

1605 MEX-files Guide
Revison: 1.0 Last Date Modified: 04-August-2003

Introduction

1. Introduction to MEX-files
2. Getting help

Compiling MEX-files

3. System setup and configuration
4. Testing your system with example MEX-files
5. Troubleshooting system configuration problems
6. Compiling MEX-files with the Microsoft Visual C++ IDE
7. Setting up the MATLAB Add-In for Visual Studio

MEX-file components

8. The ingredients of a MEX-file
9. mex.h

10. mexFunction gateway
11. The mxArray
12. API functions

MEX-file examples

13. Writing a "Hello World" MEX-file
14. Using API routines to work with mxArrays
15. Checking inputs and outputs via a MEX-file
16. Passing arrays between MEX-files and MATLAB
17. Calling MATLAB functions from MEX-files
18. Additional MEX examples

Advanced MEX options

19. Custom options files
20. Linking multiple files

Debugging MEX-files

21. General debugging steps
22. Debugging with the Microsoft Developer's Studio
23. Debugging with DBX in UNIX
24. Using other debuggers

C++ MEX-files

25. WARNING
26. Tips for C++ MEX-files
27. Compiling C++ MEX-files

Troubleshooting MEX problems

Page 1 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

28. If linking fails
29. If loading fails
30. If running fails - segmentation violations

Section 1: Introduction MEX-files

This technical note provides a general overview of MEX-files and a detailed explanation of the external interface functions that allow you to
interface C or Fortran subroutines to MATLAB. MEX-files are a way to call your custom C or FORTRAN routines directly from MATLAB as if
they were MATLAB built-in functions.

MEX stands for MATLAB Executable. MEX-files are dynamically linked subroutines produced from C or Fortran source code that, when
compiled, can be run from within MATLAB in the same way as MATLAB M-files or built-in functions. The external interface functions
functionality to transfer data between MEX-files and MATLAB, and the ability to call MATLAB functions from C or Fortran code.

The main reasons to write a MEX-file are:

1. The ability to call large existing C or FORTRAN routines directly from MATLAB without having to rewrite them as M
2. Speed; you can rewrite bottleneck computations (like for-loops) as a MEX-file for efficiency.

MEX-files are not appropriate for all applications. MATLAB is a high-productivity system whos specialty is eliminating time
level programming in compiled languages like C or Fortran. In general, most programming should be done in MATLAB. Do not use the MEX
facility unless your application requires it.

Section 2: Getting help

You can learn more about MEX-files from the MATLAB External Interfaces Guide. If you already know how to write a MEX
use the External Interfaces Function Reference.

NOTE: The MathWorks Technical Support department does not have the resources needed to develop custom code for each specialized
application. If, however, a function is not behaving as you think it should, you can contact Technical Support for help.

Section 3: System setup and configuration

MATLAB supports the use of a variety of compilers for building MEX-files. An options file is provided for each supported compiler. You
specify which compiler you want to use. The MathWorks also maintains a list of compilers supported by MATLAB.

Once you have verified that you are using a supported C or FORTRAN compiler, you are ready to configure your system to build MEX
In order to do this, please run the following command from the MATLAB command prompt:

mex -setup

When you run this command, a series of questions are asked regarding the location of the C or Fortran compiler you would like to use to
compile your code. After answering these questions, a MEX options file is created that gives MATLAB all of the information it needs to use
your compiler during compilation.

Section 4: Testing your system with example MEX-files

Try compiling our sample MEX-file, yprime.c found in the <MATLAB>\extern\examples\mex directory.

If you are using C, please type the following at the MATLAB prompt to compile the file:

mex yprime.c

If you are using Fortran, please type the following at the MATLAB prompt:

mex yprime.f yprimefg.f

This creates a MEX-file that can be used at the command prompt like any M-file. If you now type

Page 2 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

yprime(1,1:4)

you should get the following output:

ans =

 2.0000
 8.9685
 4.0000
 -1.0947

If you do not get this result, or you receive error messages when trying to compile, please add a -v flag to your compilation command.

mex -v yprime.c

This will produce a lot of output (v is for verbose) that shows the compiling and linking process. This may give more information about why
the compilation is failing.

Section 5: Troubleshooting system configuration problems

The following technical support solutions should offer some insight if you have trouble with any of the above steps.

l Technical Note 1621: What should I do before trying to compile?

l Solution 29885: Troubleshooting problems with mex -v yprime.c

l Solution 29876: Why do I get the error "Error: Compile of ‘yprime.c’ failed" when compiling the yprime.c example?

l Solution 22688: Why does MATLAB hang or generate an error when I try to run mex –setup or mbuild –setup?

Section 6: Compiling MEX-files with the Microsoft Visual C++ IDE

Please note that you do not have to compile your MEX-file within an IDE. Using the MEX utility included with MATLAB is easier and will work
just as well; using MSVC is just an alternative. In addition, you will need knowledge of MSVC to do this.

In general, it is not practical for us to offer complete technical support on the details of using any specific one of the large number of
environments our customers use. If you need detailed assistance with the particular settings needed to get your IDE environment to
generate code that successfully compiles and runs with our products, we suggest you contact the manufacturer of your IDE to get either
information or expert technical assistance in using it.

For the details on project settings to compile MEX-files, please see the MATLAB External Interfaces/API Reference. You may also want to
refer to Solution 26470.

Section 7: Setting up the MATLAB Add-In for Visual Studio

The MathWorks provides a MATLAB Add-in for the Visual Studio development system that allows you to work easily within Microsoft Visual
C/C++ (MSVC). The MATLAB Add-in for Visual Studio greatly simplifies using MEX-files in the MSVC environment.

For instructions on setting up the Add-In, please see Solution 29041.

If you have trouble compiling the MEX-file, please see Solution 28875.

Once you have the Add-In set up, you can use your IDE to compile your MEX-file.

Section 8: The ingredients of a MEX-file

All MEX-files must include four things:

Page 3 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

1. #include mex.h (C/C++ MEX-files only)
2. mexFunction gateway in C/C++ (or SUBROUTINE MEXFUNCTION in Fortran)
3. The mxArray
4. API functions

Section 9: mex.h

Every C/C++ MEX-file must include mex.h This is necessary to use the mx* and mex* routines that are discussed in the
section of the technical note.

Section 10: mexFunction gateway

The gateway routine to every MEX-file is called mexFunction. This is the entry point MATLAB uses to access the DLL.

In C/C++, it is always:

 mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[]) { … }

In Fortran, it is always:

 SUBROUTINE MEXFUNCTION(NLHS, PLHS, NRHS, PRHS)

Here is what each of the elements mean:

The variables nrhs and nlhs are the number of variables that MATLAB requested at this instance. They are analogous to
NARGOUT in MATLAB.

The variables prhs and plhs are not mxArrays. They are arrays of pointers to mxArrays. So if a function is given three inputs, prhs will be
array of three pointers to the mxArrays that contain the data passed in. The variable prhs is declared as const. This means that the values
that are passed into the MEX-file should not be altered. Doing so can cause segmentation violations in MATLAB. The values
invalid when the MEX-file begins. The mxArrays they point to must be explicitly created before they are used. Compilers won
problem, but it will cause incorrect results or segmentation violations.

Section 11: The mxArray

The mxArray is a special structure that contains MATLAB data. It is the C representation of a MATLAB array. All types of MATLAB arrays
(scalars, vectors, matrices, strings, cell arrays, etc.) are mxArrays. For a detailed description of an mxArray, please see the
External Interfaces Guide.

The MATLAB language works with only a single object type, the mxArray. All MATLAB variables, including scalars, vectors, matrices, strings,
cell arrays, and structures are stored as mxArrays. The mxArray declaration corresponds to the internal data structure that MATLAB uses to
represent arrays. The MATLAB array is the C language definition of a MATLAB variable. The mxArray structure contains, among other
things:

1. The MATLAB variable's name
2. Its dimensions
3. Its type
4. Whether the variable is real or complex

If the variable contains complex numbers as elements, the MATLAB array includes vectors containing the real and imaginary parts. Matrices,

MexFunction Name of the gateway routine (same for every MEX-file)

nlhs Number of expected mxArrays (Left Hand Side)

plhs Array of pointers to expected outputs

nrhs Number of inputs (Right Hand Side)

prhs Array of pointers to input data. The input data is read-only and should not be altered by your mexFunction

Page 4 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

or m-by-n arrays, that are not sparse are called full. In the case of a full matrix, the mxArray structure contains parameters called pr and pi. pr
contains the real part of the matrix data; pi contains the imaginary data, if there is any. Both pr and pi are one-dimensional arrays of
precision numbers. The elements of the matrix are stored in these arrays column-wise.

An mxArray is declared like any other variable:

mxArray *myarray;

This creates an mxArray named myarray. The values inside myarray are undefined when it’s declared, so it should be
mx* routine (such as mxCreateNumericArray) before it is used.

It is important to note that the data inside the array is in row major order. Instead of reading a matrix’s values across and then down, the
values are read down and then across. This is contrary to how C indexing works and means that special care must be taken when accessing
the array’s elements. To access the data inside of mxArrays, please use the API functions (see below).

Section 12: API functions

mx* functions are used to access data inside of mxArrays. They are also used to do memory management and to create and destroy
mxArrays. Some useful routines are:

Remember that mxGetPr and mxGetPi return pointers to their data. To change the values in the array, it is necessary
value in the array pointed at, or use a function like memcpy from the C Standard Library.

int ;
double *output;
double data[] = {1.0, 2.1, 3.0};
/* Create the array */
plhs[0] = mxCreateDoubleMatrix(1,3,mxReal);
output = mxGetPr(plhs[0]);
/* Populate the output */
for (j = 0; j < 3; j++)
memcpy(output, data, 3*sizeof(double));
output[j] = data[j]

The API functions mxCallocand mxFree etc. should be used instead of their Standard C counterparts because the mx*
MATLAB manage the memory and perform initialization and cleanup.

On the PC there is no concept of stdin, stdout and stderr, so it is important to use MATLAB’s functions such as mexPrintf
mexError. A full list of mx* routines with complete descriptions can be found in the MATLAB External/API Reference Guide

mex* functions perform operations back in MATLAB. Some useful routines are:

A full list of mex* routines with complete descriptions can be found in the MATLAB External/API Reference Guide.

Array creation mxCreateNumericArray, mxCreateCellArray, mxCreateCharArray

Array access mxGetPr, mxGetPi, mxGetM, mxGetData, mxGetCell

Array modification mxSetPr, mxSetPi, mxSetData, mxSetField

Memory
management

mxMalloc, mxCalloc, mxFree, mexMakeMemoryPersistent, mexAtExit, mxDestroyArray,
memcpy

mexFunction Entry point to C MEX-file
mexErrMsgTxt Issue error message and return to MATLAB
mexEvalString Execute MATLAB command in caller's workspace
mexCallMATLAB Call MATLAB function or user-defined M-file or MEX-file
mexGetArray Get copy of variable from another workspace

mexPrintf ANSI C printf-style output routine

mexWarnMsgTxt Issue warning message

Page 5 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

The MEX API provides several functions that allow you to determine various states of an array. These functions are used to check the input
to the MEX-file, to make sure it is what's expected. All of these functions begin with the mxIs prefix. In some cases it may
use the specific mxIs function for a specific datatype. However, it is much easier, in general, to use mxIsClass to perform this operation.

In order to prevent passing inputs that are the incorrect type, use the mxIsClass function extensively at the beginning
example, suppose prhs[0] is supposed to be a regular, full, real-valued array. To prevent passing your function a sparse matrix, a string
matrix, or a complex matrix, use code similar to the following:

if (mxIsChar(prhs[0]) || mxIsClass(prhs[0], "sparse") ||
mxIsComplex(prhs[0]))
mexErrMsgTxt("first input must be real, full, and nonstring");

Putting these checks in your code prevents your MEX-file from crashing for no apparent reason when you accidentally pass it the wrong type
of data.

Section 13: Example: Writing a "Hello World" MEX-file

In this first example, we will create a MEX-file (hello.c) that prints “hello world” to the screen. We will then build and run the MEX
MATLAB.

1. As described in the ingredients section, every MEX-file includes mex.h. Thus, your MEX source should start like

#include "mex.h"

2. Every MEX-file has the mexFunction entry point. The souce now becomes

#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]) {

3. Add an API function to make the MEX-file do something. The final version of the souce becomes:

#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]) {
mexPrintf("Hello, world!\n"); }

Our first MEX-file is complete. Please save it as hello.c.

4. The next step is to tell MATLAB which compiler you want to use to build the MEX-file. You do this with the mex
You can choose the LCC compiler, the C compiler included with MATLAB.

This is what it looks like from the MATLAB command prompt:

 >> mex -setup
 Please choose your compiler for building
 external interface (MEX) files:

 Would you like mex to locate installed compilers [y]/n? y

 Select a compiler:
 [1] Lcc C version 2.4 in D:\MATLAB6P1\sys\lcc
 [2] Microsoft Visual C/C++ version 6.0 in
 D:\Applications\Microsoft Visual Studio
 [0] None

 Compiler: 1

 Please verify your choices:
 Compiler: Lcc C 2.4

Page 6 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

 Location: D:\MATLAB6P1\sys\lcc
 Are these correct?([y]/n): y

 The default options file:
 "C:\WINNT\Profiles\username.MATHWORKS\Application Data\...
 MathWorks\MATLAB\R12\mexopts.bat" is being updated...
 from D:\MATLAB6P1\BIN\WIN32\mexopts\lccopts.bat...

5. Now you are ready to compile and link the MEX-file. You can do this with the following command:

mex hello.c

Notice that hello.dll (the MATLAB callable dll) is created in the current directory.

 >> mex hello.c

6. You can now call the MEX-file like any other M-file by typing its name at the MATLAB command prompt.

 >> hello
 Hello, world!
 >>

Section 14: Example: Using API routines to work with mxArrays

In the example below, we will create a MEX-file that takes any number of inputs and creates and equal number outputs.
The output values will be twice the input values.

1. The first job of the MEX-file is to create mxArrays to hold the output data. Each output will be the same size as its corresponding input.

This is done using mxCreateDoubleMatrix (creating a matrix to hold doubles), mxGetM (the number of rows the output should be),
and mxGetN (the number of columns the output should be).

2. After the output mxArray is created, the only things left to do is to multiply the input by two, and to put that value into the output array.
This is done with mxGetPr (get a pointer to the real part of the input data) and mxMalloc
(the MEX version of the C function malloc).

3. The source code for this example is

 #include "mex.h"
 void mexFunction(int nlhs, mxArray *plhs[],
 int nrhs, const mxArray *prhs[]) {

 int i, j, m, n;
 double *data1, *data2;
 if (nrhs != nlhs)
 mexErrMsgTxt("The number of input and output arguments
 must be the same.");

 for (i = 0; i < nrhs; i++) {
 /* Find the dimension of the data */
 m = mxGetM(prhs[i]);
 n = mxGetN(prhs[i]);

Note: Anywhere where you would use malloc/free in a C program, you should use mxMalloc and mxFree
To get more help on these or any other function, please see the API Function Reference.

Page 7 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

 /* Create an mxArray for the output */
 plhs[i] = mxCreateDoubleMatrix(m, n, mxREAL);

 /* Get the data passed in */
 data1 = mxGetPr(prhs[i]);

 /* Create an array for the output's data */
 data2 = (double *) mxMalloc(m*n * sizeof(double));

 /* Put data in the array */
 for (j = 0; j < m*n; j++)
 data2[j] = 2 * data1[j];

 /* Assign the data array to the output array */
 mxSetPr(plhs[i], data2);
 }
 }

Please save the source as timestwo.c

4. The MEX-file can now be compiled.

 mex –setup %choose your C compiler

 %(LCC is fine for the example)

 mex timestwo.c

5. Now the MEX-file can be called from MATLAB like any other M-file. For example,

 >> [a,b]=timestwo([1 2 3 4; 5 6 7 8], 8)
 a =

 2 4 6 8
 10 12 14 16

 b =

 16
 >>

Section 15: Example: Checking inputs and outputs via a MEX-file

 /* The following is a very basic
 MEX-file that checks to make sure
 that its input is a scalar.
 Note that it is written in ANSI C. */

 #include "mex.h"

 void mexFunction (int nlhs,
 mxArray *plhs[],
 int nrhs,
 const mxArray *prhs[]);

 {
 int m, n;

Page 8 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

 double x, *y;

 /* check: only one input and one output argument */
 if (nrhs !=1)
 mexErrMsgTxt("Must have one input argument");
 if (nlhs !=1)
 mexErrMsgTxt("Must have one output argument");

 /* prevent you from passing a sparse matrix,
 a string matrix, or a complex array. mxIsComplex
 is used to determine if there is an imaginary
 part of the mxArray. mxIsClass is used to determine
 if the mxArray belongs to a particular class */

 if (mxIsComplex(prhs[0])|| mxIsClass(prhs[0],
 "sparse") || mxIsChar(prhs[0]))
 mexErrMsgTxt("Input must be real, full,
 and nonstring");
 }

The function mexErrMsgTxt works like the MATLAB function ERROR. When called, it exits the MEX-file and reports an
error message specified in the input string.

This MEX-file example first checks to make sure that the function was called correctly, with the correct number of inputs
and outputs. It then verifies that the input is a scalar. Finally,using the mxIs* functions, it
verifies that the input is a full nonsparse array.

Section 16: Example: Passing arrays between MEX-files and MATLAB

Usually, arrays are passed to MATLAB via the right-hand side (rhs) and the left-hand side (lhs)
method. This means that variables are passed into and out of a function by being included as
arguments to the function. Sometimes, there are cases in which you may need to violate this standard.
Some examples are:

1. You have more than 50 input or output variables (MATLAB has a limit of 50)
2. You want to modify many variables using a function, and you don't want

to have to type

 [a,b,c,d,e,f,g,h,...] = func(a,b,c,d,e,f,g,h,...)

Unlike function M-files, MEX functions have the unique ability to get matrices from the workspace
of the calling function, without having the matrix passed in via the prhs structure. The calling
function is the M-file function from which the MEX-file is called. When a MEX-file is called
from an M-file script or the command line, the calling function's workspace is the main MATLAB
workspace. For example, assume you call the following
function.

 function thefun

 x=5; y=0;

 themexfun(x);

Even though themexfun is only passed the variable x, it can still gain access to the variable y.
The following code fragment shows one way this can be done from inside the MEX-file.

 const mxArray *array_ptr;
 array_ptr = mexGetArray("y", "caller");

When this code is executed, a copy of the variable y is made, and array_ptr is assigned to point to it.
The following examples describe the three mexGet* functions that can access an array in more detail.

Page 9 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

The examples use these variable declarations:

 const mxArray *array_ptr;
 int m,n, errcode;
 double *pr, *pi;
 char *name;

Example of using mexGetArray
array_ptr=mexGetArray(name, workspace) makes a copy of the matrix whose
name is specified from the base workspace. It Returns a pointer to the copy, or NULL if the
matrix doesn't exist.

 const mxArray *mymatrix;

 if ((mymatrix = mexGetMatrix("a", "base"))==NULL)

 mexErrMsgTxt("Variable 'a' not in workspace.");

 else {

 <do stuff with mymatrix>

 }

Example of using mexGetArrayPtr

array_ptr=mexGetArrayPtr(name, workspace)

is similar to mexGetArray, but instead of making a copy of the array, a pointer to the original array
is returned. The only thing you should do with array_ptr is examine the array’s data and characteristics. If you need
to change data, call mxGetArray:

 const mxArray *myarray;

 if ((myarray = mexGetMatrixPtr("a", "base"))==NULL)
 mexErrMsgTxt("Variable 'a' not in workspace.");
 else {
 <do stuff with mymatrix>
 }

In general, be careful when using any of the mexGet* or mexPut* functions. These functions,
especially the mexPut* functions, are likely to have strange side effects, which at best create strange variables in
your workspace, and at worst write over your data without you knowing about it.

