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and an antiperiodic function with a common period is an antiperiodic 
function with the same period. 

Similarly, a sequence x(n) is called an antiperiodic sequence if 

x(n + N) = - x(n), (33) 

where N is called the period of the antiperiodic sequence x(n). The product 
of two antiperiodic sequences with a common period is a periodic sequence. 
The product of a periodic sequence and an antiperiodic sequence with a 
common period is an antiperiodic sequence. 

When the DWT of a sequence x(n) or the reconstructed sequence is 
extended, it will form either a periodic or an antiperiodic sequence. In fact, 
since 

X,(m + N) = ~~~lx(n)sin[~+(m+N~n.~] 
?I=0 

therefore 

X&m + N) = X,(m). 

Similarly, it is easy to verify that 

X,,(m + N) = - X,,(m), 

Xm(m + N) = X,,,(m), 

X,&n + N) = - X,,(m). 

(34) 

(35) 

(36) 

(37) 

Equations (34) and (36) show that the extended sequences X,(m) and 
X,,,(m) are periodic sequences with period N. Equations (35) and (37) show 
that the extended sequences X,,(m) and X,,(m) are antiperiodic sequences 
with period N. On the other hand, when the reconstructed sequence x(n) is 
extended from both sides, it is a periodic sequence with a period N, and will 
be represented by r,(n), if it is reconstructed from X,(m) or X,,(m); or it is 
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TABLE 1 

THE PERIODICITY OR ANTIPERIODICITY OF A DWT” 

Version 

j 

Original Transformed 

sequence x( n ) sequence Xi(m) 

I P P 

II P A 

III A P 

IV A A 

” P = periodic sequence, A = antiperiodic sequence. 

an antiperiodic sequence with a period N, and will be represented by xJn), 
if it is reconstructed from X,,,(m) or X1,(m). These statements may be 
verified easily from Equations (21) and (22). Therefore, when DWT-I is 
performed, it is assumed that both original and transformed data sequences 
are periodic. When DWT-IV is performed, it is assumed that both sequences 
are antiperiodic. When DWT-II is performed, it is assumed that the original 
sequence is periodic, but the transformed sequence is antiperiodic. When 
DWl-III is performed, it is assumed that the original sequence is antiperiodic, 
but the transformed sequence is periodic. These conclusions are listed in 
Table 1. 

The conclusions above may be stated in accordance with the symmetry 
type of the sequence as follows: Whether the length of a sequence is even or 
odd, and whether the spectrum of that sequence is sampled at integer points 
or half integer points, the DWI spectrum of an odd symmetry type sequence 
is periodic, but the DWT spectrum of an even symmetry type sequence is 
antiperiodic. Since the spatial and frequency domains are equivalent in the W 
representation [ 11, the words “sequence” and “spectrum” are interchangeable 
in the above statement. More explicitly, when DWT-I or DWT-III is per- 
formed, the symmetry type chosen for the original sequence is odd, and 
therefore the transformed sequence is periodic. When DWT-II or DWT-IV is 
performed, the symmetry type chosen for the original sequence is even, and 
therefore the transformed sequence is antiperiodic. Considering the mutual 
inverse relationship of DWT-II and DWT-III we know that the symmetry 
types for X,(m) and X,,(m) are odd because they are DWTs of a periodic 
sequence; and that the symmetric types for X,,,(m) and X,,(m) are even 
because they are DWTs of an antiperiodic sequence. 

When it is necessary, a subscript p or a will be added to x(n), as r,(n) or 
x,(n), to emphasize the periodicity or antiperiodicity of the sequence x(n). 
xP( n) and r,(n) represent the same sequence in the interval from 0 to N - 1. 
The difference between them is only in their extension, as discussed above in 
defining how sequences can be extended. 
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5. INVARIANCE OF A DWT UNDER A SHIFT 
OF THE REGION OF SUMMATION 

It is well known that the summation of a periodic sequence over one 
period remains unchanged on a shift of the region of the summation. In other 
words, if z(n) is a periodic sequence with a period N, then 

If sequence x(n) and its DWT-j are extended according to Table 1, the 
elements over which the summation is taken in Equations (5) to (8) and 
Equations (21) to (24) is either a product of two periodic sequences or a 
product of two antiperiodic sequences with a common period. Therefore, the 
summation in Equations (5) through (8) and Equations (21) through (24) is 
taken on a periodic sequence over one period. It does not depend on which 
sample is taken as the starting point of the summation. In other words, 

holds for all sumations in Equations (5) through (8) and (21) through (24). 

