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ABSTRACT
The advent of media-sharing sites like Flickr and YouTube
has drastically increased the volume of community-contributed
multimedia resources available on the web. These collec-
tions have a previously unimagined depth and breadth, and
have generated new opportunities – and new challenges – to
multimedia research. How do we analyze, understand and
extract patterns from these new collections? How can we
use these unstructured, unrestricted community contribu-
tions of media (and annotation) to generate “knowledge”?

As a test case, we study Flickr – a popular photo sharing
website. Flickr supports photo, time and location metadata,
as well as a light-weight annotation model. We extract in-
formation from this dataset using two different approaches.
First, we employ a location-driven approach to generate ag-
gregate knowledge in the form of “representative tags” for
arbitrary areas in the world. Second, we use a tag-driven ap-
proach to automatically extract place and event semantics
for Flickr tags, based on each tag’s metadata patterns.

With the patterns we extract from tags and metadata, vi-
sion algorithms can be employed with greater precision. In
particular, we demonstrate a location-tag-vision-based ap-
proach to retrieving images of geography-related landmarks
and features from the Flickr dataset. The results suggest
that community-contributed media and annotation can en-
hance and improve our access to multimedia resources – and
our understanding of the world.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]:Miscellaneous

General Terms: Algorithms, Measurement
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social media
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1. INTRODUCTION
The proliferation of digital photo-capture devices, and the

growing practice of online public photo sharing, have re-
sulted in large public pools of consumer photographs avail-
able online. Billions of images shared on websites such as
Flickr1 serve as a growing record of our culture and envi-
ronment. Searching, viewing, archiving and interacting with
such collections has broad social and practical importance.
However, due to their magnitude, these collections are in-
creasingly difficult to understand, search and navigate. In
particular, automated systems are largely incapable of un-
derstanding the semantic content of the photographs. Thus,
the prospects of ‘making sense’ of these photo collections
are largely dependent on metadata and information that is
manually assigned to the photos by the users.

Clues as to the content of the images can be found in text
(such as labels or “tags”) that is associated with the im-
ages by users. Researchers have previously analyzed user-
supplied tags in multimedia collections to extract trends and
visualization data [6], as well as suggest annotations for un-
annotated images [14, 20]. However, the associated tags
presents an additional set of challenges for multimedia sys-
tems. As used on Flickr and other photo-sharing website,
tags and other forms of text are freely entered and are not
associated with an ontology or any type of categorization.
Tags are therefore often innacurate, wrong or ambiguous.
In particular, due to the complex motivations involved that
drive usage of tags and text descriptions [2], tags do not
necessesarily describe the content of the image [11].

Location information associated with the photos can prove
valuable in understanding photos’ content. Exceedingly, im-
ages are geo-referenced (or, “geotagged”): associated with
metadata describing the geographic location in which the
images were taken [24]. For instance, more than twenty
million photos with location metadata are now available on
Flickr – the first major collection of its kind. Location meta-
data will be exceedingly available, primarily from location-
aware camera-phones and digital cameras, and initially from
user input [24]. The location metadata alone was shown to
be beneficial in browsing and organizing these collections
[15, 18, 24]. In addition, location can sometimes suggest the
semantic content of the images [14, 20].

Ultimately, systems would benefit from applying com-
puter vision techniques to improve our understanding of im-
ages in community-contributed media collections. Applying
computer vision in unconstrained domains is a difficult prob-

1http://flickr.com



lem that is sure to be a research topic for years to come [21].
However, visual pattern recognition approaches can be used
for some well-defined tasks in such unstructured collections.

The key contribution of this paper is combining tag-based,
location-based and content-based analysis to improve the
automated understanding of such large user-contributed me-
dia collections. First, an analysis of the tags associated with
images using a location-driven approach helps us generate
“representative tags” for arbitrary areas in the world. The
selected tags often correspond to landmarks or geographic
features inside the areas in question. Second, we employ
a tag-driven approach to automatically extract place and
event semantics for Flickr tags, based on each tag’s meta-
data (location and time) patterns.

