
Tech-Note 1109: How Do I Vectorize My Code?

1109 How Do I Vectorize My Code?
Revison: 1.3 Last Date Modified: 31-August-2000

This technical note provides an introduction to vectorization techniques. In
order to understand some of the tricks available, an introduction to MATLAB
indexing is provided. Then several vectorization techniques are discussed, in
order of simplest to most complicated.

There are two aspects to this presentation. Knowledge of all the techniques
available is only half of the battle. The other half is knowing when to use them --
recognizing situations where this approach or that one is likely to yield a better
(quicker, cleaner) algorithm. Each section provides an example, which
proceeds from a description of the problem to a final solution. We hope that
illustrating the process by example achieves both of these goals.

1. MATLAB Subscripting

A powerful feature of MATLAB is the ability to select subsets of an array or
matrix. There are two types of subscripting available in MATLAB.

In indexed subscripting, the values of the subscript are the indices of the matrix
where the matrix's values are desired. Thus, if A = 1:5, then A([3,5]) denotes
the third and fifth elements of matrix A:

 » A = 1:5;
 » A([3,5])
 ans =

 3 5

The second type of subscripting is logical subscripting. With this type of
subscripting, the subscript is a matrix the same size as A containing only 0's

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (1 of 13) [4/25/2002 2:47:46 PM]

http://www.mathworks.com/index.shtml
http://www.mathworks.com/siteindex.shtml
http://www.mathworks.com/search/
http://www.mathworks.com/company/contact.shtml
http://www.mathworks.com/index.shtml
http://www.mathworks.com/products/
http://www.mathworks.com/consulting/
http://www.mathworks.com/company/events/
http://www.mathworks.com/support/
http://www.mathworks.com/store/index.html

Tech-Note 1109: How Do I Vectorize My Code?

and 1's.

The elements of A that are selected have a '1' in the corresponding position of
the subscripting matrix. For example, if A = 1:5, then A(logical([0 0 1 0 1]))
denotes the third and fifth elements of A:

 » A = 1:5;
 » A(logical([0 0 1 0 1]))
 ans =

 3 5

This second type of subscripting is very powerful, and we use it frequently in
the following sections. For more information on subscripting, see the Using
MATLAB manual.

2. Basic Array Operations: y(i) = fcn(x1(i), x2(i), ...)

The simplest type of vector operations in MATLAB can be thought of as bulk
processing. In this approach, the same operation is performed for each
corresponding element in a data set (which may include more than one
matrix).

Suppose you have some data from an experiment. The data measurements
are the length L, width W, height H, and mass M of an object, and you want to
find the density D of the object. If you had run the experiment once, you would
just have one value for each of the four observables (i.e., L, W, H, and M are
scalars). Here is the calculation you want to run:

 D = M/(L*W*H)

Now, suppose that you actually run the experiment 20 times. Now L, W, H, and
M are vectors of length 20, and you want to calculate the corresponding vector
D, which represents the density for each run.

In most programming languages, you would set up a loop, the equivalent of the
following MATLAB code:

 » for i = 1:20
 D(i) = M(i)/(L(i)*W(i)*H(i));

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (2 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

 end

The beauty of MATLAB is that it allows you to ignore the fact that you actually
ran 20 experiments. You can perform the calculation element-by-element over
each vector, with (almost) the same syntax as the first equation, above:

 » D = M./(L.*W.*H);

The only difference is the use of the .* and ./ operators. These differentiate
element-by-element operators, called array operators, from the (quite different)
linear algebra operators, called matrix operators. For example, * denotes
matrix multiplication, ^ denotes matrix exponentiation, etc. (See Strang, Linear
Algebra with Applications, for an introduction to linear algebra operators.) In
this context you should use the array operators, although the matrix operators
will become useful later on.

3. Boolean Array Operations: y = bool(x1, x2, ...)

A logical extension of the bulk processing idea is to vectorize comparisons and
decision making. MATLAB comparison operators, like the array operators
above, accept vector inputs and produce vector outputs.

Suppose that, after running the above experiment, you find that negative
numbers have been measured for the mass. As these values are clearly
erroneous, you decide that those runs for the experiment are invalid.

You can find out which runs are valid using the >= operator on the vector M:

 » M = [-.2 1.0 1.5 3 -1 4.2 3.14];
 » M>=0
 ans =

 0 1 1 1 0 1 1

Now you can exploit the indexing power of MATLAB to remove the erroneous
values:

 » D = D(M>=0);

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (3 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

This selects the subset of D for which the corresponding elements of M are
non-negative.

