
1

Regulating User Arrivals at a Mobile IP Home
Agent

Maulik Desai‡ Thyaga Nandagopal†
‡ Columbia University, New York, USA. † Bell-Labs, Alcatel-Lucent, NJ, USA.

Abstract—With the increasing levels of data usage in mobile
cellular networks, Mobile IP and its variants serve as the de
facto standard for mobility management. At high user loads,
the Mobile IP Home Agent is unable to support registration
requests within the required delay limit, leading to registration
failures during peak user periods. The typical way of addressing
this problem currently is to over-provision the Home Agent or
to add multiple Home Agents with Load-Balancing in order
to handle peak loads. In this paper, we propose an algorithm
that regulates user arrivals by manipulating their registration
lifetimes, thereby smoothing the arrival process at the Home
Agent. Our proposed algorithm controls the variance in server
loads very effectively with negligible computational and storage
overhead. It also does not penalize users to register more often
in order to satisfy the requirement of uniform load at the HA.
Simulations with various user arrival and lifetime distributions
show that our scheme is highly effective at the regulation of user
registration load at the Home Agent.

I. INTRODUCTION

Mobile devices are increasingly becoming ubiquitous and
the preferred way for accessing the Internet, either by means
of a 3G cellular or a wireless LAN connection. Data through-
puts of up to 40Mbps are already realizable in a cellular data
network deploying HSPA+, with greater speeds promised by
LTE [1]. Coupled with the wide-spread availability of WLAN
hot-spots, this has increased the demand for seamless mobility
services for users, including support for vertical hand-offs
across network types [2].

Seamless mobility services are provided by the Mobile
IP protocol [3] or its numerous variants standardized by
the IETF or the 3GPP working group. The basic premise
is as follows. A Home Agent (HA) serves as the anchor
node that tracks the network connection point (location) of
a user as the user moves. Note that the location can be
in space or it could be simply the types of network that a
user is connected to, for e.g., a simultaneous WLAN and 3G
connection. Periodically, or whenever there is a change in the
user location, the user registers with the HA informing the

user’s present location. The HA performs a variety of services
as part of this registration, namely request verification, user
authentication, authorization, accounting, address assignment
(for new users), data path forwarding on behalf of the user,
etc. Some of these functions could be off-loaded to an external
AAA server [7] as well, with the Home Agent serving a re-
direction agent for these functions.

The Home Agent is the critical part of the system since it is
on the critical path of both signaling and data for mobile users.
As the user population grows, the load on the Home Agent
also grows correspondingly. Typical responses to increased
load are: (a) increase the capacity of the Home Agent [4]
to handle larger loads, (b) increase the number of servers and
use load-balancing in a transparent manner [5], and (c) deploy
Home Agents at multiple points in the network and use any-
cast mechanisms to handle mobility functions on behalf of
users[6].

All of the above responses are valid solutions to the
problem, but they also suffer from one significant drawback.
They require new hardware, which increases the capex and
opex of the network operators, in addition to management
complexity. This motivates us to take a look at the basic
problem of increased user load to see if we could avoid
deploying new hardware as much as we can.

The HA performs multiple functions, all of them directly
proportional to the number of users registering with the HA
at any given time. Therefore, the aggregate load on the HA
is dependent on the user registration load, i.e., the number of
users attempting to register with the HA. This load has two
components: (a) average load, and (b) variance in load. If
the average load is very high, then the only ways to handle
it are to either eliminate/divert users or to add hardware to
off-set the load. For the latter component, when the variance
in load causes the load to be momentarily high enough to
over-load the HA server, then we could either queue the user
registration request, thus delaying a response, or off-set the
temporary spike to a different server. The former leads to

2

increased congestion at the Home Agent (as will be explained
later), while the adding new hardware is less desirable as well.

In this paper, we address the problem of reducing the
variance in user-registration load at a Home Agent, thereby
improving the hardware utilization as well as reducing
capex/opex costs for the operator. Our approach is to eliminate
the key reason behind the variance in server load, namely
assigning improper lifetimes to users that cause them to show
up at the inopportune moment (when the server faces high
loads). To the best of our knowledge, this is the first paper
that addresses this problem at a user-registration server, such
as a Mobile IP Home Agent. The key features of our proposed
algorithm are as follows.

