1038

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

Symmetric Convolution and the
Discrete Sine and Cosine Transforms

Stephen A. Martucci, Member, IEEE

Abstract—This paper discusses the use of symmetric convolution
and the discrete sine and cosine transforms (DST’s & DCT’s)
for general digital signal processing. The operation of symmetric
convolution is a formalized approach to convolving symmetrically
extended sequences. The result is the same as that obtained by
taking an inverse discrete trigonometric transform (DTT) of the
product of the forward DTT’s of those two sequences. There
are 16 members in the family of DTT’s. Each provides a repre-
sentation for a corresponding distinct type of symmetric-periodic
sequence. In this paper, we define symmetric convolution, relate
the DST’s and DCT’s to symmetric-periodic sequences, and then
use these principles to develop simple but powerful convolution-
multiplication properties for the entire family of DST’s and
DCT’s. Symmetric convolution can be used for discrete linear
filtering when the filter is symmetric or antisymmetric. The
filtering will be efficient because fast algorithms exist for all
versions of the DTT’s. Conventional linear convolution is possible
if we first zero-pad the input data. Symmetric convolution and
its fast implementation using DTT’s are now an alternative to
circular convolution and the DFT.

[. INTRODUCTION

HE discrete sine and cosine transforms (DST’s & DCT’s)

have received considerable attention lately because of
their predominant use in transform coding. The type-2 DCT
is at the core of emerging standards for image and video
compression, e.g., JPEG, H.261, and MPEG [13}-[3]. The type-
1 DST constitutes the basis of a technique called Recursive
Block Coding {4]. The type-4 DCT and type-4 DST are
both found in a fast implementation of Lapped Orthogonal
Transforms for coding [S].

It is well-known that the discrete Fourier transform (DFT)
possesses a convolution-multiplication property whereby a
circular convolution of two finite sequences can be computed
efficiently by means of a transform-domain multiplication.
Although the DST’s and DCT’s are related to the DFT, a gen-
eral way to use these transforms for performing convolution
has only recently been shown [6], [7]. Some earlier attempts
have been reported, but those results were awkward to use or
incomplete [8]-[10].

In this paper we show that simple but powerful convolution-
multiplication properties do exist for the entire family of
discrete trigonometric transforms (DTT’s). The convolution

Manuscript received May 10, 1992; revised June 2, 1993. The associate
editor coordinating the review of this paper and approving it for publication
was Prof. James Cooley. This work was supported in part by the Joint Services
Electronics Program under Contract DAAL-03-90-C-0004.

The author was with the School of Electrical Engineering, Georgia Institute
of Technology, Atlanta, GA , USA 30332. He is now with the David Sarnoff
Research Center, CN5300, Princeton, NJ, USA 08543-5300.

IEEE Log Number 9216665.

performed is a special type, to which we give the name sym-
metric convolution. The operation of symmetric convolution is
a formalized approach to convolving symmetrically extended
sequences. With proper zero-padding of one of the sequences,
symmetric convolution can be used to perform linear convo-
lution in much the same way that circular convolution can.
As we shall see, the theory that relates symmetric convolution
to the DTT’s parallels that which relates circular convolution
to the DFT.

We restrict the discussion in this paper to one-dimensional
sequences. Concepts also apply to higher-dimensional se-
quences except that points of symmetry would instead be lines,
planes, or hyperplanes of symmetry. We can use symmetric
convolution to implement both separable and nonseparable
multidimensional FIR filters; the only requirement is that
there must be symmetry in every dimension. Other FIR filters
can be accommodated if they are first decomposed into their
symmetric and antisymmetric parts.

The paper is organized as follows. In Section II, we
reintroduce the generalized discrete Fourier transform and
discuss some of its properties. Next, we define in Section
III the 16 members of the family of discrete trigonometric
transforms. We look at symmetric-periodic sequences and
the DTT’s in Section IV. We examine the subject of
convolution-multiplication properties for discrete transforms,
introduce symmetric convolution, and present the convolution-
multiplication properties for the DTT’s in Section V. Then, in
Section VI, we explain how to use symmetric convolution to
perform a type of discrete filtering. In Section VII, we show
how a symmetric convolution can be turned into a linear
convolution. In Section VIII, we review the earlier efforts
to find convolution-multiplication properties for the DTT’s.
We mention some applications for symmetric convolution and
the DTT’s in Section IX, and then give the conclusion in
Section X.

II. THE GENERALIZED DISCRETE FOURIER TRANSFORM
AND GENERALIZED-PERIODIC SEQUENCES

Throughout this paper we use calligraphic letters to denote
transform and other operators and some special sequences. We
define all transforms as matrices that left-multiply the input
sequence z(n) represented as a column vector x. If the support
of z(n)isn = 0,1,---,M — 1, then

x = [z(0) (1) --- z(M - 1)), (1

The discrete Fourier transform can be generalized to al-
low shifts in either or both indices. The resulting invertible

1053-587X/94$04.00 © 1994 IEEE

MARTUCCI: SYMMETRIC CONVOLUTION AND THE DISCRETE SINE AND COSINE TRANSFORMS

transform is called the generalized discrete Fourier transform
(GDFT) [11]. The entry at row m and column n of the GDFT
matrix of order M is given by

Gt = o0 (=i +) +1))

m,n=01--- M—-1 (2)

where a and b are real numbers.! The inverse GDFT matrix is
the scaled Hermitian transpose of the forward matrix.

For convenience in notation and interpretation, we assume
for the remainder of this section that inputs to forward trans-
forms are in the time domain and outputs are in the frequency
domain. Of interest to us are four special forms of the GDFT
that arise when a and b take on the values 0 or 1. With a = 0
and b = 0 the GDFT reduces to the normal DFT. Setting @ = 1
and b = 0 defines a DFT with a 1/2-sample advance in the
frequency domain, a version of the DFT previously reported
as the Odd DFT (ODFT) [12], [13], but which we prefer to
call the Odd Frequency DFT (OFDFT). A 1/2-sample delay
in the time domain occurs when ¢ = 0 and b = % giving
a version of the DFT we call the Odd Time DFT (OTDFT).
Both ¢ = 1 and b = 1 produces a form called the Odd-time
Odd-frequency DFT (O?DFT) [14]. These are the only forms
of the GDFT that we use in this paper.

The name Odd Frequency DFT comes from the following
observation: If the sequence X (m) is the length-M OFDFT
of the sequence z(n), then the samples of X (m) are the same
as the odd-indexed samples of the length-2A/ DFT of z’(n)
where 2’(n) is z(n) zero-padded on the right to length 2M.
A similar comment holds for the Inverse Odd Time DFT
(IOTDFT): If the sequence z(n) is the length-AM IOTDFT
of the sequence X (m), then the samples of z(n) are equal
to twice the odd-indexed samples of the length-2M IDFT of
X'(m) where X'(m) is X(m) zero-padded on the right to
length 2M.

The inverse matrices of these special forms of the GDFT
are related to the forward matrices in the following ways

[Q0,0] 11 = 1%[[go,o}z = % [go,o]* 3)
-1 1 .

Mﬂlzﬁpwtzﬁpw] g

[90s] = 57l00s] =gl @

-1 1 H 1 *

o] = wloa] =5l ©
where # denotes Hermitian transpose and * denotes complex
conjugation.

Each of the above four special forms of the length-M GDFT
defines representations for a length-M sequence as infinite
sequences that are periodic with period M both before and
after transformation. Here we are using the term periodic
in a general sense to describe sequences that are either
strictly periodic or antiperiodic. An antiperiodic sequence with
generalized period M satisfies

Za(n) = —z4(n+ M) for all n. (@)

! This definition for the GDFT swaps the parameters a and b as compared
to the definition in {11].

1039

Notice that z,(n) is antiperiodic with period M and strictly
periodic with period 2M/. The four possible combinations of
implicit periodicities before and after transformation and the
corresponding GDFT’s are summarized in Table 1. These four
special forms of the GDFT can be better understood by looking
at the periodic and antiperiodic sequences they represent. Some
important properties that we will need later are:

* The product of two strictly periodic sequences, both with
period M, is strictly periodic with period M.

¢ The product of two antiperiodic sequences, both with
period M, is strictly periodic with period M.

e The product of a strictly periodic sequence and an an-
tiperiodic sequence, both with period M, is antiperiodic
with period M.

* The result of the periodic convolution of two strictly
periodic sequences, both with period M, is a strictly
periodic sequence with period M. This property follows
directly from the definition for periodic convolution

M-1

> a(k)g(n — k)

k=0

M-1

=Y Gk)E(n - k) ®)

k=0

I(n)@g(n) =

where #(n) and §(n) are both strictly periodic with period

* The result of the periodic convolution of two antiperiodic
sequences, both with period M, is an antiperiodic se-
quence with period M. This property also follows from
(8) except that in this case Z(n) and §(n) are both
antiperiodic with period M.

¢ The periodic convolution of a strictly periodic sequence

and an antiperiodic sequence, both with period M, cannot

be computed according to (8). However, because both
sequences are also strictly periodic with period 2M, we
can compute their periodic convolution by performing the

summation over the period 2M. The result is always a

sequence of zeros.

