
MATLAB array manipulation tips and tricks

Peter J. Acklam
Statistics Division

Department of Mathematics
University of Oslo

Norway

E-mail: jacklam@math.uio.no
WWW URL: http://www.math.uio.no/~jacklam/

5 May 2000

1

Abstract

This document is intended to be a compilation tips and tricks mainly related to effi-
cient ways of performing low-level array manipulation in MATLAB. Here, “manipulate”
means replicating and rotating arrays or parts of arrays, inserting, extracting, permut-
ing and shifting elements, generating combinations and permutations of elements, run-
length encoding and decoding, multiplying and dividing arrays and calculating distance
matrics and so forth. A few other issues regarding how to write fast MATLAB code is
also covered.

This document was produced with
�����

-LATEX.
The PS (PostScript) version was created with dvips by Tomas Rokicki.
The PDF (Portable Document Format) version was created with ps2pdf, a part of Aladdin Ghost-
script by Aladdin Enterprises.

The PS and PDF version may be viewed with software available at the Ghostscript, Ghostview and
GSview Home Page at http://www.cs.wisc.edu/~ghost/index.html.
The PDF version may also be viewed with Adobe Acrobat Reader available at
http://www.adobe.com/products/acrobat/readstep.html.

Copyright © 2000 Peter J. Acklam. All rights reserved.
Any material in this document may be reproduced or duplicated for personal or educational use.

MATLAB is a trademark of The MathWorks, Inc. (http://www.mathworks.com)
TEX is a trademark of the American Mathematical Society (http://www.ams.org)

http://www.cs.wisc.edu/~ghost/index.html
http://www.adobe.com/products/acrobat/readstep.html
http://www.mathworks.com
http://www.ams.org

CONTENTS 2

Contents

1 Introduction 3
1.1 Background . 3
1.2 Vectorization . 4
1.3 About the examples . 4
1.4 Credit where credit is due . 4
1.5 Errors/Feedback . 4

2 Operators, functions and special characters 4
2.1 Operators . 5
2.2 Built-in functions . 5
2.3 M-file functions . 5

3 Creating vectors, matrices and arrays 5
3.1 Special vectors . 5

3.1.1 Uniformly spaced elements . 5

4 Shifting 6
4.1 Vectors . 6
4.2 Arrays . 6

5 Replicating elements and arrays 6
5.1 Constant array . 6
5.2 Replicating elements in vectors . 7

5.2.1 Replicate each element a constant number of times 7

6 Reshaping arrays 7
6.1 Subdividing 2D matrix . 7

6.1.1 Create 4D array . 7
6.1.2 Create 3D array (columns first) . 8
6.1.3 Create 3D array (rows first) . 8
6.1.4 Create 2D matrix (columns first, column output) 9
6.1.5 Create 2D matrix (columns first, row output) 9
6.1.6 Create 2D matrix (rows first, column output) 10
6.1.7 Create 2D matrix (rows first, row output) 10

7 Rotating matrices and arrays 11
7.1 Rotating 2D matrices . 11
7.2 Rotating ND arrays . 11
7.3 Rotating ND arrays around an arbitrary axis . 11
7.4 Block-rotating 2D matrices . 12

7.4.1 “Inner” vs “outer” block rotation . 12
7.4.2 “Inner” block rotation 90 degrees counterclockwise 14
7.4.3 “Inner” block rotation 180 degrees . 15
7.4.4 “Inner” block rotation 90 degrees clockwise 16
7.4.5 “Outer” block rotation 90 degrees counterclockwise 17
7.4.6 “Outer” block rotation 180 degrees . 18
7.4.7 “Outer” block rotation 90 degrees clockwise 19

7.5 Blocktransposing a 2D matrix . 19
7.5.1 “Inner” blocktransposing . 19

1 INTRODUCTION 3

7.5.2 “Outer” blocktransposing . 20

8 Multiply arrays 20
8.1 Multiply each 2D slice with the same matrix (element-by-element) 20
8.2 Multiply each 2D slice with the same matrix (left) 20
8.3 Multiply each 2D slice with the same matrix (right) 20
8.4 Multiply matrix with every element of a vector . 21
8.5 Multiply each 2D slice with corresponding element of a vector 21
8.6 Outer product of all rows in a matrix . 21
8.7 Keeping only diagonal elements of multiplication 22

9 Divide arrays 22
9.1 Divide each 2D slice with the same matrix (element-by-element) 22
9.2 Divide each 2D slice with the same matrix (left) . 22
9.3 Divide each 2D slice with the same matrix (right) 22

10 Calculating distances 23
10.1 Euclidean distance . 23
10.2 Distance between two points . 23
10.3 Euclidean distance vector . 23
10.4 Euclidean distance matrix . 24
10.5 Special case when both matrices are identical . 24
10.6 Mahalanobis distance . 24

11 Statistics, probability and combinatorics 25
11.1 Discrete uniform sampling with replacement . 25
11.2 Discrete weighted sampling with replacement . 26
11.3 Discrete uniform sampling without replacement . 26
11.4 Combinations . 26

11.4.1 Counting combinations . 26
11.4.2 Generating combinations . 27

11.5 Permutations . 27
11.5.1 Counting permutations . 27
11.5.2 Generating permutations . 27

12 Miscellaneous 27
12.1 Creating index vector from index limits . 27
12.2 Matrix with different incremental runs . 28
12.3 Finding indexes . 29
12.4 Run-length encoding and decoding . 30

12.4.1 Run-length encoding . 30
12.4.2 Run-length decoding . 30

1 Introduction

1.1 Background

Since the early 1990’s I have been following the discussions in the main MATLAB newsgroup on
Usenet, comp.soft-sys.matlab. I realized that many postings there were about how to ma-

2 OPERATORS, FUNCTIONS AND SPECIAL CHARACTERS 4

nipulate arrays efficiently. I decided to start collecting what I thought was the most interestings
solutions and see if I could compile them into one document. Well, this is it.