1) It is fully compatible with current Mobile IP and other
seamless mobility standards.

2) We cut down the variance in server loads by a factor of
three or more.

3) The algorithm does not cause noticeable additional user
registration load at the Home Agent.

4) The algorithm runs in O(1) time and has constant
memory overhead.

The organization of the paper is as follows: In Section II,
we describe the system model and some related work in this
space. In Section III, we discuss some baseline methods to
address this problem. In Section IV, we describe the CDF
algorithm motivated by mapping of probability distributions.
We then validate and compare the performance of our pro-
posed approach via simulations in Section V and conclude in
Section VI.

II. SYSTEM MODEL AND RELATED WORK

We consider a set of mobile users who are registered with a
Home Agent. The communication between the users and the
Home Agent is based on the Mobile IP protocol [3]. For an
overview of the Mobile IP protocol and its applications, see
[8] and the references therein.

In Mobile IP, users register with a HA for a specified
lifetime (Li). This lifetime cannot exceed 65535 seconds [3].
The registration request (RRQ) from the user contains a
requested lifetime from the user (Li,U), and the HA can be
configured to assign a maximum lifetime for that user as well,
based on policy (Li,S). Thus, the actual lifetime assigned to
the user for a given RRQ is given by

L ≤ Li,max = min(Li,S , Li,U , 65535) (1)

We call Li,max as the user epoch for user i.
The user registration is valid until the expiry of this lifetime.

As the expiry time approaches, the user re-registers with

the HA for an additional period as in the original RRQ.
This process continues until the user leaves or de-registers
voluntarily. In addition, whenever the user changes location to
a different network location, it will re-register itself to indicate
a hand-off.

The one measure of control the HA has is the ability to
control when a user returns to re-register. It can do this by
carefully assigning the lifetime (LT) for the user in response
to the RRQ, thereby controlling the re-registration load at a
future time. This is an online problem, since future arrivals of
new users and hand-offs are not known to the HA in apriori.

A related problem is that of multiple-server load re-
balancing [9]. However, unlike the problem in [9], we cannot
preempt an existing user or move a registered user to another
time-slot until the user contacts the server near its expiration
time. This is because the HA can send a response only when
the user contacts it with a RRQ. It cannot signal the user
directly unless it wants to revoke its registration.

The other type of problem that is related is load balancing
in P2P systems [10], where objects are re-distributed among
peers to distribute the load on the peers. Unlike this problem,
we consider only a single server and users cannot be shifted
anywhere. Using multiple servers as in [5] is a complementary
problem, since we can deploy our solution on each of these
servers. In fact, using our solution will reduce the need for
multiple servers since we will be able to utilize the resources
of each server to the fullest all the time.

Predicting the number of hand-offs and which users are
likely to hand-off [11], [12] is similar to predicting the number
of new users in the system and is normally based on some
form of profiling. If we have this information, we can use this,
but we cannot control the occurrence of hand-offs or arrival
of new users. Therefore, handoffs are similar to new users in
terms of the user-registration load on the HA and are part of
an orthogonal problem1 to the problem under consideration.

The user registration re-distribution problem can be for-
mally stated as follows.

Statement 2.1: Let the maximum lifetime that can be as-
signed by a HA for user i be denoted by Li,S , and the
maximum lifetime requested by user i be given by Li,U . Given
a set of N users arriving over some period Tarr, and departing
over period Tdep, determine the online assignment of lifetimes
to users arriving at any time slot t such that the variance in the
user registration load of the HA is minimized over {t, t + T}
for any T > 0 , assuming no changes in the user set in the
future, where Tarr, Tdep ≤ t.

1In a typical cellular network provider, the number of hand-offs is typically
around 20-30% of the total registrations.

3

A. Design Goals

Any solution to the problem above should satisfy three
requirements.

1) Low load variance: During any given period where
there are no changes in the user set, the variance in
the number of users registering at the HA at any point
in the period should be very small.

2) Low resource consumption: Any scheme to reduce the
variance should not consume additional resources at the
HA, i.e., the run-time as well as storage requirements
should be small for such a scheme.