The circular convolution of two length-M sequences that

have been defined over the same interval is equivalent

to the corresponding period of a periodic convolution
of strictly periodic sequences with period M. We can
compute the circular convolution of z(n) and y(n), n =

0,1,---,M — 1, from

2(n)©@y(n) = Y =(k)y(n - k)
= M-1
+ > alkyln—k+M). 9

k=n+1

* The skew-circular convolution of two length-M se-
quences that have been defined over the same interval
is equivalent to the corresponding period of a periodic
convolution of antiperiodic sequences with period M.
We can compute the skew-circular convolution of z(n)

1040

TABLE 1
PERIODICITY PROPERTIES OF GDFT’S
-1 Periodicity Periodicity
Gas Gas before transform | afier transform
Gou ,5 (IDFT) Goo (DFT) periodic periodic
g;_}, (IOFDFT) | G,; (OTDFT) periodic antiperiodic
‘;; (IOTDFT) | G;, (OFDFT) antiperiodic periodic
G;'ll (I0*DFT) QQ.* (O?DFT) antiperiodic antiperiodic
and y(n), n = 0,1,---,M — 1, from
n
2(n)@®y(n) =) w(k)y(n — k)
k=0
M-1
- Y w(k)y(n—k+M). (10)
k=n+1

III. THE DISCRETE TRIGONOMETRIC TRANSFORMS

The family of discrete trigonometric transforms comprises
eight versions of the discrete cosine transform and eight
versions of the discrete sine transform. These have been
categorized by Wang and are tabulated in [15]-[17]. Each
transform is identified as cosine or sine, even or odd, and type
1, 2, 3, or 4. The origins of these transforms can be found
in [18]-[23].

Every Wang matrix is orthogonal with entry at row m and
column n of the general form

[T4],,,, = Awi(m) wa(n)t(m,n).

(11)

mn

The term t(m, n) is the transform kernel. The term wq (m) is a
weighting function needed in some of the transforms to make
the column vectors orthogonal to one another. The weighting
function wo(n) is needed in some of the transforms to make
the row vectors orthogonal to one another. The scalar A is
a final multiplier that normalizes the rows and columns to
produce an orthogonal matrix.

We need to modify the Wang matrices to put them in a form
that better suits our needs. First, we recast-(11) as a product
of nonsingular square matrices

(7] = A[W1][T][We] (12
where [W;] and [W,] are diagonal matrices that left- and
right-multiply the kernel [T7], respectively. Next, because of
orthogonality, we can write '

AP (WA [T [Wa)[Wa)(T]T [WA] = (1] (13)
where [I] is the identity matrix. We factor A2 into A% = AfA,,
where Ay is not necessarily equal to A;, and associate Af
with the forward transform and A; with the inverse. Then, we
use the property that a nonsingular matrix commutes with its
inverse and rewrite (13) as

A [T)[Wa)[Wol A[T)T [Wh][Wh] = (1] (14)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5. MAY 1994

from which we derive the new forward and inverse transforms
[T] = As[T) W] (15)

[T71] = A1) (W] (16)

The entries at row m and column n of these new transforms are

[T} = Ap w3 (n)t(m, n)
[T, = A;wi(n)t(n,m).

a7y
(18)

mn

We call these new formulations for the discrete sine and
cosine transforms the convolution form of the transforms.
They can all be found in the appendix. When in convolution
form, the transform matrices. may no longer be orthogonal.
However, the relations that existed between each inverse
transform matrix and its own or another forward transform
matrix remain, but with a scaling factor. These relations are
also given in the appendix.

Our main reasons for redefining the trigonometric trans-
forms as we have done are to make the connection to the
GDFT, as defined in Section II, more direct and so that the
convolution-multiplication properties will not require any extra
scaling factors or weighting functions. These points will be
brought out in later sections. Also, note that the weighting
functions for both the forward and inverse transforms now only
right-multiply the matrix kernels. Therefore, the weights can
instead left-multiply the input data vector to each transform,
and the actual transform can be implemented without any
weights. Many of the available algorithms for computing the
DST and DCT also assume such a separation of the weighting
functions from the kernel of the transforms. For this reason,
fast algorithms that exist for computing the Wang forms of
the DTT’s can be used for these new forms as well. Notable
algorithms for the DTT’s can be found in [5], [7], [15], [17],
[241-[33].

Because the kernels ¢(m,n) in some of the transforms in
the appendix evaluate to zero for some values of the indices
m and n, we have specified the ranges for m and n to avoid
those values. Such an exclusive index range is therefore one
of the following: (a) 0,1,---,N; (b) 0.1,---,N — 1; (¢)
0,1,---,N—2;(d) 1,2,---,N;or (¢) 1,2,---,N — 1. For
consistency we use the term exclusive index range even for
those transforms that do not have terms that evaluate to zero.
Over the exclusive index ranges for its rows and columns each
transform matrix is square and invertible.

It is not necessary for the exclusive ranges for both m and n
for a particular transform to be the same. In the new definitions
for the sine transforms Sy, S3., S, S3,, and their inverses,
the exclusive ranges for m and n differ. To keep the input
and output index ranges the same, Wang modified the kernels
of these particular transforms. Specifically, the definitions for
SHE SHIE GUO. and SRIY given in [15], [16] contain the
term (m — %) or (n — 1) instead of the (m + 1) or (n + 1)
found in the other transforms. In the transform definitions in
the appendix, we have undone this modification; instead, we
allow different ranges for m and n. With this new formulation,
there is a direct link between all DTT’s and the GDFT. The
result is a consistent approach to symmetric convolution and
its implementation using DTT’s.

MARTUCCI: SYMMETRIC CONVOLUTION AND THE DISCRETE SINE AND COSINE TRANSFORMS

WA

HS HA
0 l I‘ £ 0 n 0 I‘ n

Examples of symmetry types in a sequence.

wS§s
0 n

Fig. 1.

IV. SYMMETRIC-PERIODIC SEQUENCES AND
THE DISCRETE TRIGONOMETRIC TRANSFORMS

A. Characteristics

A symmetric-periodic sequence (SPS) 1s an infinite sequence
that is both symmetric and periodic. Just as the special
forms of the GDFT provide representations for generalized-
periodic sequences, the various forms of the DTT’s represent
symmetric-periodic sequences. Any SPS can be written as a
linear combination of either only sine or only cosine sequences
since sine and cosine sequences are themselves symmetric-
periodic sequences. Therefore, to better understand the DTT’s,
we examine more closely the characteristics of SPS’s.

We can classify SPS’s according to the types of the sym-
metries found within the sequences. Symmetry within any
sequence must be of one of four types: whole-sample sym-
metry (WS), whole-sample antisymmetry (WA), half-sample
symmetry (HS), or half-sample antisymmetry (HA) [34]. The
meaning of the terms symmetry and antisymmetry should be
clear. The designations whole-sample and half-sample are new
terms that describe where that point of symmetry lies, either
coincident with one of the samples of the sequence or at a
theoretical half-sample half-way between two samples. The
symmetry in an odd-length symmetric sequence is either WS
or WA; in an even-length symmetric sequence it is either HS
or HA. We give an example finite sequence of each type in
Fig. 1.

If an infinite sequence has more than one point of symmetry,
then it has an infinite number of points of symmetry, it is
periodic, and it is an SPS. The entire sequence is symmetric
or antisymmetric about each of these points of symmetry. The
points of symmetry are either all of the same type or of two
different types. If the types are different, then they alternate
along the length of the SPS.

A finite sequence z(n) can be converted into an infinite
SPS by symmetrically extending at each end in one of the
above four possible ways and continuing that extension in-
definitely. The half-sample extensions are straightforward; the
whole-sample extensions require further discussion. When the
extension is WS, the new point of symmetry being created
is the corresponding endpoint of z(n). This sample is not
repeated in the extension. For the case of WA extension,
however, the point of symmetry must have the value zero.
In the most general case, neither of the endpoints of the
sequence z(n) is zero. Therefore, we assume that the point
of symmetry is one sample beyond the endpoint of z(n) and
putting the value zero there is part of the extension process. If
the sequence z(n) already has the value zero at an endpoint
and we do not want to repeat that point, then we must remove
that point before we perform the extension.

1041

Four choices for extension at each of two endpoints means
that a total of 16 distinct SPS’s can be created. There is a one-
to-one correspondence between each type of SPS and each
type of DTT. However, if these 16 sequences are derived
from the same finite sequence, not all of the corresponding
transforms are members of the same family. We will have
more to say about this later.

Within an SPS there is a finite subsequence of samples
that can be used to generate all other samples. We call these
the representative samples. For an SPS with K representative
samples, it is not true that any arbitrary subsequence of K
consecutive samples of the SPS contains all K representative
samples. We therefore find it necessary to make a precise
definition of the base period of an SPS and of where the
representative samples lie within the base period. We call this
the standard form of the symmetric-periodic sequence.