Suppose further that, if all values for masses are negative, you want to display
a warning message and exit the routine. You need a way to condense the
vector of Boolean values into a single value. There are two vectorized Boolean
operators, any and all, which perform Boolean AND and OR functions over a
vector. Thus you can perform the following test:

 if all(M<0)
 disp('Warning: all values of mass are negative.');
 return;
 end

You can also compare two vectors of the same size using the Boolean
operators, resulting in expressions such as:

 » (M>=0) & (L>H)

The result is a vector of the same size as the inputs.

Here are two notes on the use of the Boolean functions. First, since MATLAB
uses IEEE arithmetic, there are special values to denote overflow, underflow,
and undefined operations: Inf, -Inf, and NaN, respectively. Inf and -Inf can be
tested for normally (i.e., Inf == Inf returns true), but, by the IEEE standard, NaN
is never equal to anything (even other NaN's). Therefore, there are special
Boolean operators, isnan and isinf, to help test for these values.

Second, if you try to compare two matrices of different sizes, an error results.
You need to check sizes explicitly if the operands might not be the same size.

4. Constructing Matrices from Vectors: y(:,i) = f(x(:))

Creating some simple matrices, like constant matrices, is easy in MATLAB.
The following code creates a matrix of all 10s:

 » A = ones(5,5)*10

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (4 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

It turns out that the multiplication here is not necessary; we can get around it
using an indexing trick. We'll see this in a moment.

Another common application involves selecting specified elements of a vector
to create a new matrix. This is often a simple application of the indexing power
of MATLAB. For example, to create a matrix corresponding to elements [2, 3;
5, 6; 8, 9; 11, 12; ...] of a vector x:

 » x = 1:51;<
 » x = reshape(x, 3, length(x)/3);
 » A = x(2:3,:)';

We are using indexing to exploit the symmetry of the desired matrix. There are
several tools available to exploit different types of symmetry.

There is a famous trick for duplicating a vector of size M by 1, n times, to
create a matrix of size M by N . In this method, known as Tony's Trick, the first
column of the vector is indexed (or referenced, or selected) n times:

 » v = (1:5)';
 » M = v(:,ones(3,1))
 M =

 1 1 1
 2 2 2
 3 3 3
 4 4 4
 5 5 5

Now we realize how our first matrix, size 5 by 5 constant matrix of all 10s, can
be created without matrix multiplication:

 » A = 10;
 » A = A(ones(5))
 A =

 10 10 10 10 10
 10 10 10 10 10
 10 10 10 10 10
 10 10 10 10 10
 10 10 10 10 10

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (5 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

The same trick can be applied to row vectors, by switching the subscripts. It
can also duplicate specific rows or columns of a matrix, provided that you are
not selecting the first row or column, or that the resulting matrix is not the same
size as the original matrix. If these conditions both hold, then there is an
ambiguity. The subscripting vector, which is all ones, could represent logical
subscripting where all columns or rows are chosen once, or it could represent
indexed subscripting where just the first column or row is chosen several
times. In the case of ambiguity, MATLAB chooses to view the intent as logical
subscripting. For example,

 » A = magic(3)
 A =

 8 1 6
 3 5 7
 4 9 2

 » A(:,ones(1,3))
 ans =

 8 8 8
 3 3 3
 4 4 4

 » A(:,ones(1,2))
 ans =

 8 8
 3 3
 4 4

There are also two MATLAB functions which can help create special matrices.
If the desired matrix has a constant diagonal or anti-diagonal, you can
sometimes use the toeplitz or hankel function to create your matrix. Help
sections are shown below:

 TOEPLITZ Toeplitz matrix.

 TOEPLITZ(C,R) is a non-symmetric Toeplitz matrix
 having C as its first column and R as its first row.
 TOEPLITZ(C) is a symmetric (or Hermitian) Toeplitz

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (6 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

 matrix.

 HANKEL Hankel matrix.

 HANKEL(C) is a square Hankel matrix whose first column
 is C and whose elements are zero below the first anti-
 diagonal. HANKEL(C,R) is a Hankel matrix whose first
 column is C and whose last row is R. Hankel matrices
 are symmetric, constant across the antidiagonals, and
 have elements H(i,j) = R(i+j-1).