Section 17: Example: Calling MATLAB functions from MEX-files

There are two functions that allow you to call other MATLAB functions.

1.

mexEvalString
2.

mexCallMATLAB

Using mexEvalString

errcode=mexEvalString(str) is similar to MATLAB's EVAL function. It evaluates its
string input in the calling function's workspace, in the same manner as if it had been
entered at the MATLAB command line.

For example,

Page 10 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

mexEvalString("p=plot(1:10);");

would generate a plot of 1 to 10 in the current figure window. Note
that since the command is evaluated in the calling function's workspace,
the variable p is stored in the calling function's workspace. Thus, if
the MEX-file were to be called from within an M-file function, p would
be stored in that function's workspace, not the main workspace.

Although mexEvalString is easy to code, the string passed to mexEvalString
is evaluated by MATLAB, therefore, the MATLAB parser has to be called.
Calling another MEX-file via mexEvalString is not very efficient since
the MATLAB parser is called. Also, all variables created by the mexEvalString
command are stored in the workspace of the function text called by the
MEX-file, which may need to be retrieved with the mexGet* functions. A
more efficient way to accomplish the same goal is to use the mexCallMATLAB
function (assuming you're calling a function and not a script).

Using mexCallMATLAB

Other MATLAB functions including built-in functions, MEX-file and M-file
functions (not M-file scripts) can be called from within a MEX-file using
the mexCallMATLAB function.

This function accepts five inputs. The first four are structured as integers, exactly
the same as the inputs to mexFunction: nlhs, plhs, nrhs, and prhs.

plhs and prhs are pointers to arrays of mxArrays. You set up nrhs, prhs, and nlhs to contain what you
want passed to the MATLAB function that you are calling. The function returns any output data in plhs.
Thus, it is as if your MEX-file is acting as the MATLAB parser, arranging the data in the correct data
structure and passing it to the function. The fifth argument is a character string containing the name of the
MATLAB function to be called. The following is an example of this that calculates the determinant
of a matrix and prints it out. The example assumes the matrix pointer array_ptr has already been
initialized to contain valid data.

 int nlhs1, nrhs1; /*chances are plhs and prhs are
 already used by mexFunction */
 mxArray *plhs1[1], *prhs1[1];

 prhs1 = 1; /* One output requested from the
 'det' function */
 prhs1 = 1; /* One input passed to the 'det'
 function */
 prhs1[0] = array_ptr; /* Set up input argument to 'det' */

 mexCallMATLAB(nlhs1,plhs1,nrhs1,prhs1,"det");
 mexPrintf("Det(array_ptr) == %g",mxGetScalar(plhs1[0]));

Section 18: Additional MEX examples

The MATLAB External Interfaces Guide has several example MEX-files
dealing with different types of data including scalars, strings, structures,
cell arrays, and sparse arrays.

If you are writing FORTRAN MEX-files, similar examples can be found here.

Section 19: Custom options files

Page 11 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

The mex script has a set of switches (also called options) that you
can use to modify the link and compile stages. For a list with descriptions of
switches available, please type:

 mex –help

at the MATLAB command prompt.

For customizing the build process, you should modify the options file,
which contains the compiler-specific flags corresponding to the general
compile, prelink, and link steps required on your system. The options file
consists of a series of variable assignments; each variable represents
a different logical piece of the build process.

Depending on your platform, the mex script looks for an options file
in the following location:

On UNIX:

1. The current directory
2. $HOME/.matlab/R12
3. <matlab>/bin

On a PC:

1. The current directory
2. The user profile directory. See the section below for more information on this directory.
3. <matlab>\bin\win32\mexopts

The user profile directory

The Windows user profile directory contains user-specific information such as
desktop appearance, recently used files, and Start menu items.
The mex and mbuild utilities store their respective options files that are created during the -setup process,
mexopts.bat and compopts.bat in a subdirectory of your user profile directory, named
Application Data\MathWorks\MATLAB.

Under Windows NT and Windows 95/98 with user profiles enabled, your user
profile directory is %windir%\Profiles\username. Under Windows 95/98 with
user profiles disabled, your user profile directory is %windir%. Under Windows
95/98, you can choose whether or not user profiles are enabled by using the
Passwords control panel.

Under Unix, MATLAB information is stored in $HOME/.matlab

Running mex –setup creates an options file in the user’s home/profile directory for mex to use. In order to use
a custom options file, you can either copy your file to one of the locations listed above or you can use the –f option.
For example:

 mex -f /home/username/mexoptions/myopts.sh ...
 <path to your options file>

Section 20: Linking multiple files

It is possible to combine several object files and use object file libraries when
building MEX-files. To do so, simply list the additional files with their full extension,
separated by spaces. For example, on a PC:

Page 12 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

 mex circle.c square.obj rectangle.c shapes.lib

is a legal command that operates on the .c, .obj, and .lib files to create a MEX-file called

circle.dll

where dll is the extension corresponding to the MEX-file type on the PC. The name of the
resulting MEX-file is taken from the first file in the list.

You may find it useful to use a software development tool like MAKE to manage
MEX-file projects involving multiple source files. Simply create a MAKEFILE that
contains a rule for producing object files from each of your source files, then invoke
mex to combine your object files into a MEX-file. This way you can ensure that your
source files are recompiled only when necessary.

Section 21: General debugging steps

In general, these are the steps in debugging:

1. Something bad happens
2. Compile with –g. For example

mex –g yourmexfile.c

3. Invoke MATLAB through the debugger
4. Turn MEX debugging on (UNIX/VMS only)
5. Encounter badness
6. Use the debugger
7. Fix the problem
8. Compile without –g
9. Repeat as necessary

Section 22: Debugging with the Microsoft Developer's Studio

1. Run

vcvars32.bat

from a DOS prompt to setup the compiler environment

2. Run the debugger:

msdev filename.dll

3. Tell MSVC to use MATLAB: Project -> Settings -> Debug tab. Change
"Executable for Debug Session" to full path to matlab.exe

4. Add the source file(s): File -> Open
5. Set some breakpoints in the code: Navigate to the line and press F9
6. Start debugging: Build -> Start Debugging -> Go
7. Run the MEX-file in MATLAB
8. Step through the program

NOTE: Your debugger window might not look exactly like this, but the components
should all be there. The major components are described above. Also, the
vcvars32.bat file doesn’t need to be run if the compiler is installed
on your machine. If it is not or if multiple versions of the same
compiler are installed, you should run this.

You may get an error message,

Page 13 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

 matlab.exe contains no debugging information.

The MathWorks does not distribute a debuggable version of MATLAB, so this error is to be expected
and can safely be ignored.

Once the breakpoint is encountered you should use one of the "step"
functions on the left-hand side above. "Step Into" moves you into
the function call on the current line. "Step out" finishes the current
function and moves back into the calling code. "Step over" unlike
"step into" executes the current line but does not move into the function
that is called. "Run to cursor" allows you to skip big sections
of code.

The stack indicates all of the functions that were called to get to
the current location. You can select a different function from the
stack to see how the current function was called and to access the calling
function’s variables. The watch window and current value window allow you to inspect the values
in the function as they change.

Section 23: Debugging with DBX in UNIX

This sections assumes some knowledge about DBX.

1. Start up MATLAB with the debugger:

matlab -Ddbx

This also starts the debugger.

2. Continue loading MATLAB by typing

run

at the debugger prompt.

3. After MATLAB starts, enable debugging:

dbmex on

4. Call the MEX-file as you normally would; this drops you into the debugger.
5. Set breakpoints and issue the continue command.
6. Once the breakpoint is hit, use the normal debugger routines.

Useful GDB commands

Section 24: Using other debuggers

You can invoke MATLAB with various flags for various debuggers.

file Read a source file in

step Move forward one line in debugging

where, whereami Show the call stack, show the current location

list Show the current line and following source file contents

print Display the value of a variable

stop in, stop at Stop in a particular function, stop at a particular line

help Show the help

what Tell what a thing is, give the function prototype, etc.

matlab –Dgdb The GNU debugger

Page 14 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

Section 25: C++ MEX-files - WARNING

MEX-files are only officially supported in MATLAB if they are written in C or FORTRAN.
C++ MEX-files are not officially supported. With some work and tweaking on your own,
you may be able to get a C++ MEX-file to work as well.