The base period of an SPS in standard form is the interval
n = 0,1,---,M — 1, where M is the generalized period.
We assume that this M is the smallest possible period for
the sequence. There are three possibilities for the number of
representative samples: N —1, N, or N + 1, where the relation
of M to N is either M = 2N or M = 2N — 1. The index
range of the representative samples is one of the following:
(01,---,N;(®0,1,---,N -1, (¢) 0,1,---,N — 2; (d)
1,2,---,Njor (e) 1,2,---,N — 1. There are two points of
symmetry (POS’s) associated with the base period, a left point
of symmetry (LPOS) and a right point of symmetry (RPOS),
and between them lie the representative samples. At each POS
we find one of the four previously defined types of symmetry:
WS, WA, HS, or HA. By definition, only when the symmetry
is WS is the sample at a point of symmetry included as one
of the representative samples.

A pair of symmetry types in conjunction with the repre-
sentative samples is sufficient to fully specify an SPS. We can
therefore name each SPS as the concatenation of the mnemonic-
for the LPOS with that for the RPOS, e.g.,, WSWS, HAHA,
WAHS, etc. Equivalently, we can classify the SPS’s by the
type of the generating DST or DCT (or inverse) for each.

We can think of an SPS as the infinite-length represen-
tation of its representative samples, or we can say that the
representative samples together with the type of the LPOS
and the RPOS are a finite-length representation of the infinite
SPS. As is true of any infinite sequence, an SPS has a
representative length equal to the minimum number of samples
needed to represent the entire sequence; those samples are the
representative samples. The representative samples of an SPS
are the same as the samples of the finite sequence from which
the SPS could have been created.

In Table IT we give a number of important characteristics of
the 16 types of SPS’s in standard form and their corresponding
DTT’s. These data is repeated in Table III, but grouped
differently. A dominant element in the tables is the parameter
N. A common value of N defines a complete family of 16
SPS’s and thus a complete family of 16 DTT’s. The periodicity
M of the SPS’s is derived from this N; either M = 2N or
M = 2N —1. The two possibilities for M divides the family of
DTT’s into two groups: the eight even DTT’s and the eight odd
DTT’s. Each DTT is fully specified by its N, M, trigonometric

1042
TABLE 11
CHARACTERISTICS OF DTT's AND SPS’s, CONVOLUTION DOMAIN
77| SPS |length | index range | LPOS| RPOS |PorA b
Cil | WSWS | N+1|0-N 0 N P Goa
S| WAWA [N-1|1-N-1] o* N* P | -iGsA
Ci'! | HSHS | N [0—N-1 | -1 N-1 P u—_;
S |HAHA| N [0->N-1 | -1 N-1 P —jG‘;;
Ci' |WSWA| N |o-N-1]| 0 N* A Sro
S| waws | N 1-N 0* N A - jg;})
CJ|HSHA | N |0-N-1 | -3 N-1 A g;_‘é
S. | HAHS | N |0-N-1 | -} N-} A | -iG)
Ci) |WSHS | N |0—-N-1 0 N-1 P Gia
S |[WAHA [N -1|1-N-1 0* | N-1 P -iGeh
Co |HSWS | N |[0-N-1| -1 N-1 P od
Sl | HAWA | N-1(0-N-2 | -1 N-1v| P |-Gt
Ci) |[WSHA| N |0 N-1 0 N-3 A (%3
Sit | WAHS [N-1 |15 N -1 0o* -1 A -jG;v})
Cid | HSWA [N -1|0—-N-2 | -1 N—-1%| A (7%
So | HAWS | N [0 N-1 | -1 N-1 A -jg;“}
TABLE III
CHARACTERISTICS OF DTT’s AND SPS’s, MULTIPLICATION DOMAIN
T SPS | length | index range | LPOS RPOS [PorA| G,
C,. | WSWS [N+1{0-N 0 N P Goo
Sy | WAWA [N-1{1=N-1 0* N* P | 5Goo
Cp |[WSWA| N {0-N-1 0 N* A Goy
Sy | WAWS [N 11N 0* N A |G,
Cy | HSHS | N |0=N-1 | -1 N-3 P G0
S |HAHA [N [0~N-1 | -} N-1% PG,
Co |HSHA | N [0—N-1 | -4 N-1} A 7%
S | HAHS | N |0—=N-1 | -1 N-1 A |6,
¢, | WSHS N J0o-N-1 0 N-} P Goo
So| WAHA [N -1 1N -1 0* | N-1 P | iGoo
Cpo | WSHA | N |0 N -1 0 N-3 A o4
S| WAHS | N-1{1-N -1 o* | N-1 A |G,
Cyu |HSWS | N |0—N-1 | -} N-1 P 7%
S3 | HAWA | N-1 [0 N-2 | -} N-1* P %0
Co|HSWA [N-1(0N-2| -} N-1*| A Gis
S, { HAWS | N 0> N-1 | -1 N-1 A |G,

function, and type number. The type number is 1, 2, 3, or
4. The actual value of this parameter is not significant; its
purpose is just to classify the transforms. However, there are
some similarities between transforms sharing the same type
number.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

Cit, Cre G, Cae ¢ Ca Cil Ce
WSWS HSHS WSWA HSHA
(N+1) (W)) ()

T 1 1= T 1 1n 1 n t n

0 N M-1 0 N M1 II] II I[[} 11
S e Sz, Sz 83, Sz S S
WAWA HAHA WAWS HAHS
V-1 N) (N) (N)

IS [I‘g °n T 1t 1= tin

0 0 0 N M-l 0N M-1
iy G iy Ca [€ C
WSHS HSWS WSHA HSWA

(V) (M) (N) (N-1)

T 11n T 1tn D I 1 In 3] T ¥ n

0 NM-1 0 N M-1 [0
Sias S1o S3a'» Sao 832 a0 S Si
WAHA HAWA WAHS HAWS
(N-1) N-1) N-1) (N)

1 n [37n ! 110 f1n
lIo II [} 0 N M-1 0 NM-1

Fig. 2. Example plots showing symmetries of SPS’s and DTT’s. All SPS’s

are in standard form with N = 4. The representative samples for each SPS are
marked by open circles and the representative length is given in parentheses.
The SPS’s are grouped into convolution classes appropriate for the convolution
domain; symmetric convolution is possible only between SPS’s within the
same class.

Example plots for each of the 16 SPS’s and corresponding
DTT’s are in Fig. 2. These sequences are in standard form and
share a common value of N = 4. All plots cover the index
range n = —M,---, M — 1. The SPS’s are all periodic with
period 2M and either periodic or antiperiodic with generalized
period M where M = 8 for the upper eight plots and M =7
for the lower eight. The representative samples for each SPS
are marked by open circles and the representative length given
in parentheses.

For each entry in Tables IT and III we list a DTT or its
inverse, an SPS, a length, and an index range. The length
is the representative length. The range is the index range
of the representative samples of the SPS in standard form
and is the same as the exclusive output index range of the
corresponding DTT. We also give the index of the left point
of symmetry (LPOS) and of the right point of symmetry
(RPOS). An asterisk indicates that the sample at that point
of symmetry must have the value zero because the symmetry
there is WA.

A symmetric-periodic sequence is generalized-periodic with
period M. Therefore, we also show in the tables whether each
SPS is periodic or antiperiodic. Knowledge of the periodicity
type enables us to use another method for converting a finite
sequence into an SPS. Instead of symmetrically extending the
finite sequence at both ends we can extend it symmetrically
on the right just far enough to specify all values of the base
period. In a few cases we may also have to append the value
zero at the left. Then we either periodically or antiperiodically
extend this base period according to the periodicity type of
the SPS.

MARTUCCI: SYMMETRIC CONVOLUTION AND THE DISCRETE SINE AND COSINE TRANSFORMS

B. Relationship to Generalized Discrete Fourier Transform

Because they are symmetric and periodic, all SPS’s have
a representation in terms of the DTT’s. Because they are
generalized-periodic, all SPS’s have an alternative represen-
tation in terms of the GDFT. It is not difficult to show that
the identical SPS can be generated either from a DTT of a
given finite sequence or from the corresponding GDFT of
that sequence after it has been symmetrically extended to a
base period. This extension is done in accordance with the
symmetries associated with the inverse of the DTT.

As an example, given the finite sequence z(n),n =
0,1,---, N — 1, we can produce an SPS that is WSWA with
period M = 2N by computing Cs. of z(n) for all integer
values of its output index. Alternatively, we can use the
symmetric extension operator &, of Table IV to do an HS
extension on the right of x:(n) creating &(n),n = 0,1,---,2N.
We then compute Gy 1 of #(n) with an infinite output
index range. These two SPS’s are identical. As a matrix
equation, from X we can generate any L terms of the
WSWA-SPS v by

o= o] = e

where v is L x 1, [goy%] is L x 2N, [Ensus] is 2N x N,
[Cae] is L x N, x is N x 1, and L is any positive integer. We
assume that all index ranges are compatible.

Equation (19) follows from the relationship between Co,
and G, 1 that can be derived by manipulating the matrices as
follows

(19)

[go,%][é'ﬁsns] = {exP (—]%ﬁ-%)>} 1

= [exp (—j W—“—m(z—l— %))
am(2N —1—n+ %))]

+exp (‘] N

= [2c0s (%ﬁﬂ

=[C2e} m’n:O,lf",N—l'

Following this pattern, we can prove that all DST’s and DCT’s
can be defined directly in terms of their corresponding GDFT
as given in the last column of Tables II and III.

