheme with simple robotic
routing, so that it can circumnavigate the areas with obstacles
and low node density. We also demonstrate that using our
non−euclidean distance metric we can continue forwarding
messages along the predefined trajectory even after the obsta-
cle is crossed.

This paper is organized as follows. In section II we give
a short overview of existing work on multi−path routing in
wireless networks. Section III demonstrates the functionality
of PCR. In section IV we show our simulation results and
compare our results with existing schemes. In section V we
integrate PCR with simple robotic routing, which gives it an
ability to circumnavigate obstacles. In section VI we show
the performance of PCR in adverse conditions like areas with
obstacles and low node density. Finally, we conclude our study
in section VII.

II. RELATED WORK

Greedy forward routing [2] is one of the simplest forms
of routing in wireless networks where location information of
nodes is available. In greedy forward routing a node chooses
its next hop neighbor such that it is geographically closest to
the destination among all the neighbors. While it is not useful
in creating multiple paths between a source destination pair,
in our simulations we use this technique as a benchmark and
compare the performance of PCR with greedy forward routing.

Biased geographic routing (BGR) [10] is geared towards
reducing congestion in a network, and it offers a simple way of
forwarding messages through multiple paths. In this method a
source initially transmits its message at an angle bias. A node
located in that direction receives this message and forwards
it to a node that is located at an angle biasnew = bias− K

d2 ,



where K is a constant and d is the distance between the current
node and the destination. As the message gets forwarded on
every hop, the value of bias decreases, which forms an arc.
Eventually bias will become zero and from that point on
the message will be forwarded directly to the destination. By
choosing different values for initial angle bias, it is possible
to set up multiple paths between a source destination pair.

While this scheme could be helpful in setting up multiple
paths in a network with high node density, its performance is
very poor in a network with low node density. If a message
sender does not find a receiver at the angle bias, it will send
messages to a node that is far from the desired path. Since
this method does not have a way to specify a particular path,
if a message is not delivered at the correct angle bias, it will
wander away from the desired path or come too close to the
greedy forwarding path. This would either lead to increasing
the total number of hops or increasing the interference with the
other paths, both of which are highly undesirable scenarios.
Moreover, if the initial bias and constant K are not chosen
correctly, a message may spiral around the destination before
it gets delivered. If a message runs into obstacles this method
does not propose anyway to circumnavigate them.

Trajectory based forwarding (TBF) [9] is a method that
defines a trajectory in terms of parametric equations, and it
lets a message travel along this trajectory. For example, if a
message travels on a straight line that passes through a point
(x1, y1) and has a slope α, TBF will represent this trajectory as
X(t) = x1 + t cos(α) and Y (t) = y1 + t sin(α). Each node in
TBF will choose its next hop neighbor such that the messages
travel along this line. If we form several trajectories between a
source and a destination we could achieve multi−path routing.
However, performance of TBF is not tested for multi−path
routing. Naturally, not all the trajectories could be ideal for
multi−path routing. For example, if two trajectories overlap
each other, it may lead to very high interference and disrupt
the performance of the network. Therefore, it is necessary to
come up with a way to define paths that would maintain a
large separation between one another. Furthermore, in TBF
each message has to include the type of trajectory and also
all of the parameters that define the trajectory, which could
amount to a very high overhead.

Unlike BGR, TBF attempts to circumnavigate an obstacle
by estimating the size of it. TBF proposes a technique in which
whenever a node cannot forward a message greedily along
the trajectory, it assumes that there is an obstacle next to it.
The node tries to estimate the diameter (∆) of the obstacle
and attaches it to the message in terms of a parameter of
the trajectory. This way the message will try to travel around
the estimated obstacle. Each node forwarding a message in
this mode determines if it can forward the message greedily
along the original trajectory. If the node cannot forward the
message greedily along the trajectory, it is assumed that the
message is still trying to overcome the obstacle and the current
process continues, otherwise the node quits the algorithm and
forwards the message greedily along the trajectory. If the
estimation of obstacle diameter is too high, a lot of nodes

will unnecessarily end up performing the calculations for exit
points. An overestimation of ∆ could also mean that the
message won’t be able to travel along the trajectory even if
the obstacle is crossed. On the other hand, an underestimation
of ∆ could result into a message spiraling around the obstacle
multiple times before it actually gets back on the trajectory.