3) Negligible overhead for users: Any solution to this
problem should not cause undue burden on the users by
asking them to register more times than desired. This
adds signaling burden on the wireless network, which
also increases the total number of registration requests
that needs to be processed by the HA.

Recall that we are interested in modifying the behavior of
the existing set of users in the system. If we have a prediction
algorithm that can determine the number of new users/hand-
offs that are about to occur in the future, then this number
can be taken into consideration by any solution. However, the
prediction algorithm is not the focus of this paper.

III. BASIC SCHEMES

We first consider some vanilla approaches to the user
registration re-distribution problem.

NoBalance: This is the default do-nothing algorithm. The
HA assigns lifetime to user i based on

Li = Li,max (2)

where Li,max is the user epoch given by Equation 1.
RandomBalance: A simple heuristic is to assign lifetimes

at random in the hope that the load will balance out in the
long run. In other words, the lifetime for user i is given by

Li = random(1, Li,max) (3)

This algorithm could be hoped to reduce the variance in
registration load, and is very simple to implement, and does
not require any additional memory. However, it will lead to
increased registrations at the HA, since the lifetimes can be
arbitrarily small.

Hole: When a user i arrives at time t, we consider the
average expected load during the interval (t, t+Li,max) based
on the history of registered users up to time t. This algorithm
starts down from (t + Li,max) and finds the first slot where
the load is below the average.

This algorithm could be hoped to cut down the variance
since it attempts to fill the ‘holes’ in the load vector compared
to the average load over the user epoch. Since it starts down
from the maximum possible lifetime that can be assigned
to the user, it should result in a small number of additional
registrations at the HA.

LeastLoad: This heuristic finds the least loaded slot in the
interval (t, t+Li,max), say, tl, and assigns the lifetime to user
i as Li = tl − t.

This algorithm should be the best in terms of reducing the
variance in load, though its run-time and storage requirements
are fairly high due to the need to identify the least loaded slot
for each user registration. If different users have non-identical
user epochs, then identifying the least loaded slot has to be
done individually and cannot be optimized across users in the
worst case.

As is evident, the vanilla heuristics described above do not
satisfy all of the design requirements outlined in Section II-A.
Therefore, we aim to design an algorithm that can accomplish
all of the design requirements.

IV. THE CDF ALGORITHM

If we think of the user registration load as a random variable
X , we want its pdf to be a Gaussian with very low variance
over any time window for the set of existing users. However,
since the actual distribution might is very different, we want
to change the distribution, if we can, to a near-Gaussian
distribution to achieve our desired goal. If the distribution
function is known in closed form, then we could apply the
well-known Probability Integral Transformation as applied to
discrete random variables [13]. However, the pdf of the user
registration load is not in closed form, and we cannot apply
these techniques to distribute the user load.

Ideally, we want to smooth out all the load spikes that occur
at any time. We accomplish this using a novel heuristic that
essentially disperses users who arrive at the same time. This
dispersion is not random in nature, but takes into account the
weight of the load spike in comparison with the total load.
The CDF algorithm is shown in Algorithm 1.

The CDF algorithm works by keeping track of the total
number of users expected over a given time window of
interest, T . This window could be an hour or a few hours.
The performance is fairly robust to the choice of T as long as
it is not too small (few minutes) or too large (tens of hours).

In a given time slot t, if a very large number of users arrive
at the HA, then we consider the users in order and disperse
them using a scatter function (Lines 5 – 7). Once we determine
a slot for the user, we search around a constant window R of

4

Algorithm 1 CDF Algorithm for assigning lifetimes
1. INPUT: time slot t, numUsers[i], i = 0, 1, 2, . . . , t, . . .,

time window T, load window R
2. count = 0
3. while users in queue in slot t
4. Select next user k from queue
5. count = count + 1
6. if k is a renewing user

7. Ltmp = Lk,max

(
1− countPt+T

i=t numUsers[i]

)

8. else (k is a new/hand-off user)

9. Ltmp = Lk,max

(
1− count

1+
Pt+T

i=t numUsers[i]

)

10. Smin = t + Ltmp −R
11. Smax = t + min(Ltmp + R,Lk,max)
12. j = arg mins∈{Smin,Smax} numUsers[s]
13. Lk = j − t
14. numUsers[j] ++
15. end while

this slot to determine the least loaded slot (Lines 10 – 12),
and give this as the lifetime for the user (Line 13). We keep
track of the expected number of users who are supposed to
show up in a time slot in the numUsers variable and update
it whenever a registration request is granted (Line 14). Since
new users are not accounted for by this variable, we modify
the scatter function slightly when we see new users (Line 8
– 9).