1.2 Vectorization

The term “vectorization” is frequently associated with MATLAB. Strictly speaking, it means to
rewrite code so that, in stead of using a for-loop iterating over each scalar in an array, one takes
advantage of MATLAB’s vectorization capabilities and does everything in one go. For instance, the
5 lines

x = [1 2 3 4 5];
y = zeros(size(x));
for i = 1:5

y(i) = x(i)^2;
end

may be written in the vectorized fashion

x = [1 2 3 4 5];
y = x.^2;

which is faster, most compact, and easier to read. With this rather strict definition of “vectorization”,
vectorized code is always faster than non-vectorized code.

Some people use the term “vectorization” in the sense “removing any for-loop”, but I will stick
to the former, more strict definition.

1.3 About the examples

All arrays in the examples are assumed to be of class double and to have the logical flag turned off
unless it is stated explicitly or it is apparent from the context.

1.4 Credit where credit is due

As far as possible, I have given credit to what I believe is the author of a particular solution. In many
cases there is no single author, since several people have been tweaking and trimming each others
solutions. If I have given credit to the wrong person, please let me know.

Note especially that I do not claim to be the author of a solution even though there is no other
name mentioned.

1.5 Errors/Feedback

If you find errors or have suggestions for improvements or if there is anything you think should be
here but is not, please mail me and I will see what I can do. My address is on the front page of this
document.

2 Operators, functions and special characters

Clearly, it is important to know the language one intends to use. The language is described in the
manuals so I won’t repeat here what they say, but I strongly encourage the reader to type

help ops Operators and special characters.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ops.shtml

3 CREATING VECTORS, MATRICES AND ARRAYS 5

at the command prompt and take a look at the list of operators, functions and special characters, and
look at the associated help pages.

When manipulating arrays in MATLAB there are some operators and functions that are particu-
larely useful.

2.1 Operators

: The colon operator.
Type help colon for more information.

.’ Non-conjugate transpose.
Type help transpose for more information.

’ Complex conjugate transpose.
Type help ctranspose for more information.

2.2 Built-in functions
find Find indices of nonzero elements.
all True if all elements of a vector are nonzero.
any True if any element of a vector is nonzero.
logical Convert numeric values to logical.
end Last index in an indexing expression.
sort Sort in ascending order.
diff Difference and approximate derivative.
sum Sum of elements.
prod Product of elements.
cumsum Cumulative sum of elements.
permute Permute array dimensions.
reshape Change size.

2.3 M-file functions
sub2ind Linear index from multiple subscripts.
ind2sub Multiple subscripts from linear index.
ipermute Inverse permute array dimensions.
shiftdim Shift dimensions.
squeeze Remove singleton dimensions.
repmat Replicate and tile an array.
kron Kronecker tensor product.

3 Creating vectors, matrices and arrays

3.1 Special vectors

3.1.1 Uniformly spaced elements

To create a vector of uniformly spaced elements, use the linspace function or the : (colon)
operator:

X = linspace(lower, upper, n); % row vector
X = linspace(lower, upper, n).’; % column vector

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/transpose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/transpose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ctranspose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ctranspose.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/find.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/all.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/any.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/logical.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/end.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sort.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/diff.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sum.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/prod.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cumsum.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/permute.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/reshape.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sub2ind.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ind2sub.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ipermute.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/shiftdim.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/squeeze.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/kron.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/linspace.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon.shtml

4 SHIFTING 6

X = lower : step : upper; % row vector
X = (lower : step : upper)’; % column vector

If step is not a multiple of the difference upper-lower, the last element of X, X(end), will be
less than upper. So the condition A(end) <= upper is always satisfied.

4 Shifting

4.1 Vectors

To shift and rotate the elements of a vector, use

X([end 1:end-1]); % shift right/down 1 element
X([end-k+1:end 1:end-k]); % shift right/down k elements
X([2:end 1]); % shift left/up 1 element
X([k+1:end 1:k]); % shift left/up k elements

Note that these only work if k is non-negative. If k is an arbitrary integer one may use something
like

X(mod((1:end)-k-1, end)+1); % shift right/down k elements
X(mod((1:end)+k-1, end)+1); % shift left/up k element

where a negative k will shift in the opposite direction of a positive k.

4.2 Arrays

To shift and rotate the elements of an array X along dimension dim, first initialize a subscript cell
array with

idx = repmat({’:’}, ndims(X), 1); % initialize subscripts
n = size(X, dim); % length along dimension dim

then manipulate the subscript cell array as appropriate by using one of

idx{dim} = [n 1:n-1]; % shift right/down 1 element
idx{dim} = [n-k+1:n 1:n-k]; % shift right/down k elements
idx{dim} = [2:n 1]; % shift left/up 1 element
idx{dim} = [k+1:n 1:k]; % shift left/up k elements

finally create the new array

Y = X(idx{:});

5 Replicating elements and arrays

5.1 Constant array

To create an array whose size is siz and where each element has the value val, use one of

X = repmat(val, siz);
X = val(ones(siz));

6 RESHAPING ARRAYS 7

The repmat solution might in some cases be slighly slower, but it has several advantages. Firstly,
it uses less memory. Seconly, it also works if val is a function returning a scalar value, e.g., if val
is Inf or NaN:

X = NaN(ones(siz)); % won’t work unless NaN is a variable
X = repmat(NaN, siz); % this works

Avoid using

X = val * ones(siz);

since it does unnecessary multiplications and only works if val is of class “double”.

5.2 Replicating elements in vectors

5.2.1 Replicate each element a constant number of times

Example Given

N = 3; A = [4 5]

create N copies of each element in A, so

B = [4 4 4 5 5 5]

Use, for instance,

B = A(ones(1,N),:);
B = B(:).’;

If A is a column-vector, use

B = A(:,ones(1,N)).’;
B = B(:);

Some people use

B = A(ceil((1:N*length(A))/N));

but this requires unnecessary arithmetic. The only advantage is that it works regardless of whether
A is a row or column vector.

6 Reshaping arrays

6.1 Subdividing 2D matrix

Assume X is an m-by-n matrix.