[3], [7], [5], [6] and [1] also present algorithms to circum-
navigate obstacles. These algorithms are primarily based on
forwarding messages to the nodes that form a planar graph.
Robotic routing [4] is another technique that lets a message
circumnavigate obstacles, however it does not require us to
pre-compute planar graphs. We integrate PCR with robotic
routing to overcome obstacles.

III. POLAR COORDINATE ROUTING (PCR)

Some of the objectives that are necessary to for a good
multi−path routing scheme include,

• Trajectories created by multi−path routing scheme should
maintain a known separation among each other to reduce
interference.

• While the trajectories should be far from each other to
reduce interference, the total number of hops should not
increase too much.

• Message overhead to define a trajectory should be low.
• If a message encounters an obstacle, it should be able

to circumnavigate the obstacle, and continue traveling on
the trajectory.

In Polar Coordinate multi−path routing a trajectory is
represented by an arc that is a segment of a circle. The center
of this arc lies on the bisector of the line segment connecting
the source and the destination (figure 1(a)). The source and
the destination are basically two end points of this arc. A
message from a source to the destination travels on this arc.
If we choose a different point on the bisector as the center,
we could obtain another arc with a different radius connecting
the source destination pair. Using this technique we can form
multiple paths. We choose trajectories as circular arcs since
they do not overlap each other. Furthermore, it is very easy
to maintain a large separation between two trajectories as we
will show in this section. The overhead of defining an arc is
also relatively low. In order to define an arc, the only thing
that has to be included in a message is the location of the
source, destination and the center of the arc.

Before we formally introduce a method of defining arcs, we
mention some of the assumptions that we made.

• Each node in the network is aware of its location in
cartesian coordinate system.

• A node is also aware of the location of its one hop
neighbors.

• The source node knows the location of the destination.
• Each node is equipped with some basic computational re-

sources that could perform simple arithmetic operations.
PCR defines arcs with different radii that connect a source

destination pair as shown in figure 1(a). The objective is to
send messages through the nodes that are close to these arcs.



It is relatively easy to formulate this problem in a network
where the nodes are localized according to the polar coordinate
system. Say the arc connecting the source and the destination
has a radius R. Also, for the simplicity let’s assume that
the center of the arc C has coordinates (0, 0) in the polar
coordinate system. Hence, the goal of PCR is to send messages
through the nodes that are R distance away from the center C.
Moreover, PCR also has to make sure that a node selects its
next hop neighbor such that the message travels the maximum
angular distance. In other words the quantity ∆θ in figure 1(b)
has to be maximized.

These calculations are straightforward in the cartesian coor-
dinate system as well as the polar coordinate system. For the
sake of simplicity we demonstrate these calculations in the
cartesian coordinate system.

S T

(a) (b)

Fig. 1. Polar Coordinate Routing

The idea behind PCR is similar to geographic routing. How-
ever, unlike geographic routing, PCR defines a non−euclidian
distance metric, which allows messages to travel on an arc
instead of following a direct path. In this section we develop
a new distance metric and describe how to travel along an arc
using this metric.

A. Arc Specifications

Given a source (S) and a destination (T), we could draw a
line segment ST ; let line l be the bisector of ST . We could
pick any point along line l, which could represent the center
of a circular segment connecting S and T , let us call this point
C. Note that C does not have to be represented by a node.
The position of C along l defines the curvature of an arc. For
example, if I represents the intersection of l and ST ,the closer
the C to I , the sharper the curve.

A more elegant way to define an arc is by its radius. If the
distance between S and T is d, let’s represent the radius of
the circle as R = ad

2 , where a ∈ [1,∞). Let m be the line

passing through S and tangent to arc
#
ST , and θ be the angle

between m and ST , then a = 1
sin θ . Hence, by controlling the

value of a, it becomes easy to control the curvature of the arc.
For example, for a semicircle θ = π

2 , hence a would be 1.
Thus we can define arcs with different curvatures and

traverse messages along these arcs.