When a user leaves the system without notifying the HA,
then the HA cannot do anything since it does not know until
the user’s registration expiry time when the expected renewal
request does not arrive. A hand-off at time t therefore can be
treated as a combination of an existing user not showing up
at the expiry time and as a new user registering at time t.

The run-time of this algorithm is O(1), since there is only
a constant overhead to searching up to 2R time-slots for each
user.

V. PERFORMANCE VALIDATION AND COMPARISON

In this section, we look at the performance of the CDF
algorithm when compared to the algorithms discussed in
Section III, and see how well the CDF algorithm is able to
meet the design goals outlined in Section II-A.

We consider up to 10 million users arriving over a period
of 1-4 hours. This is the upper bound of the capacity of
some of the leading Home Agents in the market [4]. The
CDF algorithm parameters T and R are set to 1 hour and 10

seconds respectively, unless specified otherwise. We evaluate
the performance over uniform, Poisson and impulse user
arrivals, and consider exponential, Gaussian, log-normal, and
impulse distributions for user-requested lifetimes2. The results
are averaged over multiple runs, unless specified otherwise.

In our evaluation, each time slot is one second long. The
performance metrics of interest for all these algorithms are:
• Standard deviation of the user registration load for time

window T , immediately after all the users have arrived
at least once.

• Overhead of the re-distribution algorithm in terms of
additional run-time per time slot, Ψ.

• Percentage of additional registrations, Φ, caused as a
result of the re-distribution algorithm.

We first look at the effectiveness of the proposed algo-
rithms. We consider Poisson arrivals with the user-requested
lifetimes (Lk,max) exponentially distributed with a mean of
2 hours. The arrival pattern is shown in Figure V, where the
y-axis indicates the number of new arrivals per second at the
HA. The results are shown in Table I.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10000 20000 30000 40000 50000 60000

N
e

w
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

New Arrivals

Fig 1. Poisson Arrivals with Exponential Lifetimes

As we can see from the table, a naive randomization
heuristic as in RandomBalance fails in all the criteria under
consideration. The Hole and LeastHole heuristics reduce the
variance significantly, and as can be evidenced by the ratio
of the maximum load to the mean load. One can also see
this from Figure 2 where we show the number of registered

2In this section, any reference to lifetime implies a user-requested lifetime,
and is considered to be the same as Lk,max in Algorithm 1

5

Algorithm Standard Deviation σ σ
Mean

Max
Mean

Extra Run-time per sec Ψ Extra Reg Φ
NoBalance 40.09 0.38 1.124 0 ms 0

RandomBalance 42.93 0.025 1.088 0.16 ms 56.8 %
Hole 10.25 0.009 1.007 0.84 ms 4 %

LeastHole 10.19 0.009 1.007 1.26 ms 4 %
CDF 23.2 0.022 1.046 0.04 ms 0.3 %

TABLE I
PERFORMANCE: POISSON ARRIVALS AND EXPONENTIAL LIFETIME DISTRIBUTIONS

users per second versus time for a duration of 1 hour after
nearly all new users have arrived. Compared to the sample for
the same time period using the NoBalance scheme shown in
Figure V, the LeastHole algorithm is almost perfect. However,
the main issue with Hole and the LeastHole heuristics is
that the number of additional registrations is significantly
higher, in this example, 4 % more than when compared to
the default NoBalance scheme. In addition, the Hole and
LeastHole heuristics take much longer to run as well.

The CDF algorithm on the other hand, provides a reason-
able trade-off among all of these criteria. It adds negligible
amount of additional registration load, and runs the fastest
among all the re-distribution heuristics. It’s variance is higher
than that of the LeastHole algorithm, however, comparing
Figures V and 3, we see that the CDF algorithm does a very
good job of reducing the variance by a factor of almost 4.

Since the RandomBalance heuristic performs the worst in
all categories, we no longer discuss it in the rest of the
evaluation.