6. MIRROR SEQUENCE 

x( - n) is called the mirror sequence of x(n), or simply, the mirror of 
x(n), if x(n) is an odd symmetry type sequence. On the other hand, 
x( - n - 1) is called the mirror sequence of x(n), or simply the mirror of 
x(n), if x(n) is an even symmetry type sequence. If x(n) is a periodic or an 
antiperiodic sequence with a period N, the index of the mirror sequence may 
be removed to the interval from 0 to N - 1 in accordance with the periodicity 
or antiperiodicity of the sequence. For example, x( - n) = x( N - n) if x(n) is 
a periodic sequence, and x( - n) = - x( N - n) if x(n) is an antiperiodic 
sequence. 

The mirror sequences of the four versions of the DWT may be obtained 
directly from Equations (5) through (8). For example, from Equation (5) 

(39) 
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Replacing n by - k and shifting the region of addition properly, we obtain 

X,(-m)=~;I*,(-k)sin[%+mk.~], 
k=O 

(46) 

or, using the bi-arrow representation, 

x,( - n) A x,( - m). (41) 

Similarly, we may get 

x,(-n-I) zX,,(-m), (42) 

X0(-n) - z X,,,( - m - I), (43) 

XJ - n - 1) e X,” I” (-m-l). (44) 

These results may be stated as follows: The DWT of the mirror of a 
sequence is the mirror of the DWT of that sequence. 

7. THE RELATIONSHIP BETWEEN DFT AND DWT-I 

The normalized DFT of a sequence x(n) is defined as 

Xr( m) = & ‘~~:,(n)e-i~‘n.z~/~~, m=O,l ,..., N-l, (45) 

where i = J-1. 
Since 

e p’n1n-2n/h’= cos(mn.2r/N) - isin(mn.2v/N), 

X,(m) may be represented by two summations of cosine and sine terms 
separately: 

m=O,l ,..., N- 1 (46) 
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But from Equations (5) and (39) we have 

and 

= k[X,(m)+X,(-m)], 

= B[X,(m)+X,(N-m)], 

-& Nt’X(n)sin( mn. $ j 
n 0 

=&N~lx(n)[sin(~+mn.$Lj-sin(~-mn~~)] 
n 0 

= B [Xl(m) - Xd - m)l 

=+[X,(m)-X,(N-m)]. 

Therefore, 

X,(m) = ~[X,(m)+X,(N-m)] -i 

Let [FN] be the normalized DFT matrix 

(48) 

[Xl(m>-X1(N-m)l. (49) 

29 

(47) 

[F,] = &[e-i~n~z~/~], m,n=O,l,..., N-l. (50) 

The relationship between DFT and DWT then may be represented in a 
matrix form 

M = PfNI[W~l~ (51) 
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where 

[H,v 

1 

l-i 

2I 

l-ti- 
(,V/?.) - 1 

I= 
~h,,k, 

1 

Fi,,,,_, 
l-i1 

2 (rv/Z)~I 

or 

[H,,,,= -= if N is odd. (53) 

if N is even, 

(52) 

In Equation (52) and (53) as well as in later matrix representations, a 
blank submatrix, or blanks in a matrix or in a submatrix, indicates that the 
elements in that region are zeros; and 

1 

1 

[I] = IL 1 

is 

X,,(m) of Equation (6) 
may be expressed as 

XII(m)=XI(m)cos~+XI( -m)siny. (55) 

This relationship may be represented in matrix form as 

[w;:] = [U,vl[Y$ (56) 
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where 

NJ*-1 = 

If N is even, or 

31 

if N is odd. Likewise, [ Wr] is related to [WA’“] by 

[W/l = [v,&G1], 

(58) 

