
Digest Article: Matrix Indexing in MATLAB

2002 Issues
September
July
May
March
January

2001 Issues
November
September
June
March

2000 Issues
December
September
June
March

Archived
Articles

1999-1998

Subscribe Now

Matrix Indexing in MATLAB®

by Steve Eddins and Loren Shure
Send email to Steve Eddins and Loren Shure

Indexing into a matrix is a means of selecting a subset of
elements from the matrix. MATLAB has several indexing styles
that are not only powerful and flexible, but also readable and
expressive. Indexing is a key to MATLAB's effectiveness at
capturing matrix-oriented ideas in understandable computer
programs.

Indexing is also closely related to another term MATLAB users
often hear: vectorization. Vectorization means using MATLAB
language constructs to eliminate program loops, usually resulting
in programs that run faster and are more readable. Of the many
possible vectorization techniques, many rely on MATLAB
indexing methods, five of which are described in this article. To
learn more about other similar methods, see the resources listed
at the end of this article.

Indexing Vectors
Let's start with the simple case of a vector and a single subscript. The vector is
 v = [16 5 9 4 2 11 7 14];

The subscript can be a single value.
 v(3) % Extract the third element
 ans =
 9

Or the subscript can itself be another vector.
 v([1 5 6]) % Extract the first, fifth, and sixth elements
 ans =
 16 2 11

http://www.mathworks.com/company/digest/sept01/matrix.shtml (1 of 8) [10/16/2002 1:01:06 AM]

http://www.mathworks.com/index.shtml
http://www.mathworks.com/siteindex.shtml
http://www.mathworks.com/search/
http://www.mathworks.com/company/contact.shtml
http://www.mathworks.com/index.shtml
http://www.mathworks.com/products/
http://www.mathworks.com/consulting/
http://www.mathworks.com/company/events/
http://www.mathworks.com/support/
http://www.mathworks.com/store/index.html
http://www.mathworks.com/company/digest/index.shtml
http://www.mathworks.com/company/digest/july02/index.shtml
http://www.mathworks.com/company/digest/may02/index.shtml
http://www.mathworks.com/company/digest/mar02/index.shtml
http://www.mathworks.com/company/digest/jan02/index.shtml
http://www.mathworks.com/company/digest/nov01/index.shtml
http://www.mathworks.com/company/digest/sept01/index.shtml
http://www.mathworks.com/company/digest/june01/index.shtml
http://www.mathworks.com/company/digest/march01/index.shtml
http://www.mathworks.com/company/digest/december00/index.shtml
http://www.mathworks.com/company/digest/september00/index.shtml
http://www.mathworks.com/company/digest/june00/index.shtml
http://www.mathworks.com/company/digest/march00/index.shtml
http://www.mathworks.com/company/digest/archive.shtml
http://www.mathworks.com/mla/join.shtml
mailto:seddins@mathworks.com
mailto:loren@mathworks.com

Digest Article: Matrix Indexing in MATLAB

MATLAB's colon notation provides an easy way to extract a range of elements from v.
 v(3:7) % Extract the third through the seventh elements
 ans =
 9 4 2 11 7

Swap the two halves of v to make a new vector.
 v2 = v([5:8 1:4]) % Extract and swap the halves of v
 v2 =
 2 11 7 14 16 5 9 4

The special end operator is an easy short-hand way to refer to the last element of v.
 v(end) % Extract the last element
 ans =
 14

The end operator can be used in a range.
 v(5:end) % Extract the fifth through the last elements
 ans =
 2 11 7 14

You can even do arithmetic using end.
 v(2:end-1) % Extract the second through the next-to-last elements
 ans =
 5 9 4 2 11 7

Combine the colon operator and end to achieve a variety of effects, such as extracting every k-th
element or flipping the entire vector.
 v(1:2:end) % Extract all the odd elements
 ans =
 16 9 2 7
 v(end:-1:1) % Reverse the order of elements
 ans =
 14 7 11 2 4 9 5 16

By using an indexing expression on the left side of the equal sign, you can replace certain elements
of the vector.
 v([2 3 4]) = [10 15 20] % Replace some elements of v
 v =

http://www.mathworks.com/company/digest/sept01/matrix.shtml (2 of 8) [10/16/2002 1:01:06 AM]

Digest Article: Matrix Indexing in MATLAB

 16 10 15 20 2 11 7 14

Usually the number of elements on the right must be the same as the number of elements referred
to by the indexing expression on the left. You can always, however, use a scalar on the right side.
 v([2 3]) = 30 % Replace second and third elements by 30
 v =
 16 30 30 20 2 11 7 1 4

This form of indexed assignment is called scalar expansion.