V. CONVOLUTION-MULTIPLICATION PROPERTIES

Discrete convolution is a fundamental operation for digital
signal processing. Let 7 be an invertible transform from
one domain to another. Convolution is performed in one
domain, referred to as the convolution domain; element-by-
element multiplication in the other, the multiplication domain.
We assume that the forward transform takes us from the

1043

convolution domain to the multiplication domain, and the
inverse transform takes us back. The essence of a convolution-
multiplication property is that the inverse transform after
element-by-element multiplication gives the same result as the
convolution of the original sequences. As an equation

2(n) « y(n) = T Tofa(m)} x Tfy(n)}}

where ‘x’ is the convolution operator and ‘x’ denotes element-
by-element multiplication of its operands. The notation
T{z(n)} tells us to take the specified transform of the
sequence z(n). It is, of course, possible to swap the usage
of the forward and inverse transforms; in that case, an extra
scaling factor may be required in the above equation.

For a convolution-multiplication property to hold we must
specify the proper definitions of the convolution operator and
of the transforms 7, 7;, and 7,7 !. For example, (20) holds
when the convolution performed is circular, 7, and 7, are
the DFT, and 7_7! is the IDFT. Although in this example all
transforms are the same, it is not mandatory that they be so.
We can also satisfy (20) by specifying the appropriate mix of
GDFT’s and either circular or skew-circular convolution. To
establish convolution-multiplication properties for the DTT’s,
we must define a special type of convolution, which we call
symmetric convolution. We also must determine the proper mix
of specific types of DST’s and DCT’s.

(20)

A. Circular and Skew-Circular Convolution

First we look at the GDFT. Let u(n) = z(n)©y(n) and
w(n) = x(n)® y(n) as defined by (9) and (10), respec-
tively. Then, the following convolution-multiplication prop-
erties hold:

u(n) = G5 {Goo{z(m)} x Guofy(m)}} @D
u(m) = G5 1{Go 1 (2} x Goolu(m}} @
u(n = 1) = G54 {Go 1 (z(m} x Go 3 {y(m)}} 23
w(n) = 671{Gy olzm)} x Gy oly(mt} @)
w(n) = 67, {0} 4 {a(m)} x Gy oly(m}} 25)
win 1) =674 {G; 4 {o(m)} x Gy 4 v}) 26)

where the implied periodicity of u(n) is periodic and that
of w(n) is antiperiodic. We use these implied periodicities to
evaluate the delayed sequences u(n—1) and w(n—1) atn = 0.
Notice the mix of transform types in some of the expressions.
Equation (21) is well-known. Equation (24) was first reported
in [12]. The remaining equations are new. These properties
follow in a straightforward way from the definitions for the
GDFT and the properties given in Section II.

B. Symmetric Convolution

In order to present convolution-multiplication properties for
the DTT’s, we must first give a precise definition of symmetric
convolution. Symmetric convolution is both the convolution
of SPS’s and the convolution of the finite sequences those

1044

SPS’s represent. The finite inputs to symmetric convolution
are the representative samples of SPS’s in standard form. The
finite output from symmetric convolution is the sequence of
representative samples of an SPS either in standard form or in
standard form advanced by one sample depending on the type
of the symmetric convolution.? All these SPS’s share the same
M and N, but their representative lengths may differ because
those vary according to SPS type.

To express the generic symmetric convolution of the finite
sequences z(n) and y(n) we introduce the notation

w(n) = z(n) <Se>y(n). 27
The notation can be made more specific by including within
the operator a designation for the type of symmetric convolu-
tion being performed.

We can define symmetric convolution in terms of a conven-
tional convolution sum that has been suitably modified to in-
corporate the implied symmetric extensions to both operands.
An alternative but equivalent formulation is as the windowed
circular or skew-circular convolution of the inputs z(n) and
y(n) after their symmetric extension to a base period. A third
equivalent means is as the inverse trigonometric transform of
the element-by-element product of the forward trigonometric
transforms of the inputs z(n) and y(n).

If we want to define symmetric convolution as a direct
convolution sum, we must give a different equation for each
type. Each equation would contain four summation terms. We
can avoid this complexity by defining symmetric convolution
in terms of the well-understood circular and skew-circular
forms of convolution. This approach leads to the following
general expression for computing (27) as a convolution

w(n) = (&afa(m)} © E{y(n)}) Ru(n). @8)

We can also compute w(n) using transforms according to

w(n —no) = T T{e(m)} x Tofy(m)}). 29)

For each type of symmetric convolution we must precisely
define the meaning of the operators and symbols in (28)
and (29). The convolution operator ‘®’ denotes a length-AM
circular ((©) or skew-circular (@) convolution. £, and &, are
the symmetric extension operators applied to z(n) and y(n),
respectively. Definitions for these operators are given in Tables
IV and V. Each operator converts a finite sequence into a
length-M standard form base period of the specified SPS type.
7, and T, are the corresponding DTT’s we take of z(n) and
y(n), respectively. 7,7! is the appropriate inverse transform.
These DTT'’s are as defined in the appendix.

The result of symmetric convolution is a sequence of
representative samples of an SPS. The purpose of the length-K
rectangular window Ry (n) is to extract those representative
samples out of the base period. There are two possibilities for
the no in (29). When the symmetric convolution is a type that
produces an SPS in standard form, ny = 0. For those types
of symmetric convolution whose output is an SPS in standard

This is a slight change from an earlier definition given in [6].

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

TABLE 1V
SYMMETRIC EXTENSION OPERATORS AND IMPLIED PERIODICITIES, A = 2.V
£ Z(n) = € {z(n)} Por A
PR z(n) n=0,1,...,N
WSWS ’(")‘{ (M-n) n=N41,..M-1 | P
0 n=10
PO z(n) n=12,..N-1
WAWA | Em)=4q ¢ no N P
—z(M —n) n=N+1,....M-1
arcy z(n) n=0,1,...,N~1
HSHS z(n)—{ z(M-1-n) n=N,... ,M-1 P
oy z(n) n=0,1,...,.N~1
HAHA z(“)_{—z(M—-]—n) n=N,...,.M-1 P
z(n) n=0,1,...,N-1
WSWA | Z(n)= n=N A
-z(M - n) n=N+1,...M-1
0 n
WAWS | £(n)={ z(n) n=1,2,...,N A
(M —n) n=N+1,....M-1
PR z(n) n=0,1,...,N-1
HSHA x(n)_{-z(M~l—n) n=N,.. M-1 A
P z(n) n=0,1,...,N-1
HAHS ’(")‘{ 2(M-1-n) n=N,. M-1 A
TABLE V
SYMMETRIC EXTENSION OPERATORS AND IMPLIED PERIODICITIES, M = 2N — 1
£ Z(n) = £ {z(n)} PorA
i PV z(n) n=0,1,...,N-1
WSHS ’(")‘{ “M-n) n=N.. M-1 P
0 n=0
WAHA | Z(n) = z(n) n=12...,N-1 P
-z(M - n) a=N,... ,M-1
PR z(n) n=0,1,...,N-1
HSWS ’(")‘{ o(M-1-7n) n=N,.. M-1 P
z(n) n=0,1,...,N-2
HAWA | #(n)={ o n=N-1 P
—z(M=1-n) n=N,... M-1
YIRS z(n) n=0,1,..,N-1
WSHA I(")_{—I(M—n) a=N,.. M-1 A
0 n=0
WAHS | #(n) = z(n) n=12...,N-1 A
(M - n) n=N,... M-1
z(n) n=0,1,...,N-2
HSWA | Z(n) = 0 n=N-1 A
: -z(M~-1-n) n=N,...,.M-1
ary z(n) n=01,...,N-1
HAWS ‘(")‘{ a(M—-1-n) n=N, . M-1 A

form advanced by one sample, Ry (n) extracts those one-
sample-advanced representative samples, and ny = 1. From
the inverse transform we get an index range that has not been
shifted; this output is equal to w(n — 1), the delayed result of
the symmetric convolution.