(a) Arc Specifications (b) A Non−Euclidean Distance Met-
ric

(c) A Non−Euclidean Distance Met-
ric

(d) In PCR a node is selected as a next
hop neighbor only if it is closer to the
destination along the arc

Fig. 2. Polar Coordinate Routing

B. Non-Euclidean Distance Metric

We define a new non-euclidean distance metric, which gives
this scheme the ability to forward messages along an arc. Our
goal is to define a metric such that a message not only remains
close to the arc, but it also travels as far as possible along the
arc.

Let D(E, T ) represent the non−euclidean PCR distance
metric between the location of a network node E and the
destination T . As shown in figure 2(b), let point Ep be the

intersection of EC and
#
ST . We define D(E, T ) as the length

of EEp plus the length of the arc
#

EpT . Now, it is possible
to show that euclidean distance between Ep and T (d(Ep,T)),

and the length of
#

EpT are both one to one and increasing
functions of α, where α is the angle between EC and CT .
Therefore, we can write D(E, T ) as,

D(E, T ) = d(E,Ep) + d(Ep, T ).

In a network where nodes are forwarding packets according
to PCR, a node X will calculate the distance D(Nx, T ) among
all its neighbors Nx and the destination T . Node X sends its
messages to a node that yields the smallest value of D(Nx, T ).
The optimization criterion of min{D(Nx, T )} can be bro-
ken down into two parts as min{d(Nx, Nxp) + d(Nxp, T )}.
Therefore, nodes in PCR do not necessarily pick the next
hop neighbor that is closest to the arc, nor do they select the



neighbor that is farthest along the arc. In PCR a node selects its
next hop neighbor which gives the minimum aggregate value
of both these criterions: closest to the arc and the farthest along
the arc.

It is a common practice in geographic routing to forward a
packet to a node that is closer to the destination compared
to the current node. Hence, in geographic routing a node
chooses its next hop neighbor that is closer to the destination.
Following this rule prevents a message to be forwarded in the
backward direction and hence it avoids the routing loops. We
also adhere to this principle in PCR. In figure 2(c), if node X
is looking to forward its messages to one of its neighbors, it
will only consider nodes Y or Z, since their projections on the
arc are closer to the destination compared to the projection of
X . Note that even though node W seems geographically closer
to the destination than X , it will not be considered as a next
hop candidate since it’s projection is farther to the destination
than the projection of X .

C. Separation between Arcs
So far we have established how to define an arc, and how to

navigate a message along it. Sometimes it is useful to predict
what kind of results we are going to get from an arc. For
example, it may be helpful to estimate what proportion of
nodes on an arc is going to interfere with the nodes on other
paths. If we could estimate the average separation between
two arcs in advance, we can make an educated guess regarding
how sharp an arc should be to yield a low interference with
the neighboring arcs.

Fig. 3. Estimation of nodes from an arc out of range of greedy forwarding
path

Consider a network where all the nodes have the same
transmission radius r. In figure 3 for a source (S) and a
destination (T ), let line segment ST represent the greedy
forwarding path, and

#
ST represent the path created by PCR.

Moreover assume that
#
ST is formed at an angle θ with respect

to the ST , which yields an arc radius of R. All the points on
#
AB in figure 3 are more than a transmission radius away from
all the points on ST . Therefore, probability that the nodes
lying along

#
AB will interfere with the nodes on greedy path

is very low. Assuming that the number of hops to reach T

from S along
#
ST is proportional to the length of this arc,

we can estimate the proportion of nodes that will not interfere

with the nodes on the greedy forwarding path as length of
#
AB

length of
#
ST

.

Since the paths formed by PCR are circular it is very easy
to calculate the length of these arcs. Length of

#
ST would

be π × 2θ, while length of
#
AB would be π × 2α, where

α = cos−1(R−h+r
R ) and h = R(1− cosθ).