Section 26: Tips for C++ MEX-files

Here are some tips to keep in mind if you decide to use C++ in your
MEX-file.

1. The mexFunction definition, along with included headers should be wrapped

with extern "C" so that it has "C linkage" for the benefit of MATLAB.
Within the body of the mexFunction definition, full C++ syntax is allowed.
For an example MEX-file, please see:

 <MATLAB>/extern/examples/mex/mexcpp.cpp

The extension .cpp was chosen rather arbitrarily, but mainly for being
unambiguous and generally recognized by C++ compilers. The mex script
should recognize any other common C++ source file extension, such as
.C, .cc, or .cxx.

2. Using cout will not work as expected in C++ MEX-files.
This is because cout is expecting to use a display that is not MATLAB.
To workaround this problem, please use mexPrintf instead.

3. The MathWorks has had the best luck compiling C++ MEX-files
with MSVC 6.0 on the PC and with the system C++ compiler on UNIX.

4. If you run your MEX-file in MATLAB and you do not receive the expected
output, make sure that you have a C++ flush() function call in your program.

Section 27: Compiling C++ MEX-files

On UNIX:

In order to compile this example, you should copy the options file
for C++ MEX-files (<MATLAB>/bin/cxxopts.sh) to your current directory.
Then, invoke MEX as:

mex mexcpp.cpp -f cxxopts.sh

On PC:

Be sure to set your environment for MSVC++ 6.0. In order to do
this, run

mex -setup

at the MATLAB command prompt. Then invoke MEX as:

mex mexcpp.cpp

Section 28: If Linking fails

matlab –Dddd A graphical front end to GDB
matlab -D"workshop -D <path to matlab.exe>" The Sun Workshop debugger

Page 15 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

1. Retry compiling with

yprime.c

2. Try running

mex -setup

again

3. Check that you are using a supported compiler. A list of supported
compilers can be found in Technical Note 1601.

4. Verify that the code is correct C code

5. If you are getting linking, unresolved external, or undefined symbols
errors, follow these steps:

a. Find the name of the symbol
b. It is a MathWorks symbol? Does it begin with

"_mx", "_mex", "_eng","_mat", "_mlf", or "_mcl"?
c. If it’s a MathWorks symbol, make sure you are linking aganist the correct libraries

Section 29: If loading fails

1. Make sure the MEX-file is a 32-bit DLL and doesn’t use any 16-bit libraries

2. Make sure <MATLAB>/extern/lib/$ARCH is included in $LD_LIBRARY_PATH

3. Messages from ld.so usually indicate a problem with the library

path

4. On the PC, make sure that the directories of all necessary external
DLL’s are in the PATH variable

Section 30: If running fails - segmentation violations:

Memory is grouped into blocks, or segments. A key function of
every operating system is to keep track of which processes own the various
memory segments. A process can only access memory which it owns.
This prevents critical data from being overwritten and maintains security.

A segmentation violation occurs when a process attempts to access memory
which it does not own. This typically happens when a user tries to
write past the end of an array, access dynamically allocated data that
has previously been freed, or de-reference a NULL pointer.

If you encounter a problem like this, please debug the MEX-file using
the steps in the debugging section of this technical note.

Page 16 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

Please do not use the following form to request support.
Support assistance forms are available by clicking contact us on any of the support pages.

Did this information help? Yes nmlkj No nmlkj Didn't Apply nmlkj

Is the level of technical detail appropriate? Yes nmlkj Too Much nmlkj Not Enough nmlkj

What did you expect to find on this page that you want us to consider adding?

Additional Comments:

Submit Feedback

 Demos I Search I Contact Support I Consulting I Press Room I Usability

 The MathWorks, Inc. Trademarks Privacy Policy

Page 17 of 17

3/4/2004http://www.mathworks.com/support/tech-notes/1600/1605.shtml