(59) 
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where 

1 71 

cos 2N 
311 

cos 5% 

(N-l)v 

cos 2N 

357 
sin z 

n 
sin rN 

if N is even, or 

n 
- sin G 

377 
sin ,V 

if N is odd. 
Equations (18), (56), and (59) connect each version of the DWT with the 

other three versions. Since the DWT-I is closely related to the DFT, all 
versions of the DWT are related to the DFT. 
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9. DIFFERENT VERSIONS OF DCT AND DST 

There are eight versions of the discrete cosine transform and eight versions 
of the discrete sine transform which relate to those four versions of the DWT 
introduced in Section 3. The symbols [ Cg] and [C/j’] are used to represent 
matrices of the DCT; [SE] and [SE] are used to represent matrices of the 
DST, where superscript j = I, II, III or IV represents the version number of 
DWT to which the DCT or DST relates; superscript E or 0 represents that 
the DCT or DST is deduced from the DWT on a data vector which consists 
of an even or an odd number of data; subscript M represents the order of the 
matrix. Following this notation, the elements in the mth row and nth column 
of DCT and DST matrices are defined as follows: 

[C,IE+Jrrln = ~k,,k,cos~, m,n=O,l,..., M, 

[c:~] ,,,,, =~k,,cosmcn~“~, m,n=O,l,..., M-l, 

[C::lE],,~=~k,cos(m~)na, m,n=O,l,. 

. . 

. . . 

M- 1, (64) 

M-l, (65) 

M-l, (66) 

m,n=O,l,..., M-l, 

[CtI”lmn= ~~I,,k,cos[(m+:),l.~], 

(62) 

(63) 

(67) 

m,n=O,l,..., M-l, (68) 
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[ C‘P, 1 n,n = & cos[(nl+~)(~+~)&]> 

m,n=O,l,..., M-2, (69) 

[S,iF-I] nrn = G sin( -nj&), m,n=1,2 ,..., M-l, (70) 

[~.~,~~],,~~=~~,~~sin[m(n~~‘~], m,n=1,2 ,..., M, (71) 

[S::“],,~,~=~h-,,sin[(m-~)~I, m,n=1,2 ,..., M, (72) 

[S~B],,,~=~sin[(m++)(n+~)~], m,n=O,l,..., M-1, 

(73) 

[s.::?~] ,,,,, = 2 
J2M-1 

m,n=1,2 ,..., M-l, (74) 

m,n=1,2 ,..., M-l, (76) 

[SAY1 = && Z,,,Z,sin (n++)(n+i)& L 1 1 
m,n=O,l,..., M-l, (77) 

where in Equations (62) through (72), 

k,= &f/2 if j=O or j=M 
J 

: 1 if j#O and j#M 
(j = m or n), (78) 
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and in Equations (67) (68) and (77), 

&/2 if j=M-l 

1 if j#M-1 
(j = m or n). 

The following equations hold for inverse matrices: 

(79) 

EJI -l= b,tfL (84) 

[s.:] -l= [s;‘], (85) 

[G’] 1 = [sly > (86) 

[SF] -I= [sy, (87) 

where the second superscript, E or 0, is omitted because these equations 
hold for both even and odd cases. For example, Equation (80) is equivalent to 
both 

Some of the transforms defined by Equations (62) through (77) have been 
defined or discussed by other authors. They are [S$t_,] by Jain [8]; [C.:“] 
and [ C~F”] by Ahmed et al. [9]; [S.:“] and [SE’“] by Kekre et al. [lo]; [Cii’] 
by Pratt [ll]; and [Sz,], [Sso,], [SE!‘,], [Cy?i], [Cg,““], and [S,::‘] by 
Jain [12]; and [C.h$ i] by the authors [13]. But [Cii”], [C,tpo], and [ S,Lyo] 
have never been reported before. 

10. EVEN-ODD TRANSFORM MATRICES 

The following orthonormal matrices convert a data vector into its symmet- 
ric (even) part and antisymmetric (odd) part. Therefore, they are called 
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even-odd transform (EOT) matrices: 
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(88) 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 
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where M > 0 is an integer; the superscript I, II, III, or IV indicates the 
version number of DWT with which the EOT is connected; and the subscript 
indicates the order of the matrix. 