It is possible to calculate what proportion of nodes on an arc
will have low probability of interfere with the nodes belonging
to another arc when PCR forms multiple trajectories. For
example, in figure 4 there are two arcs that connect to a
source and a destination. In this scenario we can assume that
the nodes belonging to

#
AB will not interfere with any nodes

belonging to
#
CD. Let us assume that the arc on the top has

a radius R1 and for simplicity let us assume that its center is
at C1 whose cartesian coordinates are (0,0). The other arc has
a radius of R2, and its center is located at point C2. Hence,
the real solutions of equations X2 + Y 2 = (R1 − r)2 and
(X − C2x)2 + (Y − C2y)2 = R2

2, will give the cartesian
coordinates of C(XC , YC) and D(XD, YD). Using these co-

ordinates we can calculate the length of
#
CD, and hence we

can also calculate the proportion of the first arc that will not
interfere with the second arc. Similarly, it is also possible to
calculate the length of

#
AB by calculating coordinates of A

and B. XA = XC
R1

R1−r , YA = YC
R1

R1−r , XB = XD
R1

R1−r and
YB = YD

R1
R1−r .

Fig. 4. Estimation of nodes from an arc out of range of the nodes that belong
to another arc

Using this technique we can choose the curvature of an arc
such that the resulting path will yield a low interference with
the other paths.

IV. PCR: RESULTS

Our simulations show that the non−euclidian distance met-
ric successfully allows network nodes to forward messages
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Fig. 5. A Comparison of PCR and BGR

along an arc. Furthermore, if the messages have to deviate
away from the arc due to the sparse node density, this distance
metric provides them with a tendency to get back on the arc.

On the other hand, the path of the messages in BGR does
not necessarily have a structure. Regardless of the initial
bias, sometimes a path created by BGR could be very close
to the greedy forwarding path, and sometimes it could be
unnecessarily far away from the greedy path. Furthermore,
the performance of BGR worsens if the node density is low.

Figure 5 compares the routing paths formed by PCR and
BGR. For all three scenarios presented here, initial bias of
BGR is set equal to the angle of the arc formed by PCR.
In figure 5(a) messages of BGR deviate further away from
the greedy forwarding path, hence it increases the hop count
unexpectedly. On the other hand, in figure 5(b), path of the
BGR is closer to the greedy forwarding path, which could
increase the interference. It should be noted that in both
the figures 5(a) and 5(b) messages of PCR travel along the
specified arc. Figure 5(b) is a quite common scenario for
BGR. In BGR, nodes forward their messages at an angle
bias according to the rule biasnew = bias − K

d2 , where d
is the distance between the current node and the destination.
Hence, at every hop the value of bias will decrease, which
would cause the formation of an arc. However, eventually
the bias will hit the value of zero and from that point the
messages will be forwarded greedily to the destination. Thus,
as a message in BGR gets close to the destination, its path
becomes very close to the greedy forwarding path, increasing
the probability of interference. Finally, figure 5(c) presents a
scenario where BGR yields a path that is almost parallel to
the greedy forwarding path. A careful inspection of the figure
will indicate that the network density is quite sparse around
the source, hence PCR and BGR both choose first couple of
hops that are close to the greedy forwarding path. However,
BGR fails to recover from this and the rest of the path also
stays parallel to the greedy forwarding route. PCR on the other
hand quickly recovers from this, and chooses its nodes wisely
so that rest of the path progresses along the predefined arc.

It should be noted that the results presented in this section
are based on a simulation where 2500 nodes are uniformly

scattered in a 500 × 500m2 area. Therefore, a node in this
network is surrounded by approximately 12 other nodes on
average. Each node in the network has a transmission radius
of 20m. The results presented in the rest of the section are
the averages of 1000 runs. Furthermore, in all our simulations,
the constant K in biasnew = bias− K

d2 is chosen in a manner
such that the path formed by BGR will progress as close to
the arc as possible given the distance between the source and
the destination, where K ∈ N.

Figure 6 shows the means and variances of the percentage
nodes of PCR and BGR that are completely out of range of
the greedy forwarding nodes. It should be noticed that in most
of the cases PCR yields a higher percentage of nodes that are
out of range of greedy forwarding path compared to BGR.
Therefore, paths created by PCR maintain a higher separation
with the greedy forwarding route. Figure 6(b) shows that PCR
yields very low variances compared to BGR. A low variance in
separation indicates that unlike BGR, messages in PCR stick
close to the predefined path. Therefore, PCR is much more
stable compared to BGR in terms of forming paths.