A. Arrival and Lifetime Distributions

We now look at the performance of CDF algorithm for
various user lifetime distributions and compare them against
the Hole and LeastHole heuristics.

Tables II and III show the results of the performance
evaluation for CDF under Poisson user arrivals, where the
user lifetimes follow an Gaussian distribution and log-normal
distribution respectively. The Gaussian lifetime distribution
has a mean of 7200 seconds and a standard deviation of 60
seconds. The parameters of the log-normal distribution are
also the same.

The performance under these two distributions is different
for all of the algorithms. The Hole and LeastHole heuristics
take much longer to run and generate significantly greater
number of additional registrations in the Gaussian lifetime
distribution, while the CDF has higher variance but performs
consistently in terms of run-time and user registration load.
Note that, when compared to the NoBalance scheme, the CDF

algorithm still does very well, reducing variance by significant
fraction. The log-normal lifetime distribution results in good
performance for all of the algorithms.

Algorithm σ
Mean

Max
Mean

Run-time Ψ Extra Reg Φ
NoBalance 0.597 3.09 0 ms 0 %

Hole 0 1.00 6.05 ms 1.9 %
LeastHole 0 1.00 9.14 ms 10.9 %

CDF 0.132 1.790 0.05 ms 0.2 %

TABLE II
PERFORMANCE: POISSON ARRIVALS, GAUSSIAN LIFETIMES

Algorithm σ
Mean

Max
Mean

Run-time Ψ Extra Reg Φ
NoBalance 0.087 1.83 0 ms 0 %

Hole 0.014 1.04 0.78 ms 3.6 %
LeastHole 0.014 1.03 1.08 ms 3.6 %

CDF 0.023 1.043 0.12 ms 0.02 %

TABLE III
PERFORMANCE: POISSON ARRIVALS, LOG-NORMAL LIFETIMES

We also look at another type of setting, where there are only
a discrete number of lifetimes requested by the users. This
typically can happen when there is a policy-based setting for
all devices, such as those belonging to an enterprise provider.
We allow 70% of users to request a maximum lifetime of
1 hour, while the other users request a maximum lifetime
of 12 hours. All users arrive exponentially at a mean rate
of 1000 users/second. The results for this experiment are
shown in Table IV. Again, the CDF algorithm gives consistent
performance across all the parameters, reducing variance by
more than a factor of 4.

One might wonder whether the Poisson arrival patterns have
any specific impact on the CDF algorithm. To verify this,
we use a uniform arrival pattern for all users, where new
users arrive at constant load but with exponentially distributed
lifetimes. The results are shown in Table V demonstrating that
the CDF algorithm performs consistently well as before.

