

2003 Issues
May 2003

2002 Issues
October 2002

February 2002

Cleve's Corners
1994-2002

Past Issues
Spring 2001

Winter 2001

Winter 2000

Summer 1999

Winter 1999

Subscribe Now

MATLAB Programming Patterns

Simplify your code with comma-separated lists

by Nausheen Moulana and Peter Webb

Comma-separated lists of variables, such as, x,y,z, appear frequently
in MATLAB code; they are most commonly found inside of {}, () and
[] . In most cases, specifying the list of variables explicitly is sufficient,
but sometimes you need a more flexible technique. You can store
variable values in a cell array or structure array, and then expand your
data into a comma-separated list via c{:}, if c is a cell, or via s.field,
if s is a structure array. This simplifies certain problems involving
indexing and cell or structure array manipulation and often allows you to
write shorter, more efficient code. The comma-separated list economizes
the syntax for extracting multiple values from cell and structure arrays.
For example, c{:} is equivalent to c{1},c{2},c{3},…c{end}, a list
of values separated by commas. Similarly for a structure array, s.field
is equivalent to s(1).field,s(2).field,…s(end). field. The
four uses of comma-separated lists are:

 Within [] to perform horizontal matrix concatenation. For example, if c is a cell array

containing scalars, where c{i} = i, you can create a matrix consisting of the individual
elements of c using [c{:}]. This usage allows you to convert cell or structure arrays to
numeric arrays in an efficient and convenient manner.

 As input or output parameters to function calls. Functions that take a variable number of input
arguments or return a variable number of outputs can use comma-separated lists. Use this
technique when you need to build argument lists to functions while your program is executing or
when you need to store the return values from functions in a single variable, i.e., a cell or
structure, for later processing. This usage is common with functions that use varargin and
varargout.

 Within () to create an indexed expression. This usage is effective when dealing with n-
dimensional arrays (see Pattern 1, below).

 Within {} to create cell arrays. For example, b = {c{:}, magic(3)} creates a cell array
whose elements consists of the elements of cell c and a 3 -by-3 magic square.

Writing code with cell or structure arrays allows you to take advantage of comma-separated list
coding techniques, which are the foundation for some of the programming patterns in MATLAB.

Pattern 1: Comma-separated lists and indexing
Using comma-separated lists in indexing operations can simplify and speed up your code. For
example, let’s look at the fftshift function.

Page 1 of 4MATLAB Programming Patterns

6/8/2003http://www.mathworks.com/company/newsletter/spring01/patterns.shtml

fftshift stores the index vectors in a cell array. Building this cell array is relatively simple. For
each of the N dimensions, determine the size of that dimension and find the integer index
nearest the midpoint. Then, construct a vector that swaps the two halves of that dimension.
Once all the vectors have been collected into this cell array, a single MATLAB command
performs the swap:

y = x(idx{:});

This technique produces an algorithm that is dimension independent and compact.

Pattern 2: Manipulating data in structure arrays
You will often find that using comma-separated lists to manipulate structure arrays makes it
easier to write efficient code. For example, if you want to search for and replace a certain value
in your structure array, you can easily create a function to do this.

First, use findinstruct to get the indices that match the value being replaced. Note that

function y = fftshift(x)

numDims = ndims(x);
idx = cell(1, numDims);
for k = 1:numDims
 m = size(x, k);
 p = ceil(m/2);
 idx{k} = [p+1:m 1:p];
end
y = x(idx{:});

Given an N-dimensional matrix, fftshift swaps "half-spaces" along each dimension. This
is fundamentally an indexing operation: given, for example, the vector a = [5 6 7 8 9
0], we can swap the left and right halves of this vector with the command b = a([4:6
1:3]); note that since a is one-dimensional, swapping requires only one index vector.
fftshift performs this kind of index-based swapping in N dimensions and thus must
construct N index vectors. The swapping operation is simply
y = x(index1,index2,…, indexN).

if ndims(x) == 1
 y = x(index1);
else if ndims(x) == 2
 y = x(index1, index2);
end

If you are using explicit indexing, you’ll need to write one if statement for each
dimension you want your function to handle. A comma-separated list makes it
very easy to generalize this swapping operation to an arbitrary number of
dimensions.

function index = findinstruct(a, value)
% findinstruct takes a
% structure with the field value as its first
% argument and a double search value as its
% second argument. This function assumes that the

% structure does not contain NaNs or empties.%
Generate the indices of the desired value index =
find([a.value] == value);

Page 2 of 4MATLAB Programming Patterns

6/8/2003http://www.mathworks.com/company/newsletter/spring01/patterns.shtml

findinstruct converts its input structure array to a numeric array using [] and a structure
field comma-separated list. Next, replace the existing value with the new value by issuing this
command:

[a(index).value] = deal(newval);

You must use the function deal here, rather than a simple assignment statement, because only
functions can assign to multiple left-hand side values; in this case, deal copies its input into
each element of the output. As a general rule, whenever you need to assign to or from a
comma-separated list, use deal in conjunction with the [] concatenation operator.

Comma-separated lists and objects
MATLAB classes can change the behavior of the cell and structure indexing operators ({}
and .) by overloading the subsref and subsasgn functions. MATLAB calls subsref when
an indexing operation appears on the right hand side of an assignment statement, and
subsasgn when the indexing appears on the left hand side. For example:

 subsref: a = obj{m:n};
 subsasgn: obj.distance = value;

If obj is an array of objects, MATLAB applies the same rules it uses for cell and structure
arrays; thus the {} and . operators produce comma-separated lists. When a comma-
separated list appears on either side of an assignment statement, MATLAB checks that the
number of variables on the left side of the assignment matches the number of values on the
right, and requires that you use deal to perform the assignment (see Pattern 2). MATLAB
performs this test before executing the overloaded subsref and subsasgn functions by calling
the numel function to count the number of elements in obj{m:n} and obj.distance. The
built-in version of numel returns n—m+1 for the {m:n} case and prod(size(obj)) in the
obj.distance case. If there is a mismatch between the number of values on either side of the
assignment as a result of calling numel, an error occurs and the overloaded subsref and
subsasgn functions are not executed.

Summary
Using comma-separated lists helps you write compact, efficient, and extensible code. Because
most cell and structure array operations are built-in functions, the convenience and flexibility
does not come at the cost of performance. When working with comma-separated lists, you need
to remember to use deal appropriately. And if you’re writing a MATLAB class, you should
consider whether or not to overload numel for that class. With these points in mind, you will find
comma-separated lists a powerful and effective technique, and a very useful tool to add to your
programming toolkit.

Therefore, if you want to modify the behavior of the comma-
separated list operators with respect to object arrays (for
example, your class may use {} to perform string
indexing), you need to indicate to MATLAB that these
operators return 1, for the number of elements. To do this
you need to overload the numel function and have it return
1 for both {} and . cases. With this overloaded numel in
place, the above example assignments do not require the
explicit use of deal, and MATLAB executes the overloaded
subsref and subsasgn functions.

See the help for numel for
details on how to use it.

To learn more about comma-separated lists, you can read
previously published articles at:

 “Getting the Most Out of the deal Function”

Page 3 of 4MATLAB Programming Patterns

6/8/2003http://www.mathworks.com/company/newsletter/spring01/patterns.shtml

 “Exploiting the Comma-Separated List”

All MATLAB documentation can be viewed online and printed in PDF format; just visit
www.mathworks.com/support

 Using MathWorks Products For... I Training I MATLAB Based Books I Third -Party Products

 The MathWorks, Inc. Trademarks Privacy Policy

Page 4 of 4MATLAB Programming Patterns

6/8/2003http://www.mathworks.com/company/newsletter/spring01/patterns.shtml