Sometimes it is desirable to send messages along more than
one arc. When we send messages across multiple arcs, it is
necessary to maintain enough separation among these paths as
well. We simulated the scenarios when the paths are formed
at 45◦ and 75◦ angles, and calculated percentage of nodes on
75◦ path that are out of range of 45◦ path. These results are
shown in figure 7.

Even though PCR outperforms BGR in terms of path
separation, it does not create higher separations by forwarding
messages through a large number of nodes. Figure 8 shows
that regardless of the distance between the source and the
destination, PCR’s hop count would exceed BGR by no more
than a couple of hops. It also shows that greedy forwarding
routing will have the least number of hops, which is an
expected result. It should be noticed that even in this case
PCR yields low variances compared to BGR. Since in PCR
messages do not digress away from the arc, it is natural that
hop count in PCR will have a low variance.

We performed these simulations for the paths formed at
θ = 30◦, 60◦, 75◦ and 90◦ as well. It should be noticed that
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Fig. 6. Percentage nodes out of range of greedy forwarding path when
multi-path routing schemes form paths at θ = 45◦

the performance of PCR improves as θ increases.

V. PCR INTEGRATED WITH ROBOTIC ROUTING

While BGR does create multiple paths, it does not have
any provisions to circumnavigate obstacles in a network. TBF
does try to overcome obstacles, but its performance is very
poor. Since in a multi−path routing technique messages travel
across a larger portion of the network, the probability of
encountering an obstacle is higher. Since obstacles are not
uncommon and they could adversely affect the performance
of a routing protocol, we find it necessary to come up with
a scheme that does not fail in an environment with obstacles.
We integrate PCR with Simple Robotic Routing [4] protocol
which is specially designed for routing messages in a network
with obstacles.

Robotic routing requires a network to be divided into a zonal
grid. A zone is basically a small square area with the length
of its sides equal to r√

2
, where r is the transmission radius of

the nodes. Thus zones are designed in a manner so that a node
in a zone can hear every other node in the same zone. Each
zone is given a unique ID and based on its coordinates it is
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Fig. 7. Comparison of BGR and PCR when paths are formed at 45◦ and
75◦

possible for a network node to identify which zone it belongs
too.

The idea of PCR’s integration with Robotic routing is very
simple. A message travels along an arc until it cannot find a
next hop neighbor that is closer to the destination along the
arc compared to the current node. Once a node cannot find a
neighbor that is closer to the destination, it changes its routing
scheme to robotic routing. Now the messages circumnavigate
the obstacle using the right hand rule, and switch back to PCR
when it is possible to find a node that could lead closer to the
destination using the non-euclidean distance metric.

While [4] thoroughly defines the rules of robotic routing,
we present a simplified version here. In simple robotic routing
a message could overcome obstacles using right hand rule. We
use example presented in figure 9 to describe the right hand
rule.

• Each zone could have eight possible neighboring zones.
These zones are labeled from 1 to 8 in the figure.

• At the source, the packet follows PCR until it reaches
zone X.

• In zone X an obstacle prevents the packet from moving
closer to the destination along the arc and the packet
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Fig. 9. PCR integrated with Robotic Routing

enters the robotic routing mode.
• In zone X we start with neighboring zone 1 and try to

locate a node in that zone. If we do not find a node in
zone 1, we select a zone counter clockwise, which would
lead to neighboring zone 2. If we cannot find a node in
this zone either, we continue this process until we find a
zone with a node to which we could transmit the message.

• Say we find a node located in neighbor 3, hence we
forward the message to a node in that zone. Let us call
that zone Y . From zone Y , we continue using right hand
rule until we reach zone Z.

• Say from zone Z we can find a node that is closer to the
destination than the current node. Hence, we leave the
robotic routing, and enter PCR.

• Since PCR has a quality to direct the messages along the
arc, it will bring the messages along the arc and deliver
it to the destination.

It is possible to route a message to the destination using
robotic routing. However, our objective is to route the mes-
sages along multiple trajectories. If we continue to forward
messages using robotic routing even after the obstacle is
crossed, it is possible that different paths may overlap with
each other. For example consider a scenario where we are
sending messages at different angles, and all the paths run
into the obstacle. Since all the nodes will use the right hand
rule, the chances are the nodes will leave the obstacle in the
same zone. Now if these messages are continued to forward
using robotic routing, all the messages will go through the
same set of zones to reach the destination. To avoid this
undesirable scenario it is important to leave robotic routing
when an obstacle is crossed. We also define rules on when to
quit robotic routing.