[AiaM] and [A’,“,] convert a data vector with an even number of data 
points into its odd symmetric and antisymmetric parts. [AyM] and [ATM] 
convert a data vector with an even number of data points into its even 
symmetric and antisymmetric parts. [A&,_i] and [Ai& i] convert a data 
vector with an odd number of data points into its even symmetric and 
antisymmetric parts. [A\,,_i] and [A!& i] convert a data vector with an 
odd nu-,iber of data points into its odd symmetric and antisymmetric parts. 
Therefore, the superscript represents not only the version number, but also 
the symmetry type to which the data sequence is converted. I or III represent 
an odd symmetry type, and II or IV represent an even symmetry type. 

11. DECOMPOSITION OF THE DWT INTO THE DCT AND DST 

All versions of the DWT introduced in Section 3 may be decomposed into 
the DCT and DST. In the following equations, double bars over a matrix will 
represent that the indices of both rows and columns are in reversed order: 

[-I = [1][-][i]. 

The decomposition of different versions of the DWT may be represented 
by the following equations: 

!-I SIE vmfl~ (97) 
M-l 

[w;~_-~I = [&M-1] ‘ho s=Io H-1 [&,-I], (98) M- 1 
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We shall give the proof of Equation (104) as an example. Let 

[cl = [cc+ m,n=O,l,..., M-2, 

(105) 

[S] = [sin[( m+k)(n++)&)]’ m,n=O,l,..., M-2, 

(106) 

[II = [ZM-ll and [iI = [I.tb-11. (107) 

The order of [Cl, [S], and [I] is M - 1, which is omitted for simplicity. [C] 
and [S] are related to [C~y_o,] and [S,tYo] by 

[ c$y] = && Pa (108) 
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Then we have 

bKf-11 

=&T 
1 

Z I 

+ a 
-I I 11 

39 

-& 43 . . . - - 
2 2 

Z 

k a 
i 

-i 
k-i Z zsz 

i 

-: 

d5 
-i Z 

=&&i 
C - ci 

-6 a . . . - - 
2 2 

v5 -a ___ . . . 
2 2 

( _ l)“-*g 
X 

is 

1 

isi 

(s - c)i 

-1 
1 

1 

-1 

t 

. . . -1 1 

i(c+ s)i 

(110) 
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[ i cos (rn+B)(n++)&j 

+sin (m++)(n++)& 
i jl 

=/&[sin[$+(m+b)(n+$)&j], 
m,n=O,l,..., M-2. (111) 

The fight hand side of Equation (111) coincides with the upper left M - 1 

by M - 1 submatrix of [ WiG_ I]. Likewise, 

& [s-cm1 

=&T [ i 
sin (m+h)(M-l-n-i)& 

i 

-cos (m+h)(M-l-n-d)& 
i jl 

= -{&[sin[f-(m+$)(M-l-n-+)&j] 

=/&[sin(% +(m++)(M+n++)& , jl 
m,n=O,l,..., M-2, 

or 

m=O,l,..., M- 2, n=M,M+l,..., 2M-2, (112) 

which coincides with the upper right M-lbyM-lsubmatrixof[W&,]. 

[ i 
sin T 4 +(m+&)(n+i)& iI , 
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On the other hand, from Equation (12), the m + lth element in the Mth 
column of [ Wa!G_ i] is obtained as 

( - l)n’ 

=&F? 
m=O,l ,...,2M- 2, (113) 

which coincides with the m + lth element of the Mth column of the matrix of 
Equation (llO), together with the factor l/d=. Therefore, we have 
proven that the upper M - 1 rows of the matrix in Equation (110) together 
with the factor l/d- coincide with the upper M - 1 rows of [ WLz_ l]. 

Repeating the same procedure, we may prove that the lower M - 1 rows of 
the matrix in Equation (110) together with the factor l/d= coincide 
with the lower M - 1 rows of [ Wsi& i]. 

The n + lth element of the Mth row of [ W:z_ 1] is 

(-1)” 
=J2M-1’ n=O,l ,...,2M- 2, 

which coincides with the n + lth element of the Mth row of (110) together 
with the factor l/d-. Therefore, the whole matrix of Equation (110) 
coincides with [ Wsiz_ i], and Eq. (104) is proven. 

The proof of all equations from (97) to (103) is similar to the proof given 
above and therefore is omitted. 