Indexing Matrices with Two Subscripts
Now consider indexing into a matrix. We'll use a magic square for our experiments.
 A = magic(4)
 A =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

Most often, indexing in matrices is done using two subscripts - one for the rows and one for the
columns. The simplest form just picks out a single element.
 A(2,4) % Extract the element in row 2, column 4

 ans =
8

More generally, one or both of the row and column subscripts can be vectors.
 A(2:4,1:2)

 ans =
5 11

9 7

4 14

A single ":" in a subscript position is short-hand notation for "1:end" and is often used to select
entire rows or columns.
 A(3,:) % Extract third row
 ans =
 9 7 6 12
 A(:,end) % Extract last column

 ans =

http://www.mathworks.com/company/digest/sept01/matrix.shtml (3 of 8) [10/16/2002 1:01:06 AM]

Digest Article: Matrix Indexing in MATLAB

13

8

12

1

There is often confusion over how to select scattered elements from a matrix. For example,
suppose you want to extract the (2,1), (3,2), and (4,4) elements from A? The expression
A([2 3 4], [1 2 4]) won't do what you want. This diagram illustrates how two-subscript
indexing works.

Extracting scattered elements from a matrix requires a different style of indexing, and that brings us
to our next topic.

Linear Indexing
What does this expression A(14) do?

When you index into the matrix A using only one subscript, MATLAB treats A as if its elements were
strung out in a long column vector, by going down the columns consecutively, as in:

16

5

9

-

8

http://www.mathworks.com/company/digest/sept01/matrix.shtml (4 of 8) [10/16/2002 1:01:06 AM]

Digest Article: Matrix Indexing in MATLAB

12

1

The expression A(14) simply extracts the 14th element of the implicit column vector. Indexing into
a matrix with a single subscript in this way is often called linear indexing.

Here are the elements of the matrix A along with their linear indices.

The linear index of each element is shown in the upper left.

From the diagram you can see that A(14) is the same as A(2,4).

The single subscript can be a vector containing more than one linear index, as in:
 A([6 12 15])
 ans =
 11 15 12

Consider again the problem of extracting just the (2,1), (3,2), and (4,4) elements of A. You
can use linear indexing to extract those elements:
 A([2 7 16])
 ans =
 5 7 1

That's easy to see for this example, but how do you compute linear indices in general? MATLAB
provides a function called sub2ind that converts from row and column subscripts to linear indices.

http://www.mathworks.com/company/digest/sept01/matrix.shtml (5 of 8) [10/16/2002 1:01:06 AM]

Digest Article: Matrix Indexing in MATLAB

You can use it to extract the desired elements this way.
 idx = sub2ind(size(A), [2 3 4], [1 2 4])
 ans =
 2 7 16
 A(idx)
 ans =
 5 7 1

Advanced Examples using Linear Indexing
Example 1: Shifting the rows of a matrix
A MATLAB user recently posed this question in the comp.soft-sys.matlab newsgroup.

If I want to shift the rows of an m-by-n matrix A by k places, I use A(:,[n-k+1:n 1:n-k]). But
what if k is a function of the row number? That is, what if k is a vector of length m? Is there a quick
and easy way to do this?