6.1.1 Create 4D array

To create a p-by-q-by-m/p-by-n/q array Y where the i,j submatrix of X is Y(:,:,i,j), use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [1 3 2 4]);

Now,

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/inf.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/nan.shtml

6 RESHAPING ARRAYS 8

X = [Y(:,:,1,1) Y(:,:,1,2) ... Y(:,:,1,n/q)
Y(:,:,2,1) Y(:,:,2,2) ... Y(:,:,2,n/q)

...
Y(:,:,m/p,1) Y(:,:,m/p,2) ... Y(:,:,m/p,n/q)];

To restore X from Y use

X = permute(Y, [1 3 2 4]);
X = reshape(X, [m n]);

6.1.2 Create 3D array (columns first)

Assume you want to create a p-by-q-by-m*n/(p*q) array Y where the i,j submatrix of X is
Y(:,:,i+(j-1)*m/p). E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = cat(3, A, C, B, D);

use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [1 3 2 4]);
Y = reshape(Y, [p q m*n/(p*q)])

Now,

X = [Y(:,:,1) Y(:,:,m/p+1) ... Y(:,:,(n/q-1)*m/p+1)
Y(:,:,2) Y(:,:,m/p+2) ... Y(:,:,(n/q-1)*m/p+2)

...
Y(:,:,m/p) Y(:,:,2*m/p) ... Y(:,:,n/q*m/p)];

To restore X from Y use

X = reshape(Y, [p q m/p n/q]);
X = permute(X, [1 3 2 4]);
X = reshape(X, [m n]);

6.1.3 Create 3D array (rows first)

Assume you want to create a p-by-q-by-m*n/(p*q) array Y where the i,j submatrix of X is
Y(:,:,j+(i-1)*n/q). E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = cat(3, A, B, C, D);

use

Y = reshape(X, [p m/p n]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [p q m*n/(p*q)]);

6 RESHAPING ARRAYS 9

Now,

X = [Y(:,:,1) Y(:,:,2) ... Y(:,:,n/q)
Y(:,:,n/q+1) Y(:,:,n/q+2) ... Y(:,:,2*n/q)

...
Y(:,:,(m/p-1)*n/q+1) Y(:,:,(m/p-1)*n/q+2) ... Y(:,:,m/p*n/q)];

To restore X from Y use

X = reshape(Y, [p n m/p]);
X = permute(X, [1 3 2]);
X = reshape(X, [m n]);

6.1.4 Create 2D matrix (columns first, column output)

Assume you want to create a m*n/q-by-q matrix Y where the submatrices of X are concatenated
(columns first) vertically. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = [A
C
B
D];

use

Y = reshape(X, [m q n/q]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [m*n/q q]);

To restore X from Y use

X = reshape(Y, [m n/q q]);
X = permute(X, [1 3 2]);
X = reshape(X, [m n]);

6.1.5 Create 2D matrix (columns first, row output)

Assume you want to create a p-by-m*n/p matrix Y where the submatrices of X are concatenated
(columns first) horizontally. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = [A C B D];

use

Y = reshape(X, [p m/p q n/q])
Y = permute(Y, [1 3 2 4]);
Y = reshape(Y, [p m*n/p]);

To restore X from Y use

Z = reshape(Y, [p q m/p n/q]);
Z = permute(Z, [1 3 2 4]);
Z = reshape(Z, [m n]);

6 RESHAPING ARRAYS 10

6.1.6 Create 2D matrix (rows first, column output)

Assume you want to create a m*n/q-by-q matrix Y where the submatrices of X are concatenated
(rows first) vertically. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = [A
B
C
D];

use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [1 4 2 3]);
Y = reshape(Y, [m*n/q q]);

To restore X from Y use

X = reshape(Y, [p n/q m/p q]);
X = permute(X, [1 3 4 2]);
X = reshape(X, [m n]);

6.1.7 Create 2D matrix (rows first, row output)

Assume you want to create a p-by-m*n/p matrix Y where the submatrices of X are concatenated
(rows first) horizontally. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B
C D];

into

Y = [A B C D];

use

Y = reshape(X, [p m/p n]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [p m*n/p]);

To restore X from Y use

X = reshape(Y, [p n m/p]);
X = permute(X, [1 3 2]);
X = reshape(X, [m n]);

7 ROTATING MATRICES AND ARRAYS 11

7 Rotating matrices and arrays

7.1 Rotating 2D matrices

To rotate an m-by-n matrix X, k times 90° counterclockwise one may use

Y = rot90(X, k);

or one may do it like this

Y = X(:,n:-1:1).’; % rotate 90 degrees counterclockwise
Y = X(m:-1:1,:).’; % rotate 90 degrees clockwise
Y = X(m:-1:1,n:-1:1); % rotate 180 degrees

In the above, one may replace m and n with end.

7.2 Rotating ND arrays

Assume X is an ND array and one wants the rotation to be vectorized along higher dimensions. That
is, the same rotation should be performed on all 2D slices X(:,:,i,j,...).

Rotating 90 degrees counterclockwise

s = size(X); % size vector
v = [2 1 3:ndims(X)]; % dimension permutation vector
Y = permute(X(:,s(2):-1:1,:), v);
Y = reshape(Y, s(v));

Rotating 180 degrees

s = size(X);
Y = reshape(X(s(1):-1:1,s(2):-1:1,:), s);

Rotating 90 clockwise

s = size(X); % size vector
v = [2 1 3:ndims(X)]; % dimension permutation vector
Y = reshape(X(s(1):-1:1,:), s);
Y = permute(Y, v);

7.3 Rotating ND arrays around an arbitrary axis

When rotating an ND array X we need to specify the axis around which the rotation should be per-
formed. In the cases above, the rotation was performed around an axis perpendicular to a plane
spanned by dimensions one (rows) and two (columns). To rotate an array around an axis perpendic-
ular to the plane spanned by dim1 and dim2, use first

% Largest dimension number we have to deal with.
nd = max([ndims(X) dim1 dim2]);

% Initialize subscript cell array.
v = {’:’};
v = v(ones(nd,1));

then, depending on how to rotate, use

7 ROTATING MATRICES AND ARRAYS 12

Rotate 90 degrees counterclockwise

v{dim2} = size(X,dim2):-1:1;
Y = X(v{:});
d = 1:nd;
d([dim1 dim2]) = [dim2 dim1];
Y = permute(X, d);

Rotate 180 degrees

v{dim1} = size(X,dim1):-1:1;
v{dim2} = size(X,dim2):-1:1;
Y = X(v{:});