6

 800

 900

 1000

 1100

 1200

 1300

 1400

 22000 22500 23000 23500 24000 24500 25000 25500 26000

R
e

g
is

te
ri
n

g
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

NoBalance

Fig 2. NoBalance: User Distribution with Time

 800

 900

 1000

 1100

 1200

 1300

 1400

 22000 22500 23000 23500 24000 24500 25000 25500 26000

R
e

g
is

te
ri
n

g
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

LeastHole

Fig 3. LeastHole: User Distribution with Time

 800

 900

 1000

 1100

 1200

 1300

 1400

 22000 22500 23000 23500 24000 24500 25000 25500 26000

R
e

g
is

te
ri
n

g
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

CDF

Fig 4. CDF: User Distribution with Time

Algorithm σ
Mean

Max
Mean

Run-time Ψ Extra Reg Φ
NoBalance 0.397 1.88 0 ms 0 %

Hole 0 1.00 0.92 ms 3.1 %
LeastHole 0 1.00 1.20 ms 3.8 %

CDF 0.167 1.192 0.02 ms 0.8 %

TABLE IV
PERFORMANCE: POISSON ARRIVALS, BI-VARIATE LIFETIMES

Algorithm σ
Mean

Max
Mean

Run-time Ψ Extra Reg Φ
NoBalance 0.085 1.55 0 ms 0 %

Hole 0.010 1.01 0.95 ms 4.0 %
LeastHole 0.01 1.01 1.32 ms 4.1 %

CDF 0.021 1.049 0.17 ms 0.03 %

TABLE V
PERFORMANCE: UNIFORM ARRIVALS, EXPONENTIAL LIFETIMES

B. Bursty Arrivals

The worst case behavior for any user registration load
re-distribution algorithm occurs when new users arrive in
bursts. We let nearly 600, 000 users arrive in a bunch every
15 minutes, for 4 hours. The lifetimes of these users are
exponentially distributed. We show the number of registering
users per second at the HA versus time in Figures 5 –
8 for the NoBalance, Hole, LeastHole and CDF algorithm
respectively. As is clearly evident, all three heuristics achieve
significant reduction in variance of user registration load, with
the LeastHole heuristic acting in an ideal manner. The CDF
algorithm ensures a minimum load on the HA that is very
close to the average load, and thus ensures that the hardware
is utilized well most of the time.

Table VI provides the extra run-time and extra registration
load caused by all these algorithms. The results are consistent
with our observations so far, in that, CDF results in negligible
added run-time and user registration load on the HA, unlike
the Hole and LeastHole algorithms.

Algorithm σ
Mean

Max
Mean

Run-time Ψ Extra Reg Φ
NoBalance 0.533 2.51 0 ms 0 %

Hole 0.017 1.16 2.25 ms 3.2 %
LeastHole 0.004 1.002 1.22 ms 4.4 %

CDF 0.030 1.198 0.005 ms 0.5 %

TABLE VI
PERFORMANCE: UNIFORM ARRIVALS, EXPONENTIAL LIFETIMES

7

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10000 20000 30000 40000 50000 60000

R
e

g
is

te
ri
n

g
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

NoBalance

Fig 5. NoBalance: Bursty Arrivals

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10000 20000 30000 40000 50000 60000

R
e

g
is

te
ri
n

g
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

Hole

Fig 6. Hole: Bursty Arrivals

C. Scaling behavior

We want to evaluate how well these algorithms scale to the
number of users. This is critical due to the increasing demand
for seamless mobility provisioning both in the cellular space
as well as the WLAN space.

We evaluate the CDF algorithm for variable number of
users, and find that the ratio of the standard deviation to the
mean is a constant for the CDF (as well as Hole and Least-
Hole) algorithm. This holds true for the ratio of the maximum
load to average load in any time window. In addition, the
increased user registration load (as a ratio compared to the

 0

 200

 400

 600

 800

 1000

 1200

 0 10000 20000 30000 40000 50000 60000

R
e

g
is

te
ri
n

g
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

LeastHole

Fig 7. LeastHole: Bursty Arrivals

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10000 20000 30000 40000 50000 60000

R
e

g
is

te
ri
n

g
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

CDF

Fig 8. CDF: Bursty Arrivals

NoBalance load) is also a constant for all three heuristics.

The main difference is in the additional run-time per time
slot as a result of the algorithm. Figure 9 shows the variation
of this metric with the number of users. We can see that the
CDF algorithm has negligible overhead even as the number
of users increases by a factor of 10. However, the Hole and
LeastHole heuristics have increasing run-time overheads that
are, while linear, increasing at a faster pace than the default
NoBalance scheme or the CDF scheme.

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8 9 10

A
d

d
it
io

n
a

l
ru

n
-t

im
e

 p
e

r
s
e

c
o
n

d
 (

in
 m

s
)

Number of users (in millions)

NoBalance
CDF
Hole

LeastHole

Fig 9. Scaling with Users

D. Robustness of CDF

There are two tuning parameters to the CDF algorithm: the
time-window T and the load-window R. The time-window,
T, for computing the average load is common to the three
algorithms being discussed, however, the load-window R is
used only for the CDF algorithm. We vary the value of R
and show the corresponding results in Table VII. Increasing
R does not improve our performance by much, but it also
leads to a huge increase in run-time. Therefore, it is desirable
to have a value of R = 10.