Regular newsgroup contributor, Peter Acklam, posted this solution that uses sub2ind and linear
indexing.
 % index vectors for rows and columns
 p = 1:m;
 q = 1:n;
 % index matrices for rows and columns
 [P, Q] = ndgrid(p, q);
 % create a matrix with the shift values
 K = repmat(k(:), [1 n]);
 % update the matrix with the column indexes
 Q = 1 + mod(Q+K-1, n);
 % create matrix of linear indexes
 ind = sub2ind([m n], P, Q);
 % finally, create the output matrix
 B = A(ind);

Example 2: Setting some matrix elements to zero
Another MATLAB user posted this question.
I want to get the maximum of each row, which isn't really a problem, but afterwards I want to set all
the other elements to zero. For example, this matrix:

1 2 3 4

5 5 6 5

7 9 8 3

http://www.mathworks.com/company/digest/sept01/matrix.shtml (6 of 8) [10/16/2002 1:01:06 AM]

Digest Article: Matrix Indexing in MATLAB

should become:
0 0 0 4

0 0 6 0

0 9 0 0

Another regular newsgroup contributor, Brett Shoelson, provided this compact solution.
 [Y,I] = max(A, [], 2);
 B = zeros(size(A));
 B(sub2ind(size(A), 1:length(I), I')) = Y;

Logical Indexing
Another indexing variation, logical indexing, has proven to be both useful and expressive. In logical
indexing, you use a single, logical array for the matrix subscript. MATLAB extracts the matrix
elements corresponding to the nonzero values of the logical array. The output is always in the form
of a column vector. For example, A(A > 12) extracts all the elements of A that are greater than
12.
 A(A > 12)
 ans =
 16
 14
 15
 13

Many MATLAB functions that start with "is" return logical arrays and are very useful for logical
indexing. For example, you could replace all the NaNs in an array with another value by using a
combination of isnan, logical indexing, and scalar expansion. To replace all NaN elements of the
matrix B with zero, use
 B(isnan(B)) = 0

Or you could replace all the spaces in a string matrix str with underscores.
 str(isspace(str)) = '_'

Logical indexing is closely related to the find function. The expression A(A > 5) is equivalent to
A(find(A > 5)). Which form you use is mostly a matter of style and your sense of the readability
of your code, but it also depends on whether or not you need the actual index values for something
else in the computation. For example, suppose you want to temporarily replace NaN values with
zeros, perform some computation, and then put the NaN values back in their original locations. In
this example, the computation is two-dimensional filtering using filter2. You do it like this.
 nan_locations = find(isnan(A));
 A(nan_locations) = 0;

http://www.mathworks.com/company/digest/sept01/matrix.shtml (7 of 8) [10/16/2002 1:01:06 AM]

Digest Article: Matrix Indexing in MATLAB

 A = filter2(ones(3,3), A);
 A(nan_locations) = NaN;

We hope that the MATLAB indexing variants illustrated in this article give you a feel for ways you
can express algorithms compactly and efficiently. Including these techniques and related functions
in your MATLAB programming repertoire expands your ability to create masterful, readable, and
vectorized code.

Resources
Here are a few places to go for further information on MATLAB indexing styles and related topics.

● The book Using MATLAB from the MATLAB documentation set.The sections Subscripting
and Indexing and Optimizing MATLAB Code are particularly relevant.
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/matlab_prog.shtml

● The technical note "How Do I Vectorize My Code?"

● The Usenet newsgroup comp.soft-sys.matlab
Quite a few very knowledgeable MATLAB users offer their help in this newsgroup with
indexing and vectorization techniques. There is also a FAQ (Frequently Asked Questions
list), maintained by MATLAB user Pete Boettcher.

● The article "MATLAB Array Manipulation Tips and Tricks," written by MATLAB user, Peter
Acklam.

 News & Notes I Using MathWorks Products For... I MATLAB Based Books I Third-
Party Products

 The MathWorks, Inc. Trademarks Privacy Policy

http://www.mathworks.com/company/digest/sept01/matrix.shtml (8 of 8) [10/16/2002 1:01:06 AM]

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/matlab_prog.shtml
http://www.mathworks.com/support/tech-notes/1100/1109.shtml
http://www.mit.edu/%7Epwb/cssm/
http://www.math.uio.no/%7Ejacklam/matlab/doc/mtt/index.html
http://www.mathworks.com/company/newsletter/
http://www.mathworks.com/products/applications/
http://www.mathworks.com/support/books/
http://www.mathworks.com/products/connections
http://www.mathworks.com/products/connections
http://www.mathworks.com/company/trademarks.shtml
http://www.mathworks.com/company/policies/privacypolicy.shtml

	mathworks.com
	Digest Article: Matrix Indexing in MATLAB