Rotate 90 degrees clockwise

v{dim1} = size(X,dim1):-1:1;
Y = X(v{:});
d = 1:nd;
d([dim1 dim2]) = [dim2 dim1];
Y = permute(X, d);

If we want to rotate n*90 degrees counterclockwise, we may merge the three cases above into

% Largest dimension number we have to deal with.
nd = max([ndims(A) dim1 dim2]);

% Initialize subscript cell array.
v = {’:’};
v = v(ones(nd,1));

% Flip along appropriate dimensions.
if n == 1 | n == 2

v{dim2} = size(A,dim2):-1:1;
end
if n == 2 | n == 3

v{dim1} = size(A,dim1):-1:1;
end
B = A(v{:});

% Permute dimensions if appropriate.
if n == 1 | n == 3

d = 1:nd;
d([dim1 dim2]) = [dim2 dim1];
B = permute(A, d);

end

7.4 Block-rotating 2D matrices

7.4.1 “Inner” vs “outer” block rotation

When talking about block-rotation of arrays, we have to differentiate between two different kinds of
rotation. Lacking a better name I chose to call it “inner block rotation” and “outer block rotation”.

7 ROTATING MATRICES AND ARRAYS 13

Inner block rotation is a rotation of the elements within each block, preserving the position of each
block within the array. Outer block rotation rotates the blocks but does not change the position of
the elements within each block.

An example will illustrate: An inner block rotation 90 degrees counterclockwise will have the
following effect

[A B C [rot90(A) rot90(B) rot90(C)
D E F => rot90(D) rot90(E) rot90(F)
G H I] rot90(G) rot90(H) rot90(I)]

However, an outer block rotation 90 degrees counterclockwise will have the following effect

[A B C [C F I
D E F => B E H
G H I] A D G]

In all the examples below, it is assumed that X is an m-by-n matrix of p-by-q blocks.

7 ROTATING MATRICES AND ARRAYS 14

7.4.2 “Inner” block rotation 90 degrees counterclockwise

General case To perform the rotation

X = [A B ... [rot90(A) rot90(B) ...
C D ... => rot90(C) rot90(D) ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(:,:,q:-1:1,:); % or Y = Y(:,:,end:-1:1,:);
Y = permute(Y, [3 2 1 4]);
Y = reshape(Y, [q*m/p p*n/q]);

Special case: m=p To perform the rotation

[A B ...] => [rot90(A) rot90(B) ...]

use

Y = reshape(X, [p q n/q]);
Y = Y(:,q:-1:1,:); % or Y = Y(:,end:-1:1,:);
Y = permute(Y, [2 1 3]);
Y = reshape(Y, [q m*n/q]); % or Y = Y(:,:);

Special case: n=q To perform the rotation

X = [A [rot90(A)
B => rot90(B)

...] ...]

use

Y = X(:,q:-1:1); % or Y = X(:,end:-1:1);
Y = reshape(Y, [p m/p q]);
Y = permute(Y, [3 2 1]);
Y = reshape(Y, [q*m/p p]);

7 ROTATING MATRICES AND ARRAYS 15

7.4.3 “Inner” block rotation 180 degrees

General case To perform the rotation

X = [A B ... [rot90(A,2) rot90(B,2) ...
C D ... => rot90(C,2) rot90(D,2) ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(p:-1:1,:,q:-1:1,:); % or Y = Y(end:-1:1,:,end:-1:1,:);
Y = reshape(Y, [m n]);

Special case: m=p To perform the rotation

[A B ...] => [rot90(A,2) rot90(B,2) ...]

use

Y = reshape(X, [p q n/q]);
Y = Y(p:-1:1,q:-1:1,:); % or Y = Y(end:-1:1,end:-1:1,:);
Y = reshape(Y, [m n]); % or Y = Y(:,:);

Special case: n=q To perform the rotation

X = [A [rot90(A,2)
B => rot90(B,2)

...] ...]

use

Y = reshape(X, [p m/p q]);
Y = Y(p:-1:1,:,q:-1:1); % or Y = Y(end:-1:1,:,end:-1:1);
Y = reshape(Y, [m n]);

7 ROTATING MATRICES AND ARRAYS 16

7.4.4 “Inner” block rotation 90 degrees clockwise

General case To perform the rotation

X = [A B ... [rot90(A,3) rot90(B,3) ...
C D ... => rot90(C,3) rot90(D,3) ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(p:-1:1,:,:,:); % or Y = Y(end:-1:1,:,:,:);
Y = permute(Y, [3 2 1 4]);
Y = reshape(Y, [q*m/p p*n/q]);

Special case: m=p To perform the rotation

[A B ...] => [rot90(A,3) rot90(B,3) ...]

use

Y = X(p:-1:1,:); % or Y = X(end:-1:1,:);
Y = reshape(Y, [p q n/q]);
Y = permute(Y, [2 1 3]);
Y = reshape(Y, [q m*n/q]); % or Y = Y(:,:);

Special case: n=q To perform the rotation

X = [A [rot90(A,3)
B => rot90(B,3)

...] ...]

use

Y = reshape(X, [p m/p q]);
Y = Y(p:-1:1,:,:); % or Y = Y(end:-1:1,:,:);
Y = permute(Y, [3 2 1]);
Y = reshape(Y, [q*m/p p]);

7 ROTATING MATRICES AND ARRAYS 17

7.4.5 “Outer” block rotation 90 degrees counterclockwise

General case To perform the rotation

X = [A B ... [... ...
C D ... => B D ...
... ...] A C ...]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(:,:,:,n/q:-1:1); % or Y = Y(:,:,:,end:-1:1);
Y = permute(Y, [1 4 3 2]);
Y = reshape(Y, [p*n/q q*m/p]);

Special case: m=p To perform the rotation

[A B ...] => [...
B
A]

use

Y = reshape(X, [p q n/q]);
Y = Y(:,:,n/q:-1:1); % or Y = Y(:,:,end:-1:1);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [m*n/q q]);

Special case: n=q To perform the rotation

X = [A
B => [A B ...]