12. ANTIPERIODIC CONVOLUTION AND 
ANTIPERIODIC CORRELATION 

Representing the periodic convolution of two periodic sequences x,(n) 
and y,(n) with a common period N by x,(n)* y,(n), we define it as 

N-1 

~,(n)*y,(n)=~,~o*P(k)YP(“-k). (114) 
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Representing the cross correlation of xP( n) and y,(n) by xP( n)@ y,( n), it is 

defined as 

(115) 

The definitions (114) and (115) differ from the conventional definitions of the 
periodic convolution and the cross correlation of two periodic sequences by a 
factor of l/&V. 

It is obvious from (114) and (115) that both r,(n)* y,(n) and 
x,(n)@ y,(n) are periodic sequences in n. Their period is N too. On the 

other hand, since the product sequences x,(k)y&n - k) and x,(k)y,(n + k) 
are periodic sequences and the summations in (114) and (115) are taken over 
a period N, according to Section 5, the region of summation may be shifted. 
Substituting j = n - k in (114), we have 

=Y,(n)*x,(n), (116) 

which shows that the periodic convolution obeys the commutative law. 
Substituting j = n + k in Equation (115), we have 

,\; ~ 1 i ,1 

~,(n)@~,(n)= & ,C x,(j-n)y,(j) 
J ~ fl 

= Y,(n)*x,( -n) 

= “PC - n>* y,(n). (117) 

Therefore, the cross correlation of two periodic sequences x,(n) and y,(n) 
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may be treated as the convolution of the mirror sequence of x,(n) and the 
sequence y,( n ). 

If x(n) and y(n) are two antiperiodic sequences represented by x0(n) and 
y,(n), we may define the antiperiodic convolution of them by 

(118) 

and the antiperiodic cross correlation of them by 

N ~ 1 

X,(n)@y,(n) = & k&xa(k)~,(n + k). (119) 

It is easy to see from the definitions (118) and (119) that both x,(n) * y,(n) 

and r,(n)@y,(n) are antiperiodic sequences in n. However, since both 

x,(k) and y,( n - k) or y,( n + k) are antiperiodic sequences in k, the 
product sequences x,(k)y,(n - k) and x,(k)y,(n + k) are periodic se- 
quences with respect to k. As in the derivation of Equations (127) and (128), 
we may also obtain 

x,(n) * y,(n) = y,(n) * xA~>, (120) 
and 

X,(n)@y,(n) = x,( - n> * y,(n). (121) 

Equation (120) shows that the antiperiodic convolution also obeys the 
commutative law. Equation (121) shows that the antiperiodic cross correlation 
may be treated as an antiperiodic convolution. 

Although x(,(n) and y,(n) may represent the same sequences x,(n) 
and y,(n) in the interval 0 to N - 1, respectively, r,(n) * y,(n) and 
x,(n)@y,(n) are different sequences from x,(n) * y,(n) and x,(n)@y&n) 

even inside the interval 0 to N - 1. But, on the other hand, they possess some 
common properties, as we shall show. 

We have shown that correlation may be treated as convolution. Therefore, 
we shall only discuss the W representation of the convolution theorem. 

13. CONVOLUTION THEOREMS 

Before the discussion of convolution theorems, we define a special kind of 
product of two sequences. The following sequence Z(m) is called the mirror 
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product of the sequences X(m) and Y(m): 

z(m)=+{X(m)[Y(m)+Y(-m)]+X(-m)[Y(m)-Y(-m)]) 

(122) 

if both X(m) and Y(m) are of odd symmetry type, or 

z(m)=~{x(m)[Y(m)+Y(-m-l)] 

+x(-m-l)[Y(m)-Y( -m-l)]} (123) 

if both X(m) and Y(m) are of even symmetry type. The mirror product of 
X(m) and Y(m) will be denoted by X( m)OY(m). It obeys the commutative, 
distributive, and associative laws and possesses some special properties that 
are shown in the Appendix. 