Symmetric convolution is only possible between pairs of
SPS’s for which the convolution in (28) can be computed.
The two SPS operands must have the same period and both

MARTUCCIL: SYMMETRIC CONVOLUTION AND THE DISCRETE SINE AND COSINE TRANSFORMS

1045

TABLE VI
20 orF THE 40 TYPES OF SYMMETRIC CONVOLUTION, M = 2N

<> [[O [o T i | 0| < | T
<wswsS,wsws> | WSWS | © {0 — N 0= N 0—N 0 | <creSce> [€
<wswsScwawa> | WAWA | © |0 — N 1-N-1| 15 N~1| 0| <cielse> [St
<wawAS wawA> | WSWS ([© [1-N-1|1-N-1] 0—N <sie§sie> | —Cpt
<ususSewsws> | HSHS |©Q |0+ N-1|0—> N 0->N-1|0 |<aae>| 3}
<ususSwawa> | HAHA [© |0 N-1|1-N-1]| 0-5N-1| 0 | <cafese> | S}
<wauaSowsws> | HAHA | @ |0 N~1{0— N 0 N-1]0 | <saefeoe> | S!
<mmS§wiwa> | BSHS |@© [0 N-1|1-N—-1| 0> N—-1| 0 | <szeSsie> | ~C3!
<wsusrsns> | WSWS [@© |0 N -1 |05 N-1|-15N-1] 1 | <eacze> | ¢
<ususScuaa> | WAWA | @ |0 N-1{0-5N-1| 0> N-2| 1 [<caSsae> | 872
<maSuama> | WSWS | @ {0 N—-1{0->N-1[-1-N-1| 1 [<saSs> | ¢
<wswawswa> | WSWA [@ [0 N 110 N-1| 0-N-1| 0 | <caefes> | ¢3!
<wswaSiwaws> | WAWS (@ {0 N-1]|1-> N 1-N 0 | <coeSsae> | St
<wawsScwaws> | WSWA (@ [1 N 1= N 0o N-1|0 [<sseSsa> | ~C3!
<wsiafwswa> | HSHA | @ {0 N-1|0-N-1| 0> N-1] 0 [<cefen> | €7
<usuaSwaws> | HAHS (@ [0 N-1]|1-> N 0> N -1 0| <cteSesae> | St
<usus§wswa> | HABS [@ [0 N 1[0 N-1| 05 N-1|0 | <seScn> | 83!
<tausSgwaws> | HSHA (@ [0 N-1]1-N 0o N—-1| 0| <steSsse> | —Ct
<usagnsa> [WSWA [@ |0 N-1]0-N-1|-15N-2]1 | <cufce>| C3!
<usHA S uans> | WAWS [® [0 N-1|0-N-1] 0-N-1 <cteSesae> | 837
<Hansans> | WSWA | @ [0 N-1]0-N-1|-15N-2] 1 | <ste§see> | —C;!

of them must be periodic or both antiperiodic. Accordingly,
we have grouped the SPS’s in Table II and Fig. 2 into
four classes, called convolution classes, of four SPS’s each.
We can convolve any pair of SPS’s within a class but not
between classes. The SPS result is also a member of that
same class. The type of the SPS result can be ascertained
from the symmetries of the operands or from the equivalent
GDFT’s and their convolution-multiplication properties. We
discuss this further in Section VI.

There are 64 possible convolutions, 16 per class. Symmetric
convolution is an ordered operation, we can reverse the
operator if we swap the operands. For example, the symmetric
convolution z(n) <HSHS%WAWA> y(n) is the same as y(n) <
wawa%: HsHS > z(n). After removing such redundancies, we
are left with 40 distinct types of symmetric convolution. Tables
VI and VII list all 40 types of symmetric convolution along
with the corresponding parameters for (28) and (29). The name
for each type of symmetric convolution identifies the implied
symmetric extensions applied to its operands. An alternative
but equivalent name identifies the types of the DTT’s to take.
The tables also show the SPS type of the result, all index
ranges, and the appropriate inverse DTT. The output index
ranges listed are those that result from performing symmetric
convolution according to (28). If (29) is used, then for those
entries where ng = 1, the index ranges for the outputs from the

inverse DTT’s differ by one sample from those listed. Finally,
it is important to notice that the lengths of the two sequences
being convolved and of the resulting sequence may not all be
the same.

C. Symmetric Convolution Using Discrete
Trigonometric Transforms

Symmetric convolution is the convolution mode of the
DTT’s. We can efficiently compute symmetric convolution by
taking an inverse DTT of the element-by-element product of
the forward DTT’s of the inputs. We must use the appropriate
DST or DCT for each type of symmetric convolution. The
DTT whose inverse corresponds to the desired implied sym-
metric extension of a symmetric convolution operand is the
DTT whose forward version we take of that operand.

Table IIT is organized around the forward transforms. We
can use that table to ascertain which DTT’s can be multiplied
together and which inverse transform to use. A property of
SPS’s that we use here is that the product of two SPS’s with
a common period is also an SPS with this same period if
and only if they all have the-same LPOS and the same RPOS.
Referring to Table III this means that a necessary condition for
(29) to hold is that the three forward transforms 7, 7;, and
7. share the same LPOS and the same RPOS. Accordingly,

1046 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994
TABLE VII
20 oF THE 40 TYPES OF SYMMETRIC CONVOLUTION, A = 2N -1

ko |y O [][] <o | %
<wshsSwsts> | WSHS [© 0> N=1[0—-N-1| 0 N—-1|0 | <cwseon>| Cit
<wsuswana> | WAHA | @ [0 N -1|1oN~1| 15 N-1| 0 | <cre§se> | St
<wamaS,wanA> | WSHS [© 1= N-1|1-N-1| 0> N-1] 0 | <swSse> | —Cy!
<uswsSwsus> | HSWS [© |0 N -1|0-N-1| 0 N-1| 0 [<cmfon>| €3l
<nswsSowana> | HAWA [©@ [0 N -1 |15 N-1{ 05 N-2| 0 | <czogso> | ;!
<uawaScwsis> | HAWA [©@ [0 N—-2[0-N-1| 0-oN-2| 0 [<snce> | ;1
<uawaSowama> | HSWS | © [0 >N -2 (15 N-1| 0> N-1| 0 | <s2e§s1e> | —C52
<HswsSehsws> | WSHS [© [0 N-1{0-sN-1|-1-N-2|1 | <c§o> | €2
<uswsScuawa> | WAHA [©@ |[0>N-1]0>N-2| 0 N-2 <cawsw> | Spl
<uawaSoawa> | WSHS | @ |05 N =2 |0 N=-2| -1 N-2| 1 | <sSs2> [€7}
<wsnaS.wsia> | WSHA | @ | 0> N=1]0->N—-1| 0> N-1| 0 | <cseSc> | €3}
<wsHAScwars> | WAHS [® |0 N—-1|15>N-1| 1oN-1| 0| <csofsse> | S5}
<wans§wans> | WSHA [@ |1 >N -1 |15 N-1| 0 N-1| 0 | <seSss> | —C3}
<uswaSgwsua> | HSWA | ©® |05 N -2 [0> N-1| 05 N-2[0 | <cwSeen> | €71
<HswaSwans> | HAWS |® |0 N -2 |15 N-1} 05 N-1]0 | <cogse> | S
<HawsScwsua> | HAWS [@ |0 >N -1|0>N—-1| 0->N-1] 0 | <sofca> | St
<uaws§wans> | HSWA [@ |0 N—-1{1-5N-1| 0> N—-2| 0 | <stoSss> [-C}
<nswaSuswa> | WSHA [@ [0 >N -2 |05 N -2 -1 N -2 1 | <croSeowe> | €31
<uswaSchaws> | WAHS | @ [0 N-2[0-N—-1| 05 N-2] 1 | <ceo$se> | 83}
<uawsScuaws> | WSHA | @ [0 N -1 (0> N-1|-1-N-2| 1 | <stuSswe> | —C;}

we have grouped the entries in Table III by LPOS and RPOS
to again form four convolution classes. We can multiply any
pair of transforms within a class but not between classes. The
appropriate inverse transform is that whose forward transform
is a member of that same class. Note that we must be careful
about the index ranges when using the DTT’s to perform
symmetric convolution. In particular, we must align the indices
correctly and supply any missing zeros for the multiplication
and for the inverse transforms, if needed.

Because of the equivalence between each of the DTT’s and
its corresponding special form of the GDFT, the convolution-
multiplication properties of the DTT’s must follow those of
the GDFT’s. The computation of each type of symmetric
convolution using DTT’s can be easily proven by making
direct reference to the convolution-multiplication properties
for the GDFT’s we give in (21)—(26) and to the definition of
symmetric convolution in terms of a circular or skew-circular
convolution of symmetrically extended inputs.

As an example, if we multiply the output from Cy. by
the output from another Cs,, this is equivalent to multiplying
the output from one G, 1 with that from another, where we
are assuming that the input to each QO’% is a symmetrically
extended version of the input to each Cy.. According to (23)
the inverse GDFT is g(i é. Therefore, the correct inverse DTT
must be Cl_gl. As another example, if we multiply the output

from Cs. by that from S;. we use (22) to determine that in
this case the correct inverse transform must be Sj.*.

VI. DISCRETE FILTERING USING SYMMETRIC CONVOLUTION

Symmetric convolution provides a systematic way to con- .
volve symmetric FIR filters with symmetrically extended data.
The symmetric convolution of two finite sequences is equiv-
alent to symmetrically extending one sequence on the left in
one of four ways, extending the other sequence symmetrically
at both ends in one of 16 ways, and then linearly convolving
them to produce an appropriate finite output sequence. The
different types of symmetric convolution imply different types
of symmetric extension for those sequences.