...]

use

Y = reshape(X, [p m/p q]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [p n*m/p]); % or Y(:,:);

7 ROTATING MATRICES AND ARRAYS 18

7.4.6 “Outer” block rotation 180 degrees

General case To perform the rotation

X = [A B ... [... ...
C D ... => ... D C
... ...] ... B A]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(:,m/p:-1:1,:,n/q:-1:1); % or Y = Y(:,end:-1:1,:,end:-1:1);
Y = reshape(Y, [m n]);

Special case: m=p To perform the rotation

[A B ...] => [... B A]

use

Y = reshape(X, [p q n/q]);
Y = Y(:,:,n/q:-1:1); % or Y = Y(:,:,end:-1:1);
Y = reshape(Y, [m n]); % or Y = Y(:,:);

Special case: n=q To perform the rotation

X = [A [...
B => B

...] A]

use

Y = reshape(X, [p m/p q]);
Y = Y(:,m/p:-1:1,:); % or Y = Y(:,end:-1:1,:);
Y = reshape(Y, [m n]);

7 ROTATING MATRICES AND ARRAYS 19

7.4.7 “Outer” block rotation 90 degrees clockwise

General case To perform the rotation

X = [A B ... [... C A
C D ... => ... D B
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = Y(:,m/p:-1:1,:,:); % or Y = Y(:,end:-1:1,:,:);
Y = permute(Y, [1 4 3 2]);
Y = reshape(Y, [p*n/q q*m/p]);

Special case: m=p To perform the rotation

[A B ...] => [A
B

...]

use

Y = reshape(X, [p q n/q]);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [m*n/q q]);

Special case: n=q To perform the rotation

X = [A
B => [... B A]

...]

use

Y = reshape(X, [p m/p q]);
Y = Y(:,m/p:-1:1,:); % or Y = Y(:,end:-1:1,:);
Y = permute(Y, [1 3 2]);
Y = reshape(Y, [p n*m/p]);

7.5 Blocktransposing a 2D matrix

7.5.1 “Inner” blocktransposing

Assume X is an m-by-n matrix and you want to subdivide it into p-by-q submatrices and transpose
as if each block was an element. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B ... [A.’ B.’ ...
C D ... => C.’ D.’ ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [3 2 1 4]);
Y = reshape(Y, [q*m/p p*n/q]);

8 MULTIPLY ARRAYS 20

7.5.2 “Outer” blocktransposing

Assume X is an m-by-n matrix and you want to subdivide it into p-by-q submatrices and transpose
as if each block was an element. E.g., if A, B, C and D are p-by-q matrices, convert

X = [A B ... [A C ...
C D ... => B D ...
... ...]]

use

Y = reshape(X, [p m/p q n/q]);
Y = permute(Y, [1 4 3 2]);
Y = reshape(Y, [p*n/q q*m/p]);

8 Multiply arrays

8.1 Multiply each 2D slice with the same matrix (element-by-element)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an m-by-nmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = X(:,:,i,j,...) .* Y;

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

sx = size(X);
Z = X .* repmat(Y, [1 1 sx(3:end)]);

8.2 Multiply each 2D slice with the same matrix (left)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is a k-by-m matrix and you want to construct
a new k-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = Y * X(:,:,i,j,...);

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

sx = size(X);
sy = size(Y);
Z = reshape(Y * X(:,:), [sy(1) sx(2:end)]);

8.3 Multiply each 2D slice with the same matrix (right)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an n-by-kmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = X(:,:,i,j,...) * Y;

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

8 MULTIPLY ARRAYS 21

sx = size(X);
sy = size(Y);
dx = ndims(X);
Xt = reshape(permute(X, [1 3:dx 2]), [prod(sx)/sx(2) sx(2)]);
Z2 = Xt * Y;
Z2 = permute(reshape(Z2, [sx([1 3:dx]) sy(2)]), [1 dx 2:dx-1]);

The third line above builds a 2D matrix which is a vertical concatenation (stacking) of all 2D slices
X(:,:,i,j,...). The fourth line does the actual multiplication. The fifth line does the opposite
of the third line.

8.4 Multiply matrix with every element of a vector

Assume X is an m-by-n matrix and v is a row vector with length p. How does one write

Y = zeros(m, n, p);
for i = 1:p

Y(:,:,i) = X * v(i);
end

with no for-loop? One way is to use

Y = reshape(X(:)*v, [m n p]);

8.5 Multiply each 2D slice with corresponding element of a vector

Assume X is an m-by-n-by-p array and v is a row vector with length p. How does one write

Y = zeros(m, n, p);
for i = 1:p

Y(:,:,i) = X(:,:,i) * v(i);
end

with no for-loop? One way is to use

Y = X .* repmat(reshape(v, [1 1 p]), [m n]);

8.6 Outer product of all rows in a matrix

Assume X is an m-by-nmatrix. How does one create an n-by-n-by-mmatrix Y so that, for all i from
1 to m,

Y(:,:,i) = X(i,:)’ * X(i,:);

The obvious for-loop solution is

Y = zeros(n, n, m);
for i = 1:m

Y(:,:,i) = X(i,:)’ * X(i,:);
end

a non-for-loop solution is

j = 1:n;
Y = reshape(repmat(X’, n, 1) .* X(:,j(ones(n, 1),:)).’, [n n m]);

Note the use of the non-conjugate transpose in the second factor to ensure that it works correctly
also for complex matrices.

9 DIVIDE ARRAYS 22

8.7 Keeping only diagonal elements of multiplication

Assume X and Y are two m-by-n matrices and that W is an n-by-n matrix. How does one vectorize
the following for-loop

Z = zeros(m, 1);
for i = 1:m

Z(i) = X(i,:)*W*Y(i,:)’;
end

Two solutions are

Z = diag(X*W*Y’); % (1)
Z = sum(X*W.*conj(Y), 2); % (2)

Solution (1) does a lot of unnecessary work, since we only keep the n diagonal elements of the nˆ2
computed elements. Solution (2) only computes the elements of interest and is significantly faster if
n is large.