The convolution theorem may be stated briefly as follows: The DWT of 
the convolution of two sequences equals the mirror product of the DWTs of 
those two sequences. More explicitly, the convolution theorem may be 
represented by the following expressions: 

x,(n)* y,(n) A Xl(m)oYl(m>, (124) 

X,(n - 1) * yp(n - 1) +i Xll(m)OYII(m), (125) 

x,(n>*Y,(n> 1 Xdm)QYdm) = Xll(m)QYl(m), (126) 

x,(n)* Y,(n) z Xlll(m)QYlll(m), (127) 

x,(n - I)* Y,(n - 1) z Xlv(m)OYlv(m), (128) 

x,(n)* y,(n) g x dm)aYdm) = XIv(m)OYIll(m), (129) 

where in (125) and (128), dropping the subscript p or a, x( n - 1) * y( n - 1) 
is defined as 

+l)*y(n-l)=&N+k)y(n-l-k). 
k 0 

(139) 
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The procedure of proof of each of Equations (124) through (129) is the 
same one. Therefore, we shall only show the proof of Equation (127) as an 
example. 

Let 

z,(n) = r,(n) * y,(n) 

(131) 

The DWT-III of z,(n) is 

(132) 

Let j = n - k. Substituting n = j + k into Equation (132), we obtain 

zz g X?-‘y.(i)‘i.[: +(m + +)jg] 
J= -k 

x & ‘;$.,(k)cos[(m + I)ks] 

(133) 

Since 

cos T 
[ 

2lr 
4 +(m+t)j.~ =sin 1 [ ;-t m+:)j.% , 1 (134) 
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shifting 

:-(m+g)k.$ 
[ 

and 

- sin 
] f-C II 

(137) 

Substituting (136) and (137) into (135) and noticing the definition (123) of 
the mirror product of an even symmetry type sequence, we obtain 

Interchanging X,,,(m) and Y,,,(m) according to Equation (A-2) (in the 
Appendix) and using the bi-arrow notation yields Equation (127). 
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14. CONCLUDING COMMENTS 

Four versions of the DWT have been introduced. The decomposition of 
the DWT leads to the DCT and DST. Each version of the DWT relates to 
two versions of both DCT and DST by two types of EOT. Therefore, eight 
versions of both DCT and DST are related to four different versions of the 
DWT. The antiperiodic function, antiperiodic sequence and antiperiodic 
convolution have been defined. They provide more flexibility for digital 
harmonic analysis. The convolution theorem holds for both the periodic and 
antiperiodic cases. 

The decomposition of the DWT and DFT into the DCT and DST 
indicates a new direction for finding fast algorithms for the DWT as well as 
for the DFT by continuously decomposing the DCT and DST matrices. Since 
the DCT and DST matrices are real, only real arithmetic will be involved in 
the new algorithms. This will be the topic of a future paper. 

APPENDIX. SUMMARY OF MIRROR PRODUCT ALGEBRA 

A function h(x) is called the mirror product of functions f(x) and g(x) if 

h(x)=~{f(x)[g(x)+g(-x)l+f(-x)[f(x)-f(-x)l). (A-1) 

The mirror product of f(x) and g(x) will be denoted by f(x)Og(x). It 
possesses the following properties: 

f(r)Og(x)=g(r)Of(x) (commutativelaw), (A-2) 

mad4+wl =f(4@&)+f(4W4 (distributive law), 

(A-3) 

[f(r)Q(r)l Oh(r) = f(r>&z(r)Wr)l (associative law), (A-4) 

cOf(x) = cf(r>, (A-5) 

fl(r)Q(x) = f,(r)&), (A-6) 

f;,(r)Q&) = J%)g( - r>> (A-7) 

f(~)of(-x)=:[f(r)2+f(-~)2], (A-S) 

where c is a constant, x,(x) is an even function, f,(x) is an odd function, and 
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f( x)Of( - x) may be called the amplitude function of f(x). The proof of 

these properties is straightforward and therefore is omitted. 
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ABSTRACT 

This paper offers an approach for dealing with prediction of the outcome of World 
Chess Championship matches based on players experience and attitude towards the 
game. The paper deals with both the overall outcome and the sequence of game by 
game outcomes. A method for predicting the overall outcome is advanced and 
illustrated. Methods for predicting game by game outcomes are examined and 
compared according to strengths and weaknesses. The analysis is supported by the 
data on World Championship matches since their beginning 125 years ago. 

1. INTRODUCTION 

In this paper we present a theory based on the analytic hierarchy process 

to predict the outcome of World Chess Championship matches. The main 

idea underlying the theory is the modeling of the behavior and technical 

ability of the contenders in terms of the factors which are deemed relevant. 

The importance of behavior in chess competition has been highlighted in the 
literature. A chess master [2] writes, “Top flight chess is as much psychologi- 

cal battle as technical ability.” Another characterization of the game [6] is 

given in more vivid language: 

The essential quality of a high-level player is a kind of enjoyment of a very intense, 
physically and mentally exhausting struggle. Chess players are not necessarily 
mathematical, or artistic, or more intelligent,. . I You attack a person’s psychological 
weaknesses. You put him under tremendous strain, push him to where he consumes 
his energy where he gets exhausted,. When he reaches a point of demoralization, a 
player can crash, go to pieces, lose. 

In general, mathematical analyses of indoor games have been made purely 
in terms of the strategies of the players without consideration of their 
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behavior. To be accurate, prediction must deal with the inputs of a system, its 
actual operation, and its outputs. The problem is: given certain inputs, be 
they technical or behavioral, what is the output? 

In chess, the raw input into the game is the experience and know-how of 
the players in manipulating or transforming the system (i.e., the chessboard 
and its psychological environment) with respect to an output, which in 
practice is a win, a draw, or a loss. 

The first task is to assess the quality of the input by deriving a relative 
index of power of the players considering all relevant characteristics. The 
second task is to use this power index to assess the kind of output it would 
produce over a set of several encounters in a match. 

An objective in predicting the outcome of a chess match is to identify the 
winner. A more ambitious objective is to predict the total number of games 
drawn or won by each player. A third objective is to test the stability of the 
outcome by means of sensitivity analysis with variations in judgments about 
the players’ abilities. 

We note that the statistics of a player’s past wins, losses, and draws against 
a variety of opponents are not very useful for predicting how he would fare 
against a champion challenger. Assessment of the outcome of a match must 
be made in terms of the competition between particular players. The output 
must be evaluated both in terms of the power of each player, and in terms of 
how he perceives the abilities of his opponent [14]. 

2. OUTLINE OF THE METHOD 

To determine the most relevant factors involved in chess we first examined 
the literature [3-51 and then sent out a questionnaire to grand masters. The 
questionnaire included both the technical (T) and behavioral (B) characteris- 
tics of chess players listed in Table 1. Each factor should be interpreted as 
falling only in the category indicated, although the approach is independent 
of how they are classified and some of them might be listed under both 
categories. These factors are then used to construct the hierarchy of Figure 1. 

Next we compute the relative power of the players in the match. To do this 
we carried out pairwise comparisons of the factors in the hierarchy according 
to the analytic hierarchy process. The scale for making comparisons in that 
process is shown in Figure 2. The questionnaire, shown in Figure 3, asked 
grand masters to make qualitative pairwise comparisons of the players with 
respect to each criterion. The two results were then combined to obtain a 
power index for the two contenders. Of course, the grand masters did not 
know the outcome for any two closely matched players. They had to guess 
who qualified best according to each factor. 
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TABLE 1 

DEFINITIONS OF CHESS FACTORS 
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T 

B 

T 

B 

T 

B 

T 

T 

T 

T 

T 

B 

T 

T 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(IO) 

(II) 

(12) 

(13) 

(14) 

Calculation (C): The ability of a player to evaluate different 
alternatives or strategies in light of prevailing situations. 

Ego (E): The image a player has of himself as to his general 

abilities and qualification and his desire to win. 

Experience (EX): A composite of the versatility of opponents 
faced before, the strength of the tournaments participated in, 

and the time of exposure to a rich variety of chess players. 

Gamesmanship (G): The capability of a player to influence his 
opponent’s game by destroying his concentration and selfconfi- 

dence. 

Good health (GH): Physical and mental strength to withstand 

pressure and provide endurance. 

Good nerves and the will to win (GNWW): The attitude of 

steadfastness that ensures a player’s health perspective while 
the going gets tough. He keeps in mind that the situation - -- 
involves two people and that if he holds out the tide may 

his favor. 

Imagination (IM): Ability to perceive and improvise 

tactics and strategies. 

Intuition (IN): Ability to guess the opponent’s intentions 

go in 

good 

Game aggressioeness (GA): The ability to exploit the opponent’s 

weaknesses and mistakes to one’s advantage. Occasionally 
referred to as “killer instinct.” 

Long range planning (LRP): The ability of a player to foresee 
the outcome of a certain move, set up desired situations that are 

more favorable, and work to alter the outcome. 

Memory (M): Ability to remember previous games. 

Personality (P): Manners and emotional strength, and their 
effects on the opponent in playing the game and on the player 
in keeping his wits. 

Preparation (PR): Study and review of previous games and 
ideas. 

Quickness (Q): The ability of a player to see clearly the heart of 
a complex problem. 
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TABLE 1 - Continued 

T (15) Relative youth (RY): The vigor, aggressiveness, and daring to 
try new ideas and situations, a quality usually attributed to 
young age. 

T (16) Seconds (S): The availability of other experts to help one to 
analyze strategies between games. 

B (17) Stamina (ST): Physical and psychological ability of a player to 
endure fatigue and pressure. 

T (18) Technique (T): Ability to use and respond to different open- 
ings, improvise middle game tactics, and steer the game to a 
familiar ground to one’s advantage. 

In chess, the possibility of a draw complicates the calculation of the 
outcome. The power index which is evaluated in terms of technical and 
behavioral factors only gives the relative strength of the players. It divides 
each game into two parts: How much goes to one player and how much goes 
to the other. It says nothing about draws. Our prediction must also cover the 
number of games drawn. This is done by assessing the disposition or percep- 
tion of the players towards each other. An experienced contestant will go for a 
win or a draw in a game according to his perception of the strength of his 
opponent. If he expects his opponent to be strong, he is more likely to allow 
the possibility of a draw or a loss than a win. If he plays a weak player, with 
less reservation, he will go for a win. 

Thus, prediction of the outcome of chess matches is determined by two 
parameters: 

(1) the relative strength of the players derived from their technical and 
behavioral characteristics as assessed by expert judgment such as those of 
grand masters, and 

(2) their attitude towards winning, drawing, or losing against the oppo- 
nent. 

To predict the actual chain of wins, draws, and losses is a more difficult 
task, subject to lack of knowledge of the opening moves to be used and the 
impact of earlier wins and losses under similar conditions on the psychology 
of the players in the present game. Still, from the record of championship 
matches since 1858 and the corresponding relative power of the players, we 
have developed a method of predicting games that appears to be better than 
making random guesses. 
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Intensity of 

Importance Definition Explanation 

1 Equal importance 

3 Moderate importance of one over Experience and judgment slightly 
another favor one activity over another 

5 Essential or strong importance Experience and judgment strongly 

favor one activity over another 

7 Demonstrated importance 

9 Extreme importance 

214,658 Intermediate values between the 

two adjacent judgments 

Reciprocals of If activity i has one of the above 

above nonzero nonzero numbers assigned to it 

when compared with activity j, 

then j has the reciprocal value 
when compared with i 

Two activities contribute equally to 
the objective 

An activity is strongly favored and 

its dominance is demonstrated in 

practice 

The evidence favoring one activity 

over another is of the highest possi- 

ble order of affirmation 

Compromise is needed 

FIG. 2. The scale and its description. 

2. THE RELATIVE POWER OF THE PLAYERS AND THEIR 
EXPECTATIONS 

Denote the two players in a match by A and B, and assume that player A 
is the winner. In chess, points are awarded as follows: one point for a win, 
half a point for a draw, and zero for a loss. Let PAW, P,, and PAI2 be the 
proportion of points accumulated by player A by winning, drawing and losing 
games, respectively. Let PBw, P,, and PBL be the corresponding proportions 
for B. Let S, and S, be the relative strengths of player A and player B, 
respectively, where S, + S, = 1. Also let NA, No, and NB denote the numbers 
of games won, drawn, and lost by player A. If n is the total number of games 
played then NA + Nn + NB = n. To predict the outcome of a match we first 
estimate n, from which we find NA and Ns. There are situations in which we 
estimate n and NB because the value of NA is fixed by the rules at 6. 