For example, to create a matrix A, where each column is a rotation of the
vector v above:

 » v = (1:5)';
 » M = toeplitz(v, v([1,length(v):-1:2]))
 M =

 1 5 4 3 2
 2 1 5 4 3
 3 2 1 5 4
 4 3 2 1 5
 5 4 3 2 1

 » M = hankel(v, v([length(v), 1:length(v)-1]))
 M =

 1 2 3 4 5
 2 3 4 5 1
 3 4 5 1 2
 4 5 1 2 3
 5 1 2 3 4

The advantage of being able to construct matrices efficiently is that they can
then be used in further processing. Let's take a look at this aspect next.

5. Matrix Functions of Two Vectors: y(i,j) = f(x1(i), x2(j))

Suppose we want to evaluate a function F of two variables:

 F = x*exp(-x2 - y2)

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (7 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

We want to evaluate the function at every point in vector x, and for each point
in x, at every point in vector y. In other words, we want to define a grid of
values given vectors x and y.

We can duplicate x and y to create an output vector of the desired size using
Tony's Trick. This allows us to use the techniques from section 1 to actually
compute the function.

 » x = (-2:.2:2);
 » y = (-1.5:.2:1.5)';
 » X = x(ones(size(y)),:);
 » Y = y(:,ones(size(x)));
 » F = X.*exp(-X.^2-Y.^2);

You may notice that this is exactly the function examined in the help entry for
the meshgrid function. The meshgrid function can be used as a shorthand for
the above calculation (meshgrid just uses Tony's Trick internally). This can
save some typing and make the code more compact:

 » [X,Y] = meshgrid(-2:.2:2, -1.5:.2:1.5);
 » F = X .* exp(-X.^2 - Y.^2);

In some cases, you can use the matrix multiplication operator in order to avoid
creating the intermediate matrices. For example, if

 F = x*y

you can simply take the outer product of the vectors x and y:

 » x = (-2:2);
 » y = (-1.5:.5:1.5);
 » x'*y
 ans =

 3.0000 2.0000 1.0000 0 -1.0000 -2.0000 -3.0000
 1.5000 1.0000 0.5000 0 -0.5000 -1.0000 -1.5000
 0 0 0 0 0 0 0
 -1.5000 -1.0000 -0.5000 0 0.5000 1.0000 1.5000
 -3.0000 -2.0000 -1.0000 0 1.0000 2.0000 3.0000

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (8 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

There are also cases where sparse matrices allow more efficient use of
storage space, and also allow very efficient algorithms. We discuss this in
more detail in section 6.

6. Ordering, Set, and Counting Operations

Thus far, any calculations done on one element of a vector have been pretty
much independent of other elements in the same vector. However, in many
applications, the calculation you are trying to do depends heavily on these
other values. For example, suppose you are working with a vector x which
represents a set. You do not know, without looking at the rest of the vector,
whether a particular element is redundant and should be removed. It is not
obvious at first how to remove these redundant values without resorting to
loops.

This area of vectorization requires a fair amount of ingenuity, and can be a lot
of fun. There are a number of functions available as tools:

max Largest component.
min Smallest component.
sort Sort in ascending order.
diff Difference operator: diff(X), for a vector X, is:

[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)].
find Find indices of the non-zero, non-NaN elements.

Let's proceed with our example, eliminating redundant elements of a vector.
Note that, once a vector is sorted, any redundant elements are adjacent.
Further, any equal adjacent elements in a vector create a zero entry in the diff
of that vector.

This suggests the following implementation for the operation. We are
attempting to select the elements of the sorted vector, which correspond to non-
zero differences.

 % First try. NOT QUITE RIGHT!!
 » x = sort(x(:));
 » difference = diff(x);
 » x = x(difference~=0);

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (9 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

This is almost correct, but we have forgotten to take into account the fact that
the diff function returns a vector that has one fewer element than the input
vector. In our first try algorithm, the last unique element is not accounted for.
We can straighten this out by adding one element to the vector x before taking
the difference. We need to make sure that the element we add is always
different than the previous last element. One way to do this is to add a NaN.

 % Final version.
 » x = sort(x(:));
 » difference = diff([x;NaN]);
 » y = x(difference~=0);

Two quick notes on the above algorithm. First, note that we use the (:)
operation to ensure that x is a vector. Second, you may be wondering why we
didn't use the find function, rather than ~=0 -- especially since this function is
specifically mentioned above. This is because the find function does not return
indices for NaN elements, and the last element of difference as we defined it is
a NaN.