9 Divide arrays

9.1 Divide each 2D slice with the same matrix (element-by-element)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an m-by-nmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = X(:,:,i,j,...) ./ Y;

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

sx = size(X);
Z = X./repmat(Y, [1 1 sx(3:end)]);

9.2 Divide each 2D slice with the same matrix (left)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an m-by-mmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = Y \ X(:,:,i,j,...);

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

Z = reshape(Y\X(:,:), size(X));

9.3 Divide each 2D slice with the same matrix (right)

Assume X is an m-by-n-by-p-by-q-by-. . . array and Y is an m-by-mmatrix and you want to construct
a new m-by-n-by-p-by-q-by-. . . array Z, where

Z(:,:,i,j,...) = X(:,:,i,j,...) / Y;

for all i=1,...,p, j=1,...,q, etc. This can be done with nested for-loops, or by the following
vectorized code

10 CALCULATING DISTANCES 23

sx = size(X);
dx = ndims(X);
Xt = reshape(permute(X, [1 3:dx 2]), [prod(sx)/sx(2) sx(2)]);
Z = Xt/Y;
Z = permute(reshape(Z, sx([1 3:dx 2])), [1 dx 2:dx-1]);

The third line above builds a 2D matrix which is a vertical concatenation (stacking) of all 2D slices
X(:,:,i,j,...). The fourth line does the actual division. The fifth line does the opposite of the
third line.

The five lines above might be simplified a little by introducing a dimension permutation vector

sx = size(X);
dx = ndims(X);
v = [1 3:dx 2];
Xt = reshape(permute(X, v), [prod(sx)/sx(2) sx(2)]);
Z = Xt/Y;
Z = ipermute(reshape(Z, sx(v)), v);

If you don’t care about readability, this code may also be written as

sx = size(X);
dx = ndims(X);
v = [1 3:dx 2];
Z = ipermute(reshape(reshape(permute(X, v), ...

[prod(sx)/sx(2) sx(2)])/Y, sx(v)), v);

10 Calculating distances

10.1 Euclidean distance

The Euclidean distance from xi to y j is

di j
� ���

xi � y j
��� ��� xi � y j

����� 	 x1i � y1 j
 2 �
������� 	 xpi � yp j
 2
10.2 Distance between two points

To calculate the Euclidean distance from a point represented by the vector x to another point repre-
seted by the vector y, use one of

d = norm(x-y);
d = sqrt(sum(abs(x-y).^2));

10.3 Euclidean distance vector

Assume X is an m-by-pmatrix representing m points in p-dimensional space and y is a 1-by-p vector
representing a single point in the same space. Then, to compute the m-by-1 distance vector d where
d(i) is the Euclidean distance between X(i,:) and y, use

d = sqrt(sum(abs(X - repmat(y, [m 1])).^2, 2));
d = sqrt(sum(abs(X - y(ones(m,1),:)).^2, 2)); % inline call to repmat

10 CALCULATING DISTANCES 24

10.4 Euclidean distance matrix

Assume X is an m-by-p matrix representing m points in p-dimensional space and Y is an n-by-p
matrix representing another set of points in the same space. Then, to compute the m-by-n distance
matrix D where D(i,j) is the Euclidean distance X(i,:) between Y(j,:), use

D = sqrt(sum(abs(repmat(permute(X, [1 3 2]), [1 n 1]) ...
- repmat(permute(Y, [3 1 2]), [m 1 1])).^2, 3));

The following code inlines the call to repmat, but requires to temporary variables unless one
doesn’t mind changing X and Y

Xt = permute(X, [1 3 2]);
Yt = permute(Y, [3 1 2]);
D = sqrt(sum(abs(Xt(:, ones(1, n), :) ...

- Yt(ones(1, m), :, :)).^2, 3));

10.5 Special case when both matrices are identical

If X and Y are identical one may use the following, which is nothing but a rewrite of the code above

D = sqrt(sum(abs(repmat(permute(X, [1 3 2]), [1 m 1]) ...
- repmat(permute(X, [3 1 2]), [m 1 1])).^2, 3));

One might want to take advantage of the fact that D will be symmetric. The following code first
creates the indexes for the upper triangular part of D. Then it computes the upper triangular part of
D and finally lets the lower triangular part of D be a mirror image of the upper triangular part.

[i j] = find(triu(ones(m), 1)); % Trick to get indices.
D = zeros(m, m); % Initialise output matrix.
D(i + m*(j-1)) = sqrt(sum(abs(X(i,:) - X(j,:)).^2, 2));
D(j + m*(i-1)) = D(i + m*(j-1));

10.6 Mahalanobis distance

The Mahalanobis distance from a vector y j to the set X � �
x1 ��������� xnx � is the distance from y j to x̄,

the centroid of X , weighted according to Cx, the variance matrix of the set X . I.e.,

d2
j
��	 y j � x̄
�� Cx 	 1 	 y j � x̄

where

x̄ � 1
nx

n

∑
i
 1

xi and Cx
� 1

nx � 1

nx

∑
i
 1

	 xi � x̄
 	 xi � x̄
 �
Assume Y is an ny-by-p matrix containing a set of vectors and X is an nx-by-p matrix containing
another set of vectors, then the Mahalanobis distance from each vector Y(j,:) (for j=1,...,ny)
to the set of vectors in X can be calculated with

nx = size(X, 1); % size of set in X
ny = size(Y, 1); % size of set in Y
m = mean(X);
C = cov(X);
d = zeros(ny, 1);
for j = 1:ny

d(j) = (Y(j,:) - m) / C * (Y(j,:) - m)’;
end

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/repmat.shtml

11 STATISTICS, PROBABILITY AND COMBINATORICS 25

which is computed more efficiently with the following code which does some inlining of functions
(mean and cov) and vectorization

nx = size(X, 1); % size of set in X
ny = size(Y, 1); % size of set in Y

m = sum(X, 1)/nx; % centroid (mean)
Xc = X - m(ones(nx,1),:); % distance to centroid of X
C = (Xc’ * Xc)/(nx - 1); % variance matrix
Yc = Y - m(ones(ny,1),:); % distance to centroid of X
d = sum(Yc/C.*Yc, 2)); % Mahalanobis distances

In the complex case, the last line has to be written as

d = real(sum(Yc/C.*conj(Yc), 2)); % Mahalanobis distances

The call to conj is to make sure it also works for the complex case. The call to real is to remove
“numerical noise”.

The Statistics Toolbox contains the function mahal for calculating the Mahalanobis distances,
but mahal computes the distances by doing an orthogonal-triangular (QR) decomposition of the
matrix C. The code above returns the same as d = mahal(Y, X).