How we choose to interpret symmetric convolution as a
filtering operation depends on which of its two operands we
consider to be filtering the other. We can view either of the
operands to symmetric convolution as a filter-right-half that,
after implicit left-sided symmetric extension, becomes one of
the four types of linear phase FIR filters: WS, WA, HS, or HA,
where the WS and WA filters are implemented as zero-phase
and the HS and HA filters are implemented as 1/2-sample
advance. In order for this interpretation of the one operand
as a linear phase FIR filter to be valid, the length L of the
effective filter must satisfy L < M, where M is the period of
the SPS’s being convolved. The other operand to symmetric

MARTUCCI: SYMMETRIC CONVOLUTION AND THE DISCRETE SINE AND COSINE TRANSFORMS

TABLE VIII
CONVOLUTION OF SYMMETRIC SEQUENCES

Symmetry Symmetry after filtering with:
before filtering WS WA HS HA
of af of op df

convolution, which is implicitly extended symmetrically at
both ends, is considered to be the data being filtered. The two-
sided extension of the data provides smooth boundary values
for filtering near its original endpoints. From the length of the
data sequence we derive the parameter N and the period M for
the symmetric convolution operation. There is also an implicit
right-sided extension associated with the filter-right-half but
its only purpose is for compatibility with the extensions for
the data.

As stated earlier, we have grouped the plots of Fig. 2 and
the entries in Table II into classes each containing four SPS’s
that are compatible for symmetric convolution. Each of those
SPS’s corresponds to one of the four types of linear phase
FIR filters as determined by the LPOS of the SPS. There is
exactly one occurrence of each type of filter in each class.
Thus, we can always find in each class any one of the four
linear phase FIR filters that we may need. In order to filter a
sequence using symmetric convolution, we first choose an SPS
representation for the data as appropriate for how we want to
handle the boundary conditions. Within the convolution class
for that SPS we then find the SPS that corresponds to the
filter. The type of symmetric convolution we perform is the
one that is appropriate for those two SPS types. The result of
the convolution is also in that same class.

The SPS type of the result of a symmetric convolution is a
consequence of the filter symmetry and the implied extensions
for the data. Filtering an SPS with a symmetric filter produces
another SPS, but each point of symmetry changes as shown
in Table VIII. In the table, o stands for either ‘W’ (whole)
or ‘H’ (half), and o’ is the opposite; 8 stands for either ‘S’
(symmetric) or ‘A’ (antisymmetric) and (' is the opposite. As
examples, filtering an HSHS-SPS with an HS filter produces
a WSWS-SPS, and filtering a WSHA-SPS with a WA filter
yields a WAHS-SPS. We can use the table to determine for
each type of symmetric convolution what would be the output
SPS type as we have listed in Tables VI and VII.

We give some filtering examples in Figs. 3 and 4, and
discuss them here. Our first example uses an even-length
symmetric filter. Let h(n) be an L-tap HS filter spanning the
interval n = —L/2,---,L/2 — 1 through which we pass the
data sequence z(n), n =0,---, N — 1. Suppose we want HS
extensions at both ends of z(n). The output from this filter
can be computed from

L/2—-1
w(n)= Y. h(k)i(n—k)
k=-L/2
n=-1,0,---,N—1 (30)

where #(n) is z(n) after being HS extended at both ends to
the extent needed for performing the summation. The output
sequence w(n) is one sample longer than the input z(n)

1047

z(n) <HSHS S HSHS D> h*(n)

I I [<265 C2e>
1 T n 1 n w(n)
0 N-1 0 H II
Z(n) * h(n) I' NI-I n
1 i) n I 1 n
[] N-1 0

Fig. 3. Example showing how the same w(n) results from a symmetric
convolution as from a linear convolution of symmetrically extended inputs.
For this type of symmetric convolution, #(n) and h(n) are subsequences
of HSHS SPS’s, and the samples of w(n) are the one-sample-advanced
representative samples of a WSWS-SPS.

z(n) <HSHS S, WAWA > h'(n)
I I [<C3e% 310>
‘1; Nt— . n [t) n w(n)
(n) * h(n))I' B n
. 0
oo " &8 [

Fig. 4. Example showing how the same w(n) results from a symmetric
convolution as from a linear convolution of symmetrically extended inputs.
For this type of symmetric convolution, &(n) and h(n) are subsequences
of HSHS and WAWA SPS’s, respectively, and the samples of w(n) are the
representative samples of a HAHA-SPS.

because of the HS extensions to z(n) and the 1/2-sample
advance of the filter h(n).

To use symmetric convolution, we first define the filter-
right-half by

W) = {h(on)

where L/2 < N. The appropriate type of symmetric convo-
lution is

n=0,1,--,L/2—1

n=L2--,N-1 (31

w(n) = x(n) <usHsEHSHS> h'(n)

= z(n)<ceHcee>h"(n). 32)
We can perform the above operation by using circular convo-
lution and (28) or by using DTT’s and (29). With the correct
choice of transforms, the latter equation becomes

w(n - 1) = Ci {Caefw(n)} X Caoo (W (n)} }.

When using the DTT’s we must pay special attention to the
indices of the transforms in order for the above equation to
be valid. To be specific, each Cq. is N-point with input and
output index ranges 0, 1,---, N — 1. We multiply their outputs
over that same index range. We put a zero at index N and
take an (N + 1)-point Cl“el with input and output index ranges
0,1,---, N. The extra value needed at index N for the input
to the C;.! is set to zero because we know that that is what
the Co. would have generated there.

(33)

1048

In our second example we let L be odd and h(n) be an L-tap
WA filter spanning the intervaln = —(L—1)/2,---,(L-1)/2.
We use the same z(n) as in the previous example. The
convolution we want is given by

(L-1)/2

>

k=—(L—1)/2

h(k)E(n — k)

w(n) =

n=0,1,---,N—-1 (34

where Z(n) is also as before. Here the filter is zero-phase so

the output w(n) is the same length as the input z(n).
Because h(n) is WA, we omit the zero at 2(0) and make

the assignment

B (n) = {h(n) n=1,2-,(L-1)/2

0 n=(L+1)/2---N-1

where (L — 1)/2 < (N — 1). The symmetric convolution is

w(n) = z(n) <usHsEwawa> h"(n)

= z(n)<c2e$s1e>h"(n). (36)

We can perform this convolution efficiently using DTT’s
according to

w(n) = s,;;{c%{x(n)} x Slg{hr(n)}}. 37)

In this example we must be particularly careful about the index

ranges. The input and output index ranges for the N-point Cz,

are both 0,1,---, N — 1, and for the (N — 1)-point S, they

are both 1,2,.--, N — 1. The N-point 52';1 has an input index

range of 1,2,-.-, N. We find those samples by performing

the multiplication over the index range 1,2,---,N — 1 and
inserting what we know to be zero at N. The output index
range from the S{el is the correct 0,1,---, N — 1.

VII. USING SYMMETRIC CONVOLUTION
TO PERFORM LINEAR CONVOLUTION

A symmetric convolution of two finite sequences gives a
result that is the same as a linear convolution of one with a
left-sided extended version of the other followed by “folded
aliasing” at both ends of the output. Symmetric convolution
thus provides a way to filter a finite sequence and produce a
same-size or near-same-size result. This folded aliasing may
be preferable in some applications to the wrap-around aliasing
of a circular convolution/DFT approach. Note that it is the
parameters N and M that remain unchanged by symmetric
convolution; input and output sequence lengths may be the
same or may differ by one or two samples.

It is also possible to use symmetric convolution and DTT’s
to perform a true linear convolution. We merely need to pad the
input data with a sufficient number of zeros at both ends prior
to symmetric convolution to avoid the effects of the folded
aliasing. The amount of zero-padding required at each end
is a function of the symmetry of the filter and the implied
symmetric extension done to that end of the data. If the
effective FIR filter has L taps, then the minimum number of

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5, MAY 1994

TABLE IX
ZERO-PADDING REQUIRED TO COMPUTE A LINEAR CONVOLUTION

Symmetry | Amount of zero-padding needed before eztending as:
of filter WS WA HS HA
ws (L+1)/2* (L-1)/2 I-1)/2 (L-1)/2
WA (L+1)/2 (L-1)/2* (L-1)/2 (L-1)/2
HS L/2 Lj2-1 Lj2* L/2
HA L2 Li2-1 Lf2 Lj2*

zeros we must add to each end of the data is as given in Table
IX.

Any one of 16 types of symmetric convolution can be
used to perform the same linear convolution because there
are 16 ways to represent the data as an SPS. For each there
is a corresponding compatible SPS representation of the filter.
The type of symmetric convolution that we choose determines
which specific transforms to use. The types also may differ in
the amount of zero-padding necessary, and whether the output
has the correct length or is one or two samples longer. For
those types of symmetric convolution that produce an output
whose implicit symmetry type is WS at either endpoint and
the zero-padding is done as in Table IX, there will be an
extraneous sample with the value zero at each WS point in the
output. In the table, we have marked with an asterisk where
this will occur.