Using the patterns we extract from tags and location, vi-
sion algorithms can be employed with greater precision. In
particular, we demonstrate a location-tag-vision-based ap-
proach to retrieve images of geography-related landmarks
and features from the Flickr dataset.

In particular, this context-annotation-content analysis has
the potential to assist in various critical tasks involving me-
dia collections, including:

• Improving precision and breadth of retrieval for land-
mark and place-based queries.

• Soft annotation of photos, or suggesting tags to un-annotated
geo-referenced photos uploaded by users.

• Generating summaries of large collections by selecting
representative photos for places and identified landmarks.

Our work is motivated and designed by the characteristics
of an actual, existing dataset of more than 20,000,000 geo-
referenced photos currently available on Flickr. We do not
rely on gazetteers, or existing lists of landmarks, ontologies
of tag semantics, or any other manual classification. This
realistic dataset offers a huge opportunity, accompanied, of
course, by new challenges and requirements for multimedia
research.

The metadata model used throughout this paper is de-
fined in Section 3. We describe the location-driven analysis
in Section 4. In Section 5, we describe how we extract se-
mantics from Flickr tags by their metadata distributions.
Section 6 provides the details on incorporating vision algo-
rithms in our analysis; a short evaluation is presented in
Section 7. We begin, of course, with related work.

2. RELATED WORK
We report below on related work in metadata and mul-

timedia fusion, metadata-based models of multimedia, and
computer-vision approaches to landmark recognition.

The topic of “landmark recognition” has been studied
in the last few years, but applied to limited or synthetic
datasets only. In particular, analysis of context and content
in photo collection has been studied in [5, 17, 25, 27] and
more. The work of Tsai et al. [25], for example, attempted
to match landmark photos based on visual features, after
filtering a set of images based on their location context.
This effort serves as an important precursor for our work
here. However, the landmarks in the dataset for Tsai et al.
were pre-defined by the researchers that assumed an existing
database of landmark. This assumption is at best exremely
limiting, and perhaps unrealistic. O’hare at al. [17] used a
query-by-example system where the sample query included
the photo’s context (location) in addition to the content,

and filtered the results accordingly. This method is of course
different than our work to automatically identify landmarks
and their locations. Davis et al. [5] had a similar method
that exposed the similarity between places based on content
and context data, but did not detect or identify landmarks.

Other work has addressed building models of location
from the context and annotation of photographs. In [14],
Naaman et al. extract location-based patterns of terms that
appear in labels of geotagged photographs of the Stanford
campus. The authors suggest to build location models for
each term, but the system did not automatically detect land-
marks, nor did it include computer vision techniques.

In the computer vision field, in [11], the authors investi-
gated the use of “search-based models” for detecting land-
marks in photographs. In that application, the focus was the
use of text-based keyword searches over web image collec-
tions to gather training data to learn models to be applied to
consumer collections. That work, albeit related to our work
here, relies upon pre-defined lists of landmarks; we inves-
tigate the use of metadata to automatically discover land-
marks. Furthermore, the focus of that work is on predict-
ing problems that would emerge from cross-domain learning,
where models are trained on images from web search results
and then applied to consumer photos.

In [3], Berg and Forsyth present an approach to ranking
“iconic” images from a set of images with the same tag on
Flickr. Our work also examines ranking the most represen-
tative (or iconic) images from a set of noisily labeled images
which are likely of the same location. A key difference is
that in [3], the locations are manually selected, and it is as-
sumed that there is one iconic view of the scene, rather than
a diverse set of representative views as we show in this work.

Snavely et al. [22] have presented a system which can
register point-wise correspondences between various images
of the same location and iteratively approximate the cam-
era angles from which the various images were collected.
This system, however, is intended for exploration and has
no mechanism for selecting a few “representative” images to
summarize the location. The system is also computation-
ally expensive and currently impractical for running over
the wide range of landmarks. Our system can serve as input
and automatic filter for the Snavely et al. algorithm.

3. MODEL AND REQUIREMENTS
This section formalizes the properties of the dataset used

throughout this paper. We expand the research problem
definitions and proposed solutions in the respective sections.

Our dataset consists of three basic elements: photos, tags

and users. We define the set of photos as P 4
= {p}, where p is

a tuple (θp, `p, tp, up) containing a unique photo ID, θp; the
photo’s capture location, represented by latitude and lon-
gitude, `p; the photo’s capture time, tp; and the ID of the
user that contributed the photo, up. The location `p gener-
ally refers to the location where the photo p was taken, but
sometimes marks the location of the photographed object.
The time, tp generally marks the photo capture time, but
occasionally refers to the time the photo was uploaded to
Flickr.

The second element in our dataset is the set of tags as-
sociated with each photo. We use the variable x to denote
a tag. Each photo p can have multiple tags associated with
it; we use Xp to denote this set of tags. The set of all tags



over all photos is defined as: X 4
= ∪p∈PXp. We can use the

equivalent notation to denote the set of tags that appear in
any subset PS ⊆ P of the photo set as XS . For convenience,
we define the subset of photos associated with a specific tag

as: Px
4
= {p ∈ P | x ∈ Xp}. Accordingly, photos with the

tag x in a subset PS of P are denoted PS,x
4
= {PS ∩ Px}.

The third element in the dataset is users, the set of which

we denote by the letter U 4
= {up}. Equivalently, we use

US
4
= {up | p ∈ PS} and Ux

4
= {up | p ∈ Px} to denote users

that exist in the set of photos PS and users that have used
the tag x, respectively.

4. EXTRACTING KNOWLEDGE ABOUT
LOCATIONS

How do we extract knowledge about geographic regions
from community contributions of images and metadata? Us-
ing the data described in Section 3 we wish to automati-
cally identify tags that are “representative” for each given
geographical area. It is important to note that these repre-
sentative tags are often not the most commonly used tags
within the area under consideration. Instead, we wish to
surface tags that uniquely define sub-areas within the area
in question. For example, if the user is examining a por-
tion of the city of San Francisco, then there is very little to
be gained by showing the user the San Francisco2 or Bay

Area tags, even if these tags are the most frequent, since the
tags apply to the entire area under consideration. Instead,
we would ideally show tags such as Golden Gate Bridge,
Alcatraz and Fisherman’s Wharf which uniquely represent
specific locations, landmarks and attractions within the city.

Before we can determine the “representativeness” of a tag,
we need to have an intuition of what the term implies. We
follow some simple heuristics that guide us in devising the
algorithms. The heuristics attempt to capture the human
attention and behavior as represented in the photos and tag
dataset. Our heuristics are aimed toward both finding im-
portant locations and identifying represntative tags. For
example, the number of photographs taken in a location is
an indication of the relative importance of that location; a
similar indication is found in the number of individual pho-
tographers that have taken photos in a location. Looking at
tags, users are likely to use a common set of tags to identify
the objects/events/locations that occur in photographs of a
location; and tags that occur in a concentrated area (and do
not occur often outside that area) are more representative
than tags that occur diffusely over a large region.

We start by assuming that the system considers a single
given geographic area G, and the photos that were taken in
this area, PG. The system attempts to extract the represen-
tative tags for area G. This computation is done in two main
steps: in the first step, we cluster the set of photos PG us-
ing the photos’ geographic locations. In the second step, we
score the tags in each cluster for their “representativeness”.

In the first step, the system geographically clusters the
set of photographs PG. We use the k-Means clustering al-
gorithm, based on the photos’ latitude and longitude. Ge-
ographical distance is used as the distance metric, and the
stopping condition for the k-Means algorithm is when each
cluster’s centroid movement drops below 50 meters. The

2We use this format to represent tags in the text.

Figure 1: Representative tags for San Francisco

number of seed points used for the k-Means algorithm is
based on |PG|, the number of photographs in the area under
question. Based on empirical observation of the results, we
set the seed value to range from three for sparse areas (un-
der 100 photographs) to 15 for denser areas (greater than
4000 photographs).

Once the clusters have been determined, the system scores
each cluster’s tags to extract representative tags. In other
words, we consider each cluster C, and the set of tags XC

that appear with photos from the cluster. We score each tag
x ∈ XC according to the factors defined below.

One of the factors we use is TF-IDF (term frequency, in-
verse document frequency). This metric assigns a higher
score to tags that have a larger frequency within a cluster
compared to the rest of the area under consideration. Again,
the assumption is that the more unique a tag is for a specific
cluster, the more representative the tag is for that cluster.
Of course, we do not wish to use tags that only appear a
few times in the cluster; the term frequency element prefers
popular tags.

The TF-IDF is computed with slight deviation from its
regular use in Information Retrieval. The term frequency for
a given tag x within a cluster C is the count of the number

of times x was used within the cluster: tf(C, x)
4
= |PC,x|.

The inverse document frequency for a tag x, in our case,
computes the overall ratio of the tag x amongst all photos

in the region G under consideration: idf(x)
4
= |PG|/|PG, x|.

Note that we only consider a limited set of photos (PG) for
the IDF computation, instead of using the statistics of the
entire dataset. This restriction to the current area, G, allows
us to identify local trends for individual tags, regardless of
their global patterns.

While the tag weight is a valuable measure of the popu-
larity of the tag, it can often be affected by a single photog-
rapher who takes a large number of photographs using the
same tag. To guard against this scenario, we include a user
element in our scoring, that also reflects the heuristic that a
tag is more valuable if a number of different photographers
use it. In particular, we factor in the percentage of photog-

raphers in the cluster C that use the tag x: uf
4
= UC,x/UC .

The final score for tag x in cluster C is computed by
Score(C, x) = tf · idf ·uf. The higher the tf-idf score, and the
user score, the more distinctive the tag is within a cluster.
For each cluster, we retain only the tags that score above



a certain threshold. The threshold is needed to ensure that
the selected tags are meaningful and valuable for the aggre-
gate representation. We use an absolute threshold for all
computed clusters to ensure that tags that are picked are
representative of the cluster.

A sample set of representative tags for San Francisco is
shown in Figure 1. In [1, 9] we supply more details on the
algorithm, and on how we extend the computation to sup-
port multiple regions and zoom levels; we also evaluate the
algorithmic results. Using this algorithm, we had created a
live visualization3 of the world. The details and evaluation
of this system can also be found in [1].

We return to this algorithm in Section 6. We note that
the representative tags often correspond to landmarks and
geographic features. In Section 6, we use these computed
landmark tags to seed a vision-based system that attempts
to idenfity representative images for each tag.

5. IDENTIFYING TAG SEMANTICS
How do we extract knowledge about specific tags or tex-

tual terms, using community contributions of images and
metadata? Using the same data, as described in Section 3,
we wish to identify tags that have event or place seman-
tics. Based on the temporal and spatial distributions of
each tag’s usage on Flickr, we attempt to automatically
determine whether a tag corresponds to a “place” and/or
“event”. As mentioned above, extraction of event and place
semantics can potentially assist many different applications
in the photo retrieval domain and beyond. These applica-
tions include improved image search through inferred query
semantics; automated creation of place and event gazetteer
data; generation of photo collection visualizations by loca-
tion and/or event/time; support for tag suggestions for pho-
tos (or other resources) based on location and time of cap-
ture; and automated association of missing location/time
metadata to photos, or other resources, based on tags or
caption text.

We loosely define “place tags” as tags that are are ex-
pected to exhibit significant spatial patterns. Similarly, “event
tags” are ones that are expected to exhibit significant tempo-
ral patterns. Example place tags are Delhi, Logan Airport

and Notre Dame. Sample event tags are Thanksgiving, World
Cup, AIDS Walk 2006, and Hardly Strictly Bluegrass. In-
terestingly, Hardly Strictly Bluegrass is a festival that
takes places in San Francsico, and thus represents both an
event and a place. Spatial and temporal distributions for
Hardly Strictly Bluegrass are shown in Figure 2. Exam-
ples of tags not expected to represent events or locations are
dog, party, food and blue.

Formally, we can define the location and time usage dis-

tributions for each tag x: Lx
4
= {`p | p ∈ Px} (locations of

all photos with tag x) and Tx
4
= {tp | p ∈ Px} (time of all

photos with tag x). We now show how place semantics for
a tag x can be derived from the tag’s location distribution,
Lx. Similarly, time semantics can be derived from Tx.

The method we use to identify place and event tags is
Scale-structure Identification (or SSI). This method mea-
sures how similar the underlying distribution of metadata is
to a single cluster at multiple scales. For example, examin-
ing the location distribution Lx for the tag Hardly Strictly

3http://tagmaps.research.yahoo.com

Figure 2: Location (top) and time (bottom)
metadata distributions for the tag Hardly Strictly

Bluegrass in the San Francisco Bay Area.

Bluegrass, it appears as a single strong cluster at the city
scale; but appears as multiple clusters at a neighborhood
scale (see Figure 2). SSI identifies place tags by: (1) clus-
tering the usage distribution Lx at multiple scales; (2) mea-
suring how similar the clustering at each scale is to a sin-
gle cluster by calculating the information entropy; and (3)
summing the entropy calculations at each scale to produce
a single score that indicates how similar the usage data is to
a single cluster over multiple scales. The process for iden-
tifying event tags is equivalent, using the time distribution
Tx. In the case of Hardly Strictly Bluegrass, we expect
SSI to identify the tag both as an event, and as a place.

In [19] we provide additional details and evaluation on
SSI and other methods for extracting these semantics from
Flickr tags. While not quite perfect, we consider all geo-
tagged photos in San Francisco and show that tags that
represent events and places can be identified with reason-
able precision and recall.

In other words, the metadata patterns of tags in community-
contributed media collections can be used to extract seman-
tics of these tags. These semantics can be used when com-
bining content-based analysis with context-based tools. For
example, attempting to detect landmarks in our dataset, we
can rule out tags that have do not have place semantics, or
have place and event semantics: the tag dog is not likely to
be a geographic-based landmark (because it does not have
place semantics). Similarly, Hardly Strictly Bluegrass is
not likely to represent a landmark (because of its identi-
fied event semantics). This semantic extraction can assist
us to select tags for which we can generate computer vision
models, as discussed next.

6. COMBINING VISION WITH
TAG-LOCATION ANALYSIS

If we can identify tags that represent places and land-
marks, can we apply computer vision techniques to get rel-
evant and diverse set of images for these tags? In previous
sections we described how we use tag and location meta-



data to extract and identify tags that represent landmarks
and places. In this section, we assume a given tag x repre-
sents a landmark or place, and show how to find a relevant,
representative and diverse set of images for that tag. The
opportunity here is to improve both image search and visu-
alization in such community media collections. For example,
when a user searches for photos of the Golden Gate Bridge,
our system will be able to detect that the search refers to a
landmark; the precision of the result set can be improved,
and the set of returned images more diverse and complete.

Current image search in community-annotated datasets is
far from satisfactory: issues of precision, recall and diversity
in the result set are acute. These issues exist in the Flickr
photo dataset, and may persist even when the images have
been tagged as being of a place or landmark, and geotagged
at their location. In all these cases, the quality and repre-
sentativeness of images can be highly variant.

The precision problem in community-contributed datasets
is a reflection of the fact that tags associated with any indi-
vidual image are not guaranteed to be “correct” [2, 3, 11].
For example, previous work [11] reports that, over a set of
tagged Flickr photographs for a few hand-selected New York
City landmarks, the precision of images with a given land-
mark tag is alarmingly low (around 50%) – only half of the
images tagged with a landmark name are actually images of
that landmark. This phenomenon is likely due to the vari-
ety of contexts in which tags could be used: it is important
to recognize that tags are not always used to annotate the
content of the image in the traditional sense [2].

A more subtle precision issue can arise with these personal
photographs that are shared online. For example, people of-
ten take photographs of themselves or their family members
standing in front of a visited landmark. Other users brows-
ing the collection may be more interested in the landmark
than in photos of strangers in front of it. Similarly, many
users on Flickr, for example, are photo enthusiasts who take
a decidedly artistic approach to personal photography. In
these cases, photos tagged with a given location or landmark
may actually be of the landmark, but are framed in such a
manner (such as extreme close-ups) that they are more ab-
stract in appearance and hardly recognizable as the object
in question.

The diversity of the retrieved images also poses a problem.
Often, the set of retrieved images for a specific landmark or
location, even if precise, can be homogenous (e.g., showing
many photos from the same view point). Ideally, a search or
a selection of photos for a landmark would return multiple
views and angles to better cater to the user’s specific need.

Recall, of course, is also an issue in community-annotated
datasets: there is no guarantee that all images will be re-
trieved for any search query. Individual images may not be
annotated with the “correct” or appropriate tags. In this
paper we do not tackle the recall issue directly. We note
that our methods can be used for the purpose of “soft an-
notation”, which could ultimately improve recall.

6.1 Problem Definition
We pose the task of finding representative images from a

noisy tag-based collections of images as a problem of select-
ing a set of actual positive (representative) images from a
set of pseudo-positive (same-tag or same-location) images,
where the likelihood of positives within the set is considered
to be much higher than is generally true across the collec-

tion. Our focus here is on unsupervised methods, where the
statistics of representative images can be learned directly
from the noisy labels provided by users, without the need
for explicitly defining a location or manually relabeling the
images as representative or not. The resulting models could
also be applied to enhance indexing by suggesting additional
tags for images or to refine queries for search.

Formally, our problem involves identifying a tag x as rep-
resentative of some landmark or geographic feature, and
computing a set of photos Rx ⊆ Px that are representa-
tive of that landmark. Theoretically speaking, the set Rx

could include photos that were not annotated with the tag
x (i.e., Rx 6⊆ Px). In other words, there could be pho-
tos in the dataset that are representative of a certain land-
mark/feature defined by x but were not necessarily tagged
with that tag by the user (thus improving recall). However,
we do not handle this case in our current work.

The architecture of the system for finding representative
images is shown Figure 3. Given a set of photographs, we
first determine a set of tags that are likely to represent land-
marks and geographic features, and the geographic areas
where these tags are prominent. Then, we extract visual
features from the images that correspond to each tag in its
respective areas. For each tag, we cluster its associated im-
ages based on their visual content to discover varying views
of the landmark. The clusters are then ranked according to
how well they represent the landmark; images within each
cluster are also ranked according to how well they repre-
sent the cluster. Finally, the most representative images are
sampled from the highest-ranked visual clusters to return a
summary of representative views to the user.

6.2 Identifying Tags and Locations
The key idea behind our system is that location metadata

comes into play in both finding tags that represent land-
marks, and in identifying representative photos. To identify
tags that represent landmarks and places we use a variant of
the algorithm described in Section 4, looking for tags that
mostly occur in a concentrated area and used by a number
of users in the same area. These “representative tags” often
correspond to place names and landmarks.

As detailed in Section 4, the process involves location-
based clustering of the photo set, followed by scoring of the
tags that appear in the dataset. We first cluster all photos
P in a certain region, using the location coordinates `p. For
each resulting photo cluster C, we score each tag x in that
cluster (see Section 4) to find a set of representative tags
for each cluster. This process results in a list of (x,C) pairs
– (tag, cluster) pairs indicating tag x to be a geographic
feature in the cluster C. A single cluster can have multiple
associated tags. Similarly, the same tag x can appear in mul-
tiple clusters. For example, the tag Golden Gate Bridge

may appear multiple times in our list, in a different clusters,
representing different viewpoints of the bridge.4 To summa-
rize using another example, if we examine all photos from
San Francisco, our system would ideally find tags such as
Golden Gate Bridge, Alcatraz and Coit Tower that rep-
resent landmarks and geographic features within the city.
Furthermore, the system would identify the different areas
where people take photos of each of these landmarks.

4For further refinement of the resulting list of tags, we can
use the algorithms described in Section 5 to retain only tags
that have been identifyed as places and not as events.
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Figure 3: System architecture for choosing representative images from tag/location clusters using visual
content.

More formally, let us assume we identified the tag x as
a prominent geographic feature in a set of photo clusters

Cx
4
= Cx,1, Cx,2, ... The corresponding set of photos we are

interested in is Px,Cx

4
= Px ∩ PCx .

Next, we show how we perform visual analysis on the pho-
tos in Px,Cx .

6.3 Visual Features
This step involves the task of extracting visual features

for a tag x. This task is now easier because we hopefully re-
stricted the corresponding set of images for the tag: not only
is the tag now likely to represent the same object (e.g., same
windmill), but the viewpoints from which the photos were
taken are limited – all the photos were taken in a restricted
set of geographic clusters. Given the set Px,Cx , we attempt
to select a set of images Rx,Cx that is most represtative of
the visual features for the landmark represented by tag x.
We will then select the images from Rx,Cx to generate our
final set of representative images, Rx.

We first describe the visual features extracted from the
images in the set Px,Cx .

We use a range of complementary features to capture
the color, texture, and local point characteristics of images.
These features are chosen because of their proven effective-
ness in a range of recognition tasks for both generic objects
and specific scenes. The aspects of the visual content that
they capture have also been shown to be complementary.

• Color. We use grid color moment features [23] to repre-
sent the spatial color distributions in the images. These
features are calculated by first segmenting the image into
a 5-by-5 grid of non-overlapping blocks. The first three
moments of the distributions of the three color channels
(in LUV color space) within each block are then cal-
culated and retained as a feature vector for the image.
Using three moments for each of three channels in 25
blocks result in a 225-dimensional feature vector.

• Texture. The texture of the image is represented with
Gabor textures [13]. These features are calculated as the
mean and standard deviation of Gabor transformations

in 4 scales and 6 orientations over the grayscale image,
yielding a 48-dimensional feature vector.

• Interest Points. We further represent the images via
local interest point descriptors given by the scale-invariant
feature transform (SIFT) [12]. Interest points and local
descriptors associated with the points are determined
through a difference of Gaussian process. This yields
a 128-dimensional SIFT feature vector for each interest
point in an image. Typical images in our data set have a
few hundred interest points, while some have thousands.
SIFT features have received much interest due to their
invariance to scale and rotation transforms and their ro-
bustness against changes in viewpoint and illumination.
The SIFT features have been found to be extremely pow-
erful in a number of vision applications, from generic ob-
ject recognition [7] to alignment and registration between
various photographs of a single scene [22].

We now discuss how we use these visual features to find
visual clusters Vx that represent different views for the land-
mark x.

6.4 Visual Clustering
Many landmarks and locations can be frequently captured

from a number of distinct viewpoints. Famous bridges, like
the Golden Gate Bridge or the Brooklyn Bridge, are fre-
quently photographed from a few distinct points, such as
the banks on either side of the bridge or while walking
across the bridge, looking up at the towers. Similarly, fa-
mous architectural sites, like the San Francisco MOMA or
the Guggenheim, are frequently photographed from the out-
side, showing the facade, and from the inside, showing an
inner atrium or skylight. In such cases, the selection of a
single viewpoint to encapsulate the location may be insuf-
ficient. If we are given the chance to present the user with
multiple images of the location, repeating images from a
single most-representative view may be less productive than
showing images from a variety of angles.

Discovering various classes of images from within a set is
a prime application for clustering. We perform clustering
using k-means, a standard and straight-forward approach,



using the concatenated color and texture feature vectors,
described above, to represent the images. SIFT features are
not used for clustering due to their high dimensionality, but
are later incorporated for ranking clusters and images.