Special case when both matrices are identical If Y and X are identical in the code above, the
code may be simplified somewhat. The for-loop solution becomes

n = size(X, 1); % size of set in X
m = mean(X);
C = cov(X);
d = zeros(n, 1);
for j = 1:n

d(j) = (Y(j,:) - m) / C * (Y(j,:) - m)’;
end

which is computed more efficiently with

n = size(x, 1);
m = sum(x, 1)/n; % centroid (mean)
c = x - m(ones(n,1),:); % distance to centroid of X
C = (c’ * c)/(n - 1); % variance matrix
d = sum(c/C.*c, 2); % Mahalanobis distances

again, to make it work in the complex case, the last line must be written as

d = real(sum(c/C.*conj(c), 2)); % Mahalanobis distances

11 Statistics, probability and combinatorics

11.1 Discrete uniform sampling with replacement

To generate an array X with size vector s, where X contains a random sample from the numbers
1,...,n use

X = ceil(n*rand(s));

To generate a sample from the numbers a,...,b use

X = a + floor((b-a+1)*rand(s));

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mean.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cov.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/conj.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/real.shtml

11 STATISTICS, PROBABILITY AND COMBINATORICS 26

11.2 Discrete weighted sampling with replacement

Assume p is a vector of probabilities that sum up to 1. Then, to generate an array X with size vector
s, where the probability of X(i) being i is p(i) use

m = length(p); % number of probabilities
c = cumsum(p); % cumulative sum
R = rand(s);
X = ones(s);
for i = 1:m-1

X = X + (R > c(i));
end

Note that the number of times through the loop depends on the number of probabilities and not the
sample size, so it should be quite fast even for large samples.

11.3 Discrete uniform sampling without replacement

To generate a sample of size k from the integers 1,...,n, one may use

X = randperm(n);
x = X(1:k);

although that method is only practical if N is reasonably small.

11.4 Combinations

“Combinations” is what you get when you pick k elements, without replacement, from a sample of
size n, and consider the order of the elements to be irrelevant.

11.4.1 Counting combinations

The number of ways to pick k elements, without replacement, from a sample of size n is
� n
k � which

is calculate with

c = nchoosek(n, k);

one may also use the definition directly

k = min(k, n-k); % use symmetry property
c = round(prod(((n-k+1):n) ./ (1:k)));

which is safer than using

k = min(k, n-k); % use symmetry property
c = round(prod((n-k+1):n) / prod(1:k));

which may overflow. Unfortunately, both n and k have to be scalars. If n and/or k are vectors, one
may use the fact that �

n
k � � n!

k! 	 n � k
 ! �
Γ 	 n � 1

Γ 	 k � 1
 Γ 	 n � k � 1

and calculate this in with

round(exp(gammaln(n+1) - gammaln(k+1) - gammaln(n-k+1)))

where the round is just to remove any “numerical noise” that might have been introduced by
gammaln and exp.

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/round.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gammaln.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/exp.shtml

12 MISCELLANEOUS 27

11.4.2 Generating combinations

To generate a matrix with all possible combinations of n elements taken k at a time, one may use the
MATLAB function nchoosek. That function is rather slow compared to the choosenk function
which is a part of Mike Brookes’ Voicebox (Speech recognition toolbox) whose homepage is at
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

For the special case of generating all combinations of n elements taken 2 at a time, there is a neat
trick

[x(:,2) x(:,1)] = find(tril(ones(n), -1));

11.5 Permutations

11.5.1 Counting permutations

p = prod(n-k+1:n);

11.5.2 Generating permutations

To generate a matrix with all possible permutations of n elements, one may use the function perms.
That function is rather slow compared to the permutes function which is a part of Mike Brookes’
Voicebox (Speech recognition toolbox) whose homepage is at
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

12 Miscellaneous

This section contains things that don’t fit anywhere else.

12.1 Creating index vector from index limits

Given two index vectors lo and hi. How does one create another index vector

x = [lo(1):hi(1) lo(2):hi(2) ...]

A straightforward for-loop solution is

m = length(lo); % length of input vectors
x = []; % initialize output vector
for i = 1:m

x = [x lo(i):hi(i)];
end

which unfortunately requires a lot of memory copying since a new x has to be allocated each time
through the loop. A better for-loop solution is one that allocates the required space and then fills in
the elements afterwards. This for-loop solution above may be several times faster than the first one

m = length(lo); % length of input vectors
d = hi - lo + 1; % length of each "run"
n = sum(d); % length of output vector
c = cumsum(d); % last index in each run

x = zeros(1, n); % initialize output vector

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/nchoosek.shtml
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/txt/choosenk.txt
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/perms.shtml
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/txt/permutes.txt
http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

12 MISCELLANEOUS 28

for i = 1:m
x(c(i)-d(i)+1:c(i)) = lo(i):hi(i);

end

Neither of the for-loop solutions above can compete with the the solution below which has no for-
loops. It uses cumsum rather than the : to do the incrementing in each run and may be many times
faster than the for-loop solutions above.

m = length(lo); % length of input vectors
d = hi - lo + 1; % length of each "run"
n = sum(d); % length of output vector

x = ones(1, n);
x(1) = lo(1);
x(1+cumsum(d(1:end-1))) = lo(2:m)-hi(1:m-1);
x = cumsum(x);

If fails, however, if lo(i)>hi(i) for any i. Such a case will create an empty vector anyway, so
the problem can be solved by a simple pre-processing step which removing the elements for which
lo(i)>hi(i)

i = lo <= hi;
lo = lo(i);
hi = hi(i);

There also exists a one-line solution which is clearly compact, but not as fast as the no-for-loop
solution above

x = eval([’[’ sprintf(’%d:%d,’, [lo ; hi]) ’]’]);

12.2 Matrix with different incremental runs

Given a vector of positive integers

a = [3 2 4];

How does one create the matrix where the ith column contains the vector 1:a(i) possibly padded
with zeros:

b = [1 1 1
2 2 2
3 0 3
0 0 4];