Algorithm R σ
Mean

Max
Mean

Run-time Ψ Extra Reg Φ
NoBalance 0.043 1.12 0 ms 0 %

CDF 10 0.022 1.046 0.05 ms 0.13 %
CDF 100 0.021 1.045 0.17 ms 0.18 %
CDF 1000 0.019 1.039 1.40 ms 0.5 %

TABLE VII
CHANGE IN LOAD WINDOW FOR CDF: POISSON ARRIVALS,

EXPONENTIAL LIFETIMES

CDF is also robust to the choice of T. None of the
performance metrics varies for CDF by noticeable margins
for T in the range of 30 minutes to 10 hours. On the other
hand, the Hole and LeastHole heuristics end up consuming a
lot of CPU cycles as T increases, since they have to check
for the load across the entire time window in the worst case.
This also results in a large number of additional registrations.
In the average case, the run-time scales linearly with T for
Hole and LeastHole.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10000 20000 30000 40000 50000 60000

R
e

g
is

te
ri
n

g
 U

s
e

rs
 (

p
e

r
s
e

c
o

n
d

)

Time

CDF

Fig 10. CDF: Arrivals and Departures

E. Arrivals and Departures

We have so far considered only users arriving at the HA.
We now show how the re-distribution works when users start
leaving the HA as well. We allow users to stay registered for
a variable time (uniformly chosen between 1 and 20 hours),
and see how the load changes for the CDF algorithm. We
show the results in Figure 10 for Poisson arrival process and
exponentially distributed lifetimes. As we can see, the system
adjusts to the departing users very well, without any dips or
spikes in the load. We have tested this for different departure
processes, and the results are pretty much the same.

To summarize the evaluation, the CDF algorithm offers very
good, but not perfect, performance in reducing the variance of
user registration load at the Home Agent. It does not require
any additional resources at the CPU and it also does not cause
users to register more than they have to. It should also be
noted again that the run-time and storage complexity for the
CDF algorithm is O(1) and does not vary with the number
of users.

VI. CONCLUSIONS

Mobility is becoming an increasing part of networked
lifestyle, and seamless mobility requires users to be anchored
at all times at a Home Agent or its equivalent device. In
addition to scaling the number of HAs based on demand, it
is imperative that we make better use of the deployed HAs
by ensuring that the user arrival process is a smooth one.
Regardless of how users first enter the system, we present the
CDF algorithm that ensures that the load is nearly constant at

9

HA. The proposed algorithm, if deployed, will reduce capital
and operational expenditures at network providers by reducing
the need for additional server capacity in order to meet the
vagaries of user arrival patterns. To the best of our knowledge,
this is the first such attempt to address such a problem, and
we demonstrate the efficacy of our solution through extensive
simulations.

REFERENCES

[1] GSM Consortium, “High Speed Packet Access (HSPA)”,
http://hspa.gsmworld.com, 2009.

[2] A.Calvagna, and G.D. Modica, “A User-centric Analysis of Vertical
Handovers”, ACM WMASH, 2004.

[3] C. Perkins, Ed. “IP Mobility Support for IPv4”, IETF RFC 3344, August
2002.

[4] Starent Networks, “ST40 Multimedia Core Platform”,
http://www.starentnetworks.com/en/st40.php, 2009.

[5] Cisco Networks, “Cisco Home Agent Redundancy and Load Balancing”,
Cisco IOS Mobile IP White Paper, 2005.

[6] R. Wakikawa, G. Valadon, and J. Murai, “Migrating home agents towards
internet-scale mobility deployments”, ACM CoNEXT, 2006.

[7] The FreeRadius Server Project, “ freeRadius”, http://freeradius.org.
[8] Wikipedia, “Mobile IP”, http://en.wikipedia.org/wiki/Mobile IP, 2009.
[9] G. Aggarwal, R. Motwani and A. Zhu, “The Load Rebalancing Problem”,

ACM SPAA, 2003.
[10] B. Godfrey et. al., “Load Balancing in Dynamic Structured P2P

Systems”, IEEE Infocom, 2004.
[11] R. Hsieh, et.al., “S-MIP: A Seamless Handoff Architecture for Mobile

IP”, IEEE Infocom, 2003.
[12] S. Sharma, I. Baek, T. Chiueh, “OmniCon: a Mobile IP-based vertical

handoff system for wireless LAN and GPRS links”, Software: Practice
and Experience, Wiley, 37(7), Nov. 2006.

[13] F.N. David, “The transformation of discrete variables”, Annals of
Human Genetics, 19 (3), Sep 2007.

