Fast manipulation of multi-dimensional arrays in Matlab and R

Kevin P. Murphy

10 July 2001

1 Introduction

Probabilistic inference in graphical models with discrete random variables requires performing various oper-
ations on multi-dimensional arrays (discrete potentials). (This is true whether we use an exact algorithm like
junction tree [CDLS99, HD96] or an approximate algorithm like loopy belief propagation [AMO00, KFLO01].)
These operations consist of element-wise multiplication of two arrays of potentially different sizes, and sum-
mation (marginalization) over a subset of the dimensions. This report discusses ways to implement these
operations quickly in Matlab (extended with the BNT!) and R2. (See also Acklam’s “MATLAB array ma-
nipulation tips and tricks” at www.math.uio.no/~jacklam. Unfortunately, none of his tips and tricks are
relevant to the current problem!)

2 Multiplication

2.1 Example

Let us start with an example. Consider two arrays, A and B, where A represents a function over the
variables X1, X, X3, X4 and B represents a function over X;, X3. We will say A’s domain is {1,2, 3,4}, and
B’s domain is {1, 3}. Let the size of variable X; (i.e., the number of possible values it can have) be denoted
by S;. Here is a straighforward implementation of A x B:

for i=1:S1
for j=1:52
for k=1:S3
for 1=1:S4
Ali,j,k,1] = A[i,j,k,1] * B[i,1];
end
end
end
end

IBNT is an open-source Matlab package for Bayes Nets. See www.cs.berkeley.edu/~murphyk/Bayes/bnt.html.
2R is an open-source, scheme-like matrix-oriented language for statistical computing. It is very similar to Matlab, and is
essentially identical to S and Splus. See http://www.R-project.org/.



2.2 Naive way (1998)

In the above example, we hard-coded the assumption that A is 4-dimensional, that B is 2-dimensional, and
that the indices that they have in common are i and I. We could implement this for an arbitrary pair of
arrays, T1 and T2, as follows. T1.T contains the array A, Tl.domain contains the domain of A, T1.sizes
contains the size of each dimension in A, and similarly for T2. T2.domain is guaranteed to be a subset of
T1.domain.

mask = find_equiv_posns(T2.domain, T1.domain);
S1 = prod(T1.sizes);
for i1 = 1:S1
subl ind2subv(T1l.sizes, il);
sub2 = subl(mask);
i2 = subv2ind(T2.sizes, sub2);
T1.T(il1l) = T1.T(il1l) * T2.T(i2);
end

The BNT function find_equiv_posns (called match in R) determines where in T1’s domain each element of
T2’s domain occurs. In the above example, mask = [1 3], since X; (the first element of T2.domain) occurs
in the first position of T1.domain, and X3 (the second element of T2.domain) occurs in the third position
of T2.domain.

The function ind2subv converts an integer into a vector of subscripts, so for the above example,

for il=1:prod(Asizes)
[i,j,k,1] = ind2sub(Asizes, il);
assert(isequal (A[i1], A[i,j,k,1]))
end

ind2subv is like the built-in ind2sub, but returns the result as a vector, instead of as multiple arguments.
sub2 extracts the indices that correspond to the entries in T2. These are then converted back to an integer
using subv2ind.

2.3 Pre-computing the indices (1999)

It turns out that the above method is quite slow in Matlab because of the for-loop and the need to call
ind2subv and subv2ind repeatedly. We can eliminate the latter inefficiency by precomputing the indices as
follows:

mask = find_equiv_posns(T2.domain, T1.domain);
S = prod(T1l.sizes);
subs = ind2subv(T1l.sizes 1:5);

ndx = subv2ind(T2.sizes, subs(:,mask));
We can then do the multiplication thus:

T1.T(:) = T1.T(:) .* T2.T(ndx);



This is what jtree_fast_inf_engine in BNT2 did. It is about 45 times faster than the previous method
on small problems. (See BNT/examples/static/timemultiply tables.m for the code.) Unfortunately,
computing all the indices for all the pairs of potentials that must be multiplied takes a lot of time and space.

In R, this can be implemented as follows.

S <- prod(T1l.sizes);
ndx <- array(0, c(S, length(T2.domain)))
for (i in 1:length(T2.domain)) {
stride <- prod(Ti.sizes[1:mask[i]-1])
ndx[,i] <- gl(T2.sizes[i], stride, S) # generate levels for a discrete factor
}
T1.T <- T1.T * T2.T[ndx]

This takes about the same amount of time as the Matlab version. (See BNT/examples/static/time.mult.tables.r
for the code.)

2.4 Vectorizing everything (2000)

We can eliminate the for-loop and the need for indices as follows. We make T2 the same size as T1 by
replicating entries where necessary, and then just doing an element-wise multiplication:

temp = extend_domain(T2.T, T2.domain, T2.sizes, Tl.domain, T1.sizes);
TL.T = T1.T .* temp;

We explain B = extend domain table(A, Adom, Asizes, Bdom, Bsizes) using an example. Let Adom
=[1 3], Asizes = [2 2], Bdom = [1 2 3 4] and Bsizes = [2 2 2 2] (so all variables are binary). First we reshape
A to make it have size [2 1 2 1], so it has the same number of dimensions as T1. Call the result B.

map = find_equiv_posns(Adom, Bdom) ;
sz = ones(1, length(Bdom));

sz(map) = Asizes;

B = reshape(A, sz);

Now we replicate B along dimensions 2 and 4, to make it the same size as Bsizes.

sz = Bsizes;
sz(map) = 1;
B = repmat (B, sz(:)’);

Now we are ready to multiply: B .* A. This is about 6 times faster than the previous method.

Doug Schwarz wrote a genops class using C that can avoid the repmat above. See http://myweb.servtech.com/~schwar:
This is about 1.4 times faster than the pure matlab version.

The file BNT/examples/static/time multiply_tables.m compares 3 methods: pre-computing indices, the
repmat, version and the Genops version. To multiply two tables 10 times, one with domain 1:10 and the
other with domain 1:2:10, where each node has size 3, takes 8.3632, 0.1471 and 0.1049s respectively.



Unfortunately, R does not seem to have a way to do repmat. Instead, we must first make many copies of B
to make it the same size as A, then permute the dimensions, and then multiply:

B <- array(B, Asz) # duplicate elements of B to make it same size as A
diffdom <- Adom[-Bdom] # Adom \ Bdom

B2dom <- c(Bdom, diffdom)

perm <- match(Adom, B2dom)

B <- aperm(B, perm) # make B2 have the same order as A (VERY SLOW)
A<-A*xB # A =T1.T, B =T2.T

To do the same computation as described in time multiply tables.m above takes 1.42 in R version 1.2.3,
and 0.42s in R version 1.3.0 (which has a much faster implementation of aperm). So it seems that R is about
4 times slower than Matlab, at least on this test.

2.5 Generating C code (2001)

Unfortunately, even the vectorized solution is quite slow. So Wei Hu is currently writing Matlab/C code that
will generate customized C code to implement the method in Section 2.3. (By “customized”, we mean that
the model compiler will generate new C code every time the model changes.) The resulting routine in BNT3
is called jtree_compiled_inf _engine. The indices can be computed quickly in C, and then hard-coded
directly into the generated C file instead of being stored in memory. Early experiments indicate a speedup
of a factor of 3-10 over the method in Section 2.4. (The idea of generating compiled code from a model has
also been proposed in [Bun94, FS01, DP97].)

3 Summation/Marginalization

This section to be written.
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