Now, suppose that we do not just want to return the set x; we want to know
how many occurrences of each element in the set occurred in the original
matrix. Once we have the sorted x, we can use find to determine the indices
where the distribution changes. The difference between subsequent indices
will be the number of occurrences for that element. This is the "diff of find of
diff" trick. Building on the above, we have:

 % Find the redundancy in a vector x
 » x = sort(x(:));
 » difference = diff([x;max(x)+1]);
 » count = diff(find([1;difference]));
 » y = x(find(difference));
 » plot(y,count)

This plots the number of occurrences of each element of x. Note that we
avoided using NaN here, because find does not return indices for NaN
elements. However, the number of occurrences of NaNs and Infs are easily
computed as special cases:

 » count_nans = sum(isnan(x(:)));
 » count_infs = sum(isinf(x(:)));

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (10 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

7. Sparse Matrix Structures

Finally, in some cases you can use sparse matrices to increase efficiency.
Often, vectorization is easier if you construct a large intermediate matrix. In
some cases you can take advantage of a sparse matrix structure to vectorize
code without requiring large amounts of storage space for this intermediate
matrix. Let's proceed with an example.

Suppose that, in the last example, you know beforehand that the domain of the
set y is a subset of the integers, {k+1, k+2, ..., k+n}; that is,

 y = 1:n + k

For example, these might represent indices into a colormap. You can take
advantage of this fact in counting the occurrences of each element of the set.
This is an alternative method to the 'diff of find of diff' trick from the last section.

Let's construct a large m by n matrix A, where m is the number of elements in
the original vector x, and n is the number of elements in the set y.

 A(i,j) = 1 if x(i) = y(j)
 0 otherwise

Looking back at sections 3 and 4, you might suspect that we need to construct
matrices from x and y using Tony's Trick. This would work, but it would cost a
lot of storage space. We can do better by exploiting the fact that most of the
matrix A consists of 0's, with only one 1 value per element of x.

Here is how to construct the matrix (note that y(j) = k+j, from the above
formula):

 » x = sort(x(:));
 » A = sparse(1:length(x), x(:)+k, 1, length(x), n);

Now we can perform a sum over the columns of A to get the number of
occurrences.

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (11 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

 » count = sum(A);

Note that in this case we do not have to form the sorted vector y explicitly,
since we know beforehand that y = 1:n + k.

The key here is to use the data, i.e. x, to control the structure of the matrix A.
The fact that x takes on integer values in a known range allows efficient
construction of this matrix.

As a final example, suppose you want to multiply each column of a very large
matrix by the same vector. There is a way to do this using sparse matrices that
saves space and can also be faster than matrix construction using Tony's
Trick. Here's how it works:

 » F = rand(1024,1024);
 » x = rand(1024,1);
 % Point-wise multiplication of each row of F.
 » Y = F * diag(sparse(x));
 % Point-wise multiplication of each column of F.
 » Y = diag(sparse(x)) * F;

We take advantage of the matrix multiplication operator to do the bulk of the
work, and use sparse matrices to prevent the temporary variable from being
too large.

Conclusion

The above discussion is by no means an exhaustive list of all the useful tricks
available in MATLAB. For example, if you were doing 2-D geometric
calculations, it might be useful to represent each point in space as a complex
pair, with the real part corresponding to the x-axis value, and the imaginary
part the y-axis value. As you become experienced, you will no doubt
accumulate your own set of programming idioms. Hopefully, this technical note
has helped you down that road.

 Did this information help? Yes No Didn't Apply

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (12 of 13) [4/25/2002 2:47:46 PM]

Tech-Note 1109: How Do I Vectorize My Code?

Is the level of technical detail
appropriate? Yes Too Much Not Enough

What did you expect to find on this page, that you want us to consider adding?

Additional Comments:

 Demos I Search I Contact Support I Consulting I News & Notes I Usability

http://www.mathworks.com/support/tech-notes/1100/1109.shtml (13 of 13) [4/25/2002 2:47:46 PM]

http://www.mathworks.com/products/demos/
http://www.mathworks.com/search/
http://www.mathworks.com/company/contact.shtml
http://www.mathworks.com/consulting/
http://www.mathworks.com/company/newsletter/
http://www.mathworks.com/products/usability/
http://www.mathworks.com/company/copyright.shtml

	mathworks.com
	Tech-Note 1109: How Do I Vectorize My Code?

	JFNFOIMMOPEGJMLFCAIGGIHKIDNJBFIE:
	form1:
	x:
	f1: answer
	f2: 1109.shtml
	f3:
	f4: Off
	f5: Off
	f6:
	f7:

	f8: SUBMIT
	f9:

