

2003 Issues
May 2003

2002 Issues
October 2002

February 2002

Cleve's Corners
1994-2002

Past Issues
Spring 2001

Winter 2001

Winter 2000

Summer 1999

Winter 1999

Subscribe Now

Picking up the Pace with the MATLAB
Profiler

by Ned Gulley

The new MATLAB JIT-Accelerator can significantly
accelerate your code by transforming high-level
MATLAB commands into native machine
instructions.

This article explains how you can achieve optimum speed using the
MATLAB Profiler. The Profiler shows where your code is slow and
can offer specific suggestions about how to take advantage of the
JIT-Accelerator.

Profiling for Speed
This script computes a familiar fractal, the Mandelbrot set. (We found
this file at www.students.tut.fi/~warp/MandScripts/.)

1 xmax=2;
2 steps=200;
3 maxiter=32;
4 Z=0;
5
6 for m=1:steps
7 for n=1:steps
8 c=-xmax+2*xmax*n/steps-.5 + i*(-xmax+2*xmax*m/steps);
9 z=c;
10 for r=0:maxiter
11 z=z*z+c;
12 if abs(z)>2 break
13 end
14 end
15 Z(m,n)=sqrt(r/maxiter);
16 end
17 end

Figure 1. The Mandelbrot set in the variable Z looks
like this when we plot it with the image command.

Page 1 of 5Picking up the Pace with the MATLAB Profiler

6/8/2003http://www.mathworks.com/company/newsletter/may03/profiler.shtml

To find out how long this script takes to run, bring up the Profiler and run the code.
>> profile viewer

File mandelbrot1, time = 3.175 sec

Figure 2: The Profiler display. Click on image
to see enlarged view.

The file runs in 3.175 seconds. The Profiler display shows the most time-consuming line with the
darkest background color. Line 8 took the most time, 1.903 seconds.

8 c=-xmax+2*xmax*n/steps-.5 + i*(-xmax+2*xmax*m/steps);

One way to speed up that line is to read the messages provided by the MATLAB JIT -
Accelerator. Look at the file listing at the bottom of the Profiler, and you will see four columns:

l time the amount of time spent on a given line
l calls the number of calls made to that line
l acc indicating whether or not the line has been successfully accelerated
l line the line number

A dot (.) in the acc column means the line accelerated; an x means that it did not. Clicking on
the x shows why that line did not accelerate. For example:

Reference to 'i' in a script cannot be accelerated unless 'i' is a
defined variable. To apply the builtin 'i', use the notation '1i'.

Define i
The problem here is that we haven’t defined i explicitly. MATLAB can figure out that we mean
sqrt(-1), but we lose time in doing that. We can save MATLAB the trouble by typing 1i
instead of i, or simply by adding a new line saying i = sqrt(-1).

If we do the second of these options, our new version has the line
5 i=sqrt(-1);

Let ’s use the Profiler again to find out how fast it runs now.
File mandelbrot2, time = 1.382 sec

What else can we try? There are still x marks in the accelerator column on lines 7 and 8. Since

Page 2 of 5Picking up the Pace with the MATLAB Profiler

6/8/2003http://www.mathworks.com/company/newsletter/may03/profiler.shtml

they’re in the loop body, they have a big impact on the overall speed. Let ’s click on the x in line 8
to determine the problem.

Variable 'r', used as a FOR loop control variable, was referred to on
line 16 outside of the body of the FOR loop.

Confine the Loop Variable
So r, which is used as the loop control variable in the innermost loop, is also used in a
calculation below the loop. We can fix this by introducing a new variable, rmax. This removes all
references to r outside the loop. We need to be careful with the new variable rmax, though. It
shouldn’t be initially defined inside the loop, since the body of a loop might never be evaluated,
as in the expression

>> for n=2:1, disp('This never runs'); end

Therefore, we define rmax above the loop since we intend to refer to it below the loop. Now,
instead of the original code in the inner loop, we have

11 rmax=maxiter;
12 for r=0:maxiter
13 z=z*z+c;
14 if abs(z)>2
15 rmax=r;
16 break
17 end
18 end
19 Z(m,n)=sqrt(rmax/maxiter);

This saves a little time.

File mandelbrot3, time = 0.861 sec

Preallocate Matrices
Another change we might make to speed things is to preallocate the space allotted to large
matrices. This saves you the time required to “grow” the matrix dynamically inside a loop. Let’s
preallocate the matrix Z, since we know exactly how big it’s going to be.

4 Z=0;

becomes

4 Z=zeros(steps);

The new time
File mandelbrot4, time = 0.631 sec
is a significant improvement for a very small change.

Unroll the Complex Arithmetic
For one last change, we can take the complex math calculations that MATLAB is managing for
us and turn them into non-complex calculations. That is, we can manage the imaginary and real
components separately. This is somewhat inconvenient, but it pays off in this case because non-
complex math runs much faster in MATLAB version 6.5.

File mandelbrot5, time = 0.291 sec

Here is the entire final program.

1 xmax=2;
2 steps=200;

Page 3 of 5Picking up the Pace with the MATLAB Profiler

6/8/2003http://www.mathworks.com/company/newsletter/may03/profiler.shtml

3 maxiter=32;
4 Z=zeros(steps);
5
6 for m=1:steps
7 ci=(-xmax+2*xmax*m/steps);
8 for n=1:steps
9 cr=-xmax+2*xmax*n/steps-.5;
10 zr=cr;
11 zi=ci;
12 rmax=maxiter;
13 for r=0:maxiter
14 zrn=zr*zr-zi*zi+cr;
15 zin=2*zi*zr+ci;
16 zi=zin;
17 zr=zrn;
18 if (zr*zr+zi*zi)>4,
19 rmax=r;
20 break
21 end
22 end
23 Z(m,n)=sqrt(rmax/maxiter);
24 end
25 end

Run the Timing Loop
Let ’s time all the programs we’ve written both with and without the JIT-Accelerator. The speed-
up is dramatic. Notice that preallocating memory is helpful in either case, but unrolling the
complex arithmetic is a good idea only if you have the JIT-Accelerator. The end result of our
optimization was to knock around 90% off the original time. Without the JIT -Accelerator, these
changes would have actually slowed our code down by 80%.

Conclusion
The JIT-Accelerator is a useful addition to MATLAB, and the Profiler helps you take full
advantage of it. Remember: optimize your code only according to your needs. Maximum speed
might be more important than readability or maintainability, but if it isn’t, then there’s no need to
alter code that is already well structured and fast enough. Finally, keep in mind that we will
continue to improve MATLAB, including the JIT -Accelerator, making MATLAB faster even as it
gets easier to use.

Figure 3. Comparing JIT and non-JIT timing.
Click on image to see enlarged view.

Next Article

 Using MathWorks Products For... I Training I MATLAB Based Books I Third -Party Products

Page 4 of 5Picking up the Pace with the MATLAB Profiler

6/8/2003http://www.mathworks.com/company/newsletter/may03/profiler.shtml

 The MathWorks, Inc. Trademarks Privacy Policy

Page 5 of 5Picking up the Pace with the MATLAB Profiler

6/8/2003http://www.mathworks.com/company/newsletter/may03/profiler.shtml