One way is to use a for-loop

n = length(a);
b = zeros(max(a), n);
for k = 1:n

t = 1:a(k);
b(t,k) = t(:);

end

and here is a way to do it without a for-loop

[bb aa] = ndgrid(1:max(a), a);
b = bb .* (bb <= aa)

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/cumsum.shtml
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/colon operator.shtml

12 MISCELLANEOUS 29

or the more explicit

m = max(a);
aa = a(:)’;
aa = aa(ones(m, 1),:);
bb = (1:m)’;
bb = bb(:,ones(length(a), 1));
b = bb .* (bb <= aa);

To do the same, only horizontally, use

[aa bb] = ndgrid(a, 1:max(a));
b = bb .* (bb <= aa)

or

m = max(a);
aa = a(:);
aa = aa(:,ones(m, 1));
bb = 1:m;
bb = bb(ones(length(a), 1),:);
b = bb .* (bb <= aa);

12.3 Finding indexes

How does one find the index of the last non-zero element in each row. That is, given

x = [0 9 7 0 0 0
5 0 0 6 0 3
0 0 0 0 0 0
8 0 4 2 1 0];

how dows one obtain the vector

j = [3
6
0
5];

One way is of course to use a for-loop

m = size(x, 1);
j = zeros(m, 1);
for i = 1:m

k = find(x(i,:) ~= 0);
if length(k)

j(i) = k(end);
end

end

or

m = size(x, 1);
j = zeros(m, 1);
for i = 1:m

k = [0 find(x(i,:) ~= 0)];
j(i) = k(end);

end

12 MISCELLANEOUS 30

but one may also use

j = sum(cumsum((x(:,end:-1:1) ~= 0), 2) ~= 0, 2);

To find the index of the last non-zero element in each column, use

i = sum(cumsum((x(end:-1:1,:) ~= 0), 1) ~= 0, 1);

12.4 Run-length encoding and decoding

12.4.1 Run-length encoding

Assuming x is a vector

x = [4 4 5 5 5 6 7 7 8 8 8 8]

and one wants to obtain the two vectors

l = [2 3 1 2 4]; % run lengths
v = [4 5 6 7 8]; % values

one can get the run length vector l by using

l = diff([0 find(x(1:end-1) ~= x(2:end)) length(x)]);

and the value vector v by using one of

v = x([find(x(1:end-1) ~= x(2:end)) length(x)]);
v = x(logical([x(1:end-1) ~= x(2:end) 1]));

These two steps can be combined into

i = [find(x(1:end-1) ~= x(2:end)) length(x)];
l = diff([0 i]);
v = x(i);

12.4.2 Run-length decoding

Given the run-length vector l and the value vector v, one may create the full vector x by using

i = cumsum([1 l]);
j = zeros(1, i(end)-1);
j(i(1:end-1)) = 1;
x = v(cumsum(j));

	1 Introduction
	1.1 Background
	1.2 Vectorization
	1.3 About the examples
	1.4 Credit where credit is due
	1.5 Errors/Feedback

	2 Operators, functions and special characters
	2.1 Operators
	2.2 Built-in functions
	2.3 M-file functions

	3 Creating vectors, matrices and arrays
	3.1 Special vectors
	3.1.1 Uniformly spaced elements

	4 Shifting
	4.1 Vectors
	4.2 Arrays

	5 Replicating elements and arrays
	5.1 Constant array
	5.2 Replicating elements in vectors
	5.2.1 Replicate each element a constant number of times

	6 Reshaping arrays
	6.1 Subdividing 2D matrix
	6.1.1 Create 4D array
	6.1.2 Create 3D array (columns first)
	6.1.3 Create 3D array (rows first)
	6.1.4 Create 2D matrix (columns first, column output)
	6.1.5 Create 2D matrix (columns first, row output)
	6.1.6 Create 2D matrix (rows first, column output)
	6.1.7 Create 2D matrix (rows first, row output)

	7 Rotating matrices and arrays
	7.1 Rotating 2D matrices
	7.2 Rotating ND arrays
	7.3 Rotating ND arrays around an arbitrary axis
	7.4 Block-rotating 2D matrices
	7.4.1 ``Inner'' vs ``outer'' block rotation
	7.4.2 ``Inner'' block rotation 90 degrees counterclockwise
	7.4.3 ``Inner'' block rotation 180 degrees
	7.4.4 ``Inner'' block rotation 90 degrees clockwise
	7.4.5 ``Outer'' block rotation 90 degrees counterclockwise
	7.4.6 ``Outer'' block rotation 180 degrees
	7.4.7 ``Outer'' block rotation 90 degrees clockwise

	7.5 Blocktransposing a 2D matrix
	7.5.1 ``Inner'' blocktransposing
	7.5.2 ``Outer'' blocktransposing

	8 Multiply arrays
	8.1 Multiply each 2D slice with the same matrix (element-by-element)
	8.2 Multiply each 2D slice with the same matrix (left)
	8.3 Multiply each 2D slice with the same matrix (right)
	8.4 Multiply matrix with every element of a vector
	8.5 Multiply each 2D slice with corresponding element of a vector
	8.6 Outer product of all rows in a matrix
	8.7 Keeping only diagonal elements of multiplication

	9 Divide arrays
	9.1 Divide each 2D slice with the same matrix (element-by-element)
	9.2 Divide each 2D slice with the same matrix (left)
	9.3 Divide each 2D slice with the same matrix (right)

	10 Calculating distances
	10.1 Euclidean distance
	10.2 Distance between two points
	10.3 Euclidean distance vector
	10.4 Euclidean distance matrix
	10.5 Special case when both matrices are identical
	10.6 Mahalanobis distance

	11 Statistics, probability and combinatorics
	11.1 Discrete uniform sampling with replacement
	11.2 Discrete weighted sampling with replacement
	11.3 Discrete uniform sampling without replacement
	11.4 Combinations
	11.4.1 Counting combinations
	11.4.2 Generating combinations

	11.5 Permutations
	11.5.1 Counting permutations
	11.5.2 Generating permutations

	12 Miscellaneous
	12.1 Creating index vector from index limits
	12.2 Matrix with different incremental runs
	12.3 Finding indexes
	12.4 Run-length encoding and decoding
	12.4.1 Run-length encoding
	12.4.2 Run-length decoding