We give an example in Fig. 5 that demonstrates how, after
zero-padding of one of its operands, a symmetric convolution
produces the same result as a linear convolution. The filter
h(n) is WA and has seven taps. We have chosen to use a sym-
metric convolution that implies a HSHS-SPS representation
for the data and, consequently, a WAWA-SPS representation
for the filter. Table IX tells us to first pad with three zeros
at each end of x(n); what results is the sequence Z(n) in
the figure. Notice that the sequences z(n) and h”(n) are the
same as in Fig. 4, but the output w(n) is that of a true
symmetric convolution whereas the output y(n) is that of a true
linear convolution. Notice also that the sequence w(n) can be
obtained from y(n) by folding in the samples at the ends and
aliasing. Because w(n) is implicitly HAHA, the relationship is

y(n+3)-y(2-n) n=01,2
w(n) = < y(n + 3) n=3,4,5,6,7.8. (38)
y(n+3)-y(26 —n) n=9,10,11

Because it is possible to do linear convolution by symmetric
convolution it follows that both of the techniques of overlap-
add and overlap-save can be used with the DTT’s. We must
pad and overlap at both ends of the data sequence, where the
amount of padding and overlapping is as given in Table IX.

VIII. A NEW LOOK AT EARLIER WORK

The first attempt to develop a convolution-multiplication
property for the DCT was published in 1976 by Chen and
Fralick [8]. They analyzed the effect of taking an inverse
type-2 DCT of the product of the forward type-2 DCT of the
data sequence z(n) with the forward type-2 DCT of the filter
h(n). The resulting sequence was found equal to the circular
convolution of three terms. Two of those terms represented

MARTUCCI: SYMMETRIC CONVOLUTION AND THE DISCRETE SINE AND COSINE TRANSFORMS

double-length versions of z(n) and h(n), respectively, created
by reflecting signal values on the right. In our terminology,
these were HS extensions. The third term was cumbersome
and is not repeated here.

The presence of the third term in the above convolution
is a consequence of using an invalid mix of DCT types. If
we wish to multiply two type-2 DCT’s, then we must use a
type-1 DCT for the inverse transformation. A type-2 inverse
DCT could be used only if we were multiplying a type-
2 DCT with a type-1 DCT. This latter case is what is ac-
tually happening in the equations derived by Chen and Fralick.
Their third term is a correction term needed to replace the
type-2 DCT of h(n) with a type-1 DCT of the related filter
g(n), where the symmetrically extended g(n) is equal to the
circular convolution of the symmetrically extended h(n) with
that third term. In terms of symmetric convolution, the Chen
and Fralick equation should have been z(n) <HSHS $wawa>
g(n), or equivalently, z(n)<cze%cie>g(n). The appropriate
inverse transform would be C;,'.

A new convolution-multiplication property was presented
by Chitprasert and Rao that applies only when the filter fre-
quency response is real and even [9]. By restricting the filter to
be zero-phase, odd-length, and symmetric, they found that they
could perform the circular convolution of the symmetrically
extended z(n) with the already symmetric A(n) by taking an
inverse type-2 DCT of the product of the forward type-2 DCT
of z(n) with the DFT of h(n). Harada also reported this mix
of DCT and DFT [10]. In addition, he derived another mix
of DCT and DFT as well as two forms combining the DST
and DFT.

In the properties of Chitprasert and Rao and of Harada we
can remove the need to use the DFT by noting that these
DFT’s are all equivalent to a DST or DCT. For example,
if h(n) is odd-length and symmetric, then half of the DFT
of h(n) is the same as the type-1 DCT of half of h(n). A
similar relation holds for the DST. Thus, these earlier results
are merely special cases of symmetric convolution and the
convolution-multiplication properties we present in this paper.

Finally, we note that there has appeared in the litera-
ture some discussion of the link between symmetric-periodic
sequences and the DCT’s [25], [35], [36]. However, these
presentations have been limited to only a few cases and not
developed further. To our knowledge, this paper is the first
to fully exploit the concept of symmetric-periodic sequences
and their link to the DTT’s and use it to derive all possible
convolution-multiplication properties.

IX. APPLICATIONS

In this section, we briefly mention some applications of
symmetric convolution and its implementation using DTT’s.
Further details can be found in the references cited. We
consider the area of image processing. Symmetric convolution
implements linear phase FIR filters and such filtering occurs
often in image processing. The eye is particularly sensitive
to phase distortion in images. When filters have linear phase,
phase distortion is reduced to only a spatial shift. The methods
of overlap-add and overlap-save are now possible for the

1049

Z(n) <HssSowawa> h"(n)
<caegs1e>

T on 1 n y(»)
0 N-1 ¢
N T n
Z(n) * h{n) 0 !

T n & n n
0 N-1 Q

Fig. 5. Example showing how the same y(n) results from a symmetric
convolution as from a conventional linear convolution when the data have
been zero-padded at both ends.

DTT’s as well as for the DFT. We can use either trans-
form since the results are the same and the computational
complexities are comparable [7]. We choose between them
based on such criteria as which transform we want or need to
use, whether it makes a difference if the arithmetic is real or
complex, and how we want to handle the image boundaries.

When filtering images, there are image boundary conditions
that need to be specified. If we assume that the samples outside
the boundaries are zero, then the output image from FIR
filtering will be larger than the input image. If we require
both images to be the same size, as is often the case, then
we must delete some samples. We can instead use symmetric
convolution to produce an output image that is the same
size as the input image without having to delete samples.
The circular convolution of the DFT also gives a same-
size result, but the implied periodic extensions may produce
objectionable artifacts [7], [37]. The smooth transitions that
result from the implied symmetric extensions of the DTT’s
should not degrade the quality of the filtered output. If we
use the DTT’s and overlap-add or overlap-save, we can do
conventional overlapping for all but the boundary blocks, then
use the DTT’s without overlap at the boundaries. There is
also a way to do all filtering without overlapping any of the
blocks [7], [37]. Such an approach using DTT’s would make
it possible to use the same transform operation for filtering
and block transform coding of an image.

Another application for symmetric convolution is the imple-
mentation of the filters of a multirate filter bank. Symmetric
convolution provides an elegant way to avoid the problem
of subband signal size expansion in general multirate filter
banks for images [7], [38]. The symmetric extension method
[36] is just one particular type of symmetric convolution. By
formulating the solution in terms of symmetric convolution,
all types of symmetric extension are naturally included and
there are no cases that would require special handling. In
addition, we could use DTT’s to implement these banks
without incurring the overhead of explicitly performing the
symmetric extensions prior to filtering.

X. CONCLUSION

We have introduced and explained the details of a special
type of convolution called symmetric convolution. We have
also presented new convolution-multiplication properties for
the entiré family of discrete sine and cosine transforms.

1050

We have shown how filtering can be accomplished using
symmetric convolution and the DTT’s. With proper zero-
padding of the data, we can use symmetric convolution to
compute a linear convolution. Such capabilities should furnish
new uses for emerging DST and DCT chips. Symmetric
convolution and the DTT’s are now an alternative to the DFT
for efficient filtering.

APPENDIX
THE 16 DISCRETE TRIGNOMETRIC TRANSFORMS

The eight versions of the discrete cosine transform and the
eight versions of the discrete sine transform in the family of
discrete trigonometric transforms sharing a common value of
N are given below in matrix notation. These matrices are
not orthogonal. The expression for each forward transform
defines the entry at row m and column n of the matrix.
The meaning of the symbols in each matrix identifier should
be self-explanatory. The ranges shown for m and n are the
exclusive index ranges. The weighting functions are defined by

{1/2 p=0or N
by =

1 p=1,2---,N-1
L1 =01 N2
PT11/2 p=N-1
[Cle]m":2kncos< ") mn=01,---,N (Al
1
(221
mn=01,-- . N=1 (A2
7r(m—|—%)n
[C3€]mn = 2k‘n COSs (—*‘—]V—)
m,n=0,1,---,N -1 (A3)
, _ n(m+3)(n+3)
[Cael,pm = 2c0s (N
m,n=20,1,---,N -1 (A4)
2mm
[Cio0) i = 2kn cos <2N)
m,n=201,---,N—-1 (A.5)
27rmn+
[Cgo]mn—2lncos(SN 1)
mn_O,l,---,N—l (A6)
27r
[C30) ipn, = 2kn cos 2N—1)
m,n=20,1,---,N -1 (A7)
2r(m+3)(n+3)
[Ca0)n = 2cos (T
m,n=20,1,---,N -2 (A.8)
[Ste],,.. = 2sin (”—zn) mn=1,2--.N—1 (A9)
gy [Flnt3) m=12---,N
{SQE]mn_ZSIH(N n:O,l,...7N_1
(A.10)

[EEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 5. MAY 1994

3 . [m(m+3)n m=0,1,-,N—1
[SSe]mn—anSHl(T n:1,2,~-~,N
(A.11)
+l +l
[Siel i, = 2sin (W(m ?V(n 2))
m,n=201---,N—-1 (A12)
. 2rmn
[S10],,,, = 25in (ZN — 1)
m,n=12,---,N—-1 (A.13)
. 27rm(n+%) m=1,2,---,N-1
[Szo]mn—Zsm(—?N_l n=01,---,N—2
(A.14)
. [2r(m+i)n m=0,1,---,N -2
[SSO]mn—2SHl< oSN —1 n=12--,N—1
(A.15)
27r(m+l)(n+l)
Sao). - =2, 2 2
[4]mn S]n(9N — 1
mn=0,1,--,N—1 (A.16)

The relationship between each inverse matrix and its own or
another forward matrix is given below. The designation for
even or odd has been omitted from the following equations
because the same relation holds for both cases, i.e., each
expression is equivalent to two expressions, one for the
even transforms and one for the odd transforms. However,
the value of M differs. For the even transforms, M = 2N;
for the odd transforms, M = 2N — 1.