• If we are routing using robotic routing and it brings the
messages back to the same zone twice, and the only way
out of this zone is the path that we took earlier, we
identify a routing loop and stop forwarding a message.

• If the hop count goes beyond the maximum hop count
we stop forwarding a message. In both these cases if we
want to acknowledge the failure to the source depends on
the nature of the application.

• If we find a node that is closer to the destination along
the arc than the current node, we leave robotic routing
and reenter PCR.

VI. RESULTS: PCR INTEGRATED WITH ROBOTIC ROUTING

Figure 10 shows paths generated by PCR and robotic
routing. All three arcs are generated at 45◦ angle. Figure 10(a)
presents a scenario when the node density is low (1800
nodes in 500× 500m2 area). Note that in figure 10(a), while
approaching the destination two transitions were made from
PCR to robotic routing. In figure 10(b) a big obstacle is
introduced and the node density is chosen to be 2500 nodes
in 500× 500m2 area. Figure 10(c) presents a scenario where
not only there is a big obstacle, but the node density is also
low. Usually it is difficult to route messages for long distances
in such a scenario like figure 10(c). In all three figures it
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Fig. 10. PCR Integrated with Robotic routing. Nodes chosen according to PCR are shown in black, robotic routing nodes are shown in blue

should be noticed that once the message leaves the robotic
routing mode, the distance metric defined in section III starts
to choose nodes that are closer to the arc, and the message
indeed reaches the destination along the trajectory.

We use the metrics described in section IV to evaluate the
performance PCR’s integration with robotic routing. For our
evaluation instead of using a large obstacle in the network we
use a network with very low node density. A network with a
sparse node density could represent a lot of small obstacles,
since many of parts of the network will have no nodes closer
to the destination.

For our simulations we set up a scenario where 1800 nodes
are uniformly scattered in a 500×500m2 area, and each node
has a transmission range of 20m. We choose a node density
of 1800 because it would cause a node to have 8 neighbors on
average. Some research efforts show that a message will not
be able to travel a large number of hops if the node density
goes below this [8]. The results presented in this section
are the averages of 1000 runs. Since BGR does not have
provisions to overcome obstacles, we only present the results
of PCR. Moreover, since robotic routing is utilized along with
PCR, it will be able to reach a destination more successfully
compared to greedy forwarding. For figures 11 and 13 we have
only considered the scenarios when not only PCR but greedy
forwarding also reaches the destination.

Figure 11 shows percentage nodes of PCR and robotic
routing that are out of range of greedy forwarding path. Figure
12 shows percentage nodes of 75◦ path that are out of range of
45◦ path, and figure 13 shows the hop count. Comparing the
variances presented in this section with the results shown in
section IV would indicate that if PCR has to switch to robotic
routing due to obstacles, overall performance of this scheme
worsens. The deterioration in the results is expected since the
presence of obstacles could deviate the path of the messages
away from the predefined arc.

VII. CONCLUSION

We presented Polar Coordinate Routing, which creates
multiple paths between a source and a destination. Since
these paths are segments of circles with different radii, it
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Fig. 11. Percentage nodes out of range of greedy forwarding path when
PCR+RR form path at θ = 45◦
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Fig. 12. Performance of PCR with obstacles in the network when paths are
formed at 45◦ and 75◦

is easy to control average separation between them. We also
presented a non−euclidean distance metric that lets messages
travel on these arc greedily, and does not increase overall hop
count unnecessarily. We show that variances of hop count and
average separation in PCR are too low compared to existing
multi−path routing scheme, hence PCR offers a much more
reliable system. Furthermore, given a source and a destination
a circular trajectory could be easily defined by including only
its center in the message, which does not impose too much
additional overhead of defining a trajectory on the system.

We also integrated PCR with simple robotic routing to
overcome obstacles and areas with low node density. We also
showed that with the help of our distance metric a message
could reach its destination along the trajectory even after
crossing the obstacle.
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