(] = —}4-[01} (A.17)
]t = %[Cs] (A.18)
(Gl = 22Ca] (A.19)
[C ™" = %[04} (A20)
(S = %[Sl] (A21)
[Sa] 7t = AAIZ[sg] (A.22)
[S5]7" = —A%[Sz] (A23)
(847" = 314—[84] (A24)
ACKNOWLEDGMENT

The author wishes to express his deep gratitude for the
support and advice he has received from Prof. R. M. Mersereau
of the Georgia Institute of Technology while pursuing this
research. Special thanks go to Prof. H. S. Malvar of the
Universidade de Brasilia and Prof. P. P. Vaidyanathan of
Caltech for taking the time to read and provide helpful
comments on this paper. Thanks also to R. Jonsson, D. Drake,
and D. Williams for their proofreading efforts and to the
anonymous reviewer whose critique helped the author improve
the quality of the presentation.

MARTUCCI: SYMMETRIC CONVOLUTION AND THE DISCRETE SINE AND COSINE TRANSFORMS 1051

[1]
2

3

fhuar

(51
(61

f11]

(12]

[13]

[14]

[15]

[16)
[17]
[18]
{19]

(20}
[21]
[22]

(23}

[24]

(25]

REFERENCES

G. K. Wallace, “The JPEG still picture compression standard,” Commun.
Assoc. Comput. Mach., vol. 34, pp. 3044, Apr. 1991.

M. Liou, “Overview of the px64 kbit/s video coding standard,” Commun.
Assoc. Comput. Mach., vol. 34, pp. 59-63, Apr. 1991.

D. Le Gall, “MPEG: A video compression standard for multimedia
applications,” Commun. Assoc. Comput. Mach., vol. 34, pp. 46-58, Apr.
1991.

A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

H. S. Malvar, Signal Processing with Lapped Transforms. Norwood,
MA: Artech, 1992.

S. A. Martucci, “Convolution-multiplication properties for the entire
family of discrete sine and cosine transforms,” in Proc. Twenty-sixth
Annu. Conf. Inform. Sci. Syst. (Princeton, NJ), Mar. 1992, pp. 399—404.
S. A. Martucci, “Symmetric convolution and the discrete sine and cosine
transforms: Principles and applications,” Ph.D. dissertation, Georgia
Institute of Technology, Atlanta, 1993.

W. H. Chen and S. C. Fralick, “Image enhancement using cosine
transform filtering,” in Proc. Symp. Current Mathematical Problems
Image Sci. (Monterey, CA), Nov. 1976, pp. 186-192.

B. Chitprasert and K. R. Rao, “Discrete cosine transform filtering,”
Signal Processing, vol. 19, pp. 233-245, Mar. 1990.

H. Harada, “On the convolution properties of DCT’s and DST’s,” in
1990 Int. Symp. Inform. Theory, Applicat. (Hawaii), Nov. 1990, pp.
591-594.

G. Bongiovanni, P. Corsini, and G. Frosini, “One-dimensional and
two-dimensional generalized discrete Fourier transforms,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-24, pp. 97-99, Feb. 1976.
J. L. Vernet, “Real signals fast Fourier transform: Storage capacity and
step number reduction by means of an odd discrete Fourier transform,”
Proc. IEEE, vol. 59, pp. 1531-1532, Oct. 1971.

R. O. Rowlands, “The odd discrete Fourier transform,” in Proc. 1976
IEEE Int. Conf. Acoust., Speech, Signal Processing (Philadelphia, PA),
Apr. 1976, pp. 130-133.

G. Bonnerot and M. Bellanger, “Odd-time odd-frequency discrete
Fourier transform for symmetric real-valued series,” Proc. IEEE, pp.
392-393, Mar. 1976.

Z. Wang, “Fast algorithms for the discrete W transform and for the
discrete Fourier transform,” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-32, pp. 803-816, Aug. 1984.

Z. Wang and B. R. Hunt, “The discrete W transform,”Appl. Math.,
Computation, vol. 16, pp. 19-48, Jan. 1985.

K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advan-
tages, Applications. San Diego, CA: Academic, 1990.

N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
IEEE Trans. Comput., vol. C-23, pp. 90-93, Jan. 1974.

H. B. Kekre and J. K. Solanki, “Comparative performance of various
trigonometric unitary transforms for transform image coding,” Int. J.
Electron., vol. 44, pp. 305-315, Mar. 1978.

A. K. Jain, “A sinusoidal family of unitary transforms,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-1, pp. 356-365, Oct. 1979,

H. Kitajima, “A symmetric cosine transform,” IEEE Trans. Comput.,
vol. C-29, pp. 317-323, Apr. 1980.

Z. Wang and B, R. Hunt, “The discrete cosine transform—-a new ver-
sion,” in Proc. 1983 IEEE Int. Conf. Acoust., Speech, Signal Processing
(Boston, MA), Apr. 1983, pp. 1256-1259.

S. Matsumura, “Discrete cosine transforms—theory and LSI implemen-
tation,” Master’s thesis, Linkoping University, Sweden, 1985.

M. J. Narasimha and A. M. Peterson, “On the computation of the discrete
cosine transform,” IEEE Trans. Commun., vol. COM-26, pp. 934-936,
June 1978.

J. Makhoul, “A fast cosine transform in one and two dimensions,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 27-34,
Feb. 1980.

[26] M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT algorithms
with reduced number of operations,” Signal Processing, vol. 6, pp.
267-278, Aug. 1984.

{27] B. G. Lee, “A new algorithm to compute the discrete cosine transform,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp.
1243-1245, Dec. 1984,

[28] Z. Wang, “On computing the discrete Fourier and cosine transforms,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, pp.
1341-1344, Oct. 1985.

[29] H. S. Hou, “A fast recursive algorithm for computing the discrete
cosine transform,” JEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-35, pp. 1455-1461, Oct. 1987.

[30] S. C. Chan and K. L. Ho, “On computing the discrete cosine and sine
transforms from the discrete Fourier transform,” in Proc. Int. Symp.
Comput. Architecture, Digital Signal Processing (Hong Kong), Oct.
1989, pp. 363-366.

[31] Z. Wang, “Fast discrete sine transform algorithms,” Signal Processing,
vol. 19, pp. 91-102, Feb. 1990.

[32] S. C. Chan and K. L. Ho, “Direct methods for computing discrete
sinusoidal transforms,” in Inst. Elec. Eng. Proc., vol. 137, pt. F, Dec.
1990, pp. 433-442.

[33] 8. C. Chan and K. L. Ho, “Fast algorithms for computing the discrete
cosine transform,” IEEE Trans. Circuits, Syst.—-1I: Analog, Digital Signal
Processing, vol. 39, pp. 185-190, Mar. 1992,

[34] S. A. Martucci, “Signal extension and noncausal filtering for subband
coding of images,” in Proc. SPIE Vol. 1605 Visual Commun. Image Pro-
cessing '91: Visual Commun. (Boston, MA), Nov. 1991, pp. 137-148.

[35] J. C. Darragh, “Subband and transform coding of images,” Ph.D.
dissertation, Univ. California, Los Angeles, 1989.

[36] S. L. Eddins, “Subband analysis-synthesis and edge modeling methods
for image coding,” Ph.D. dissertation, Georgia Institute of Technology,
Atlanta, 1990.

[37] S. A. Martucci and R. M. Mersereau, “New approaches to block filtering
of images using symmetric convolution and the DST or DCT,” in Proc.
1993 IEEE Int. Symp. Circuits, Syst. (Chicago, IL), May 1993, pp.
259-262.

[38) S. A. Martucci and R. M. Mersereau, “The symmetric convolution
approach to the nonexpansive implementation of FIR filter banks
for images,” in Proc. 1993 IEEE Int. Conf. Acoust., Speech, Signal
Processing (Minneapolis, MN), Apr. 1993, pp. V.65-V.68.

Stephen A. Martucci (S'86-M’93) was born in
Mineola, NY, in 1960. He received the B.E.E.
degree, with highest honor, in 1982, the M.S.E.E.
degree in 1987, and the Ph.D. degree in electrical
engineering in 1993, all from the Georgia Institute
of Technology, Atlanta, GA. He won a DAAD
(German Academic Exchange Service) scholarship
and spent the period from October 1988 to Decem-
ber 1989 studying under Prof. H. G. Musmann at
the Institut fiir Theoretische Nachrichtentechnik und
Informationsverarbeitung of the Technische Univer-
sitéit Hannover in Germany.

His industrial experience includes three years.of computer design and
system software development in Massachusetts. He is currently a Member
of Technical Staff at the David Sarnoff Research Center, Princeton, NJ. His
research interests include discrete transforms, multirate filter banks, image
processing, digital video, and computer animation.

Dr. Martucci is a member of ACM, Phi Kappa Phi, Eta Kappa Nu, and Tau
Beta Pi. He has been listed in International Youth in Achievement and Who's
Who Among Students in American Universities and Colleges.