6.4.1 Number of clusters
In any clustering application, the selection of the right

number of clusters is important to ensure reasonable clus-
tering results. While some principled methods do exist for
selecting the number of clusters, such as Bayesian Informa-
tion Criterion (BIC), we proceed with using only a simple
baseline method. Since the number of photos to be clustered
for each location varies from a few dozen to a few hundred,
it stands to reason that an adaptive approach to the selec-
tion of the number of clusters is appropriate, so we apply
an approach where the number of clusters is selected such
that the average number of photos in each resulting cluster
will be around 20. Future work may investigate the effects
of other strategies for selecting the number of clusters and
incorporating geographic cues to seed and guide clustering
towards finding viewpoints.

6.4.2 Ranking clusters
Given the results of a clustering algorithm, Vx, we would

like to rank the visual clusters according to how well the clus-
ters represent the various views associated with a given tag
or location. This will allow us to sample the top-ranked im-
ages from the most representative clusters and return those
views to the user when we are generating the set of represen-
tative views, Rx. Lower-ranked clusters can be completely
ignored and hidden from the user, since they are presumed
to contain less-representative photographs. We determine
the ranking of the clusters through a combination of four
different scoring mechanisms, designed to ensure the selec-
tion of strong, useful clusters.

We use a fusion of the following four cluster scoring meth-
ods to generate a final ranking of the clusters:

• Number of users. If a large number of photographs
from many different users are found to be visually sim-
ilar, then it is likely that the cluster V is an important
view angle for the location. We use the number of users,
|UV | instead of the number of photos |PV | since many
photos from a single user may bias the results.

• Visual coherence. We measure the intra-cluster dis-
tance, or the average distance between photos within
the cluster V and all other photos within the cluster,
and the inter-cluster distance, or the average distance
between photos within the cluster and photos outside of
the cluster. We take the ratio of inter-cluster distance
to intra-cluster distance. A high ratio indicates that the
cluster is tightly formed and shows a visually coherent
view, while a low ratio indicates that the cluster is fairly
noisy and may not be visually coherent.

• Cluster connectivity. We can use SIFT features to re-
liably establish links between different images which con-
tain views of a single location (this process is discussed
in greater detail in Section 6.5.3.) If a cluster’s photos
are linked to many other photos in the same cluster, then
the cluster is likely to be representative. Clusters with
fewer linked images are less likely to be representative.
We count the average number of links per photo in each
cluster and use the result to score the clusters.

• Variability in dates. We take the standard deviation
of the dates that the photos in the cluster were taken.
Preference is given to clusters with higher variability in
dates, since this indicates that the view is of persistent
interest. Low variability in dates indicates that the pho-
tos in the cluster were taken around the same time and
that the cluster is probably related to an event, rather
than a geographic feature or landmark. We can also
use the techniques described in Section 5 to filter those
images from Px that include tags (other than x) that
correspond to events.

To combine these various cluster scores, we first normalize
each of the four scores, such that the L1-norm of each of the
scores over the clusters is equal to one. Then, we average
the four scores to reach a final, combined score.

To select images from clustered results and present them
to the user for browsing, we rank the representative images
within each cluster, PV using the methods described in the
following section, so we have a ranking of the most rep-
resentative images for each cluster. Then, we sample the
highest-ranking images from the clusters. The clusters are
not sampled equally, however. The lowest-ranking clusters
have no images sampled from them, and the higher-ranking
clusters have images sampled proportionally to the score of
the cluster.

6.5 Ranking Representative Images
Given the visual clusters, Vx and their associated rank-

ings, in order to generate a set of representative images, Rx,
we further need to rank the images within each cluster, ac-
cording to how well they represent the cluster. To achieve
this, we apply several different types of visual processing
over the set of images PV to mine the recurrent patterns
associated with each visual cluster V .

6.5.1 Low-Level Self-Similarity
Perhaps the most straight-forward approach to discover-

ing and ranking the representative images out of a set is to
find the centroid for the set and rank the images according
to their distance from the centroid. We start by joining the
color and texture features for each image into one long fea-
ture vector. We statistically normalize along each dimension
of the vector such that each feature has a mean of zero, and
unit standard deviation over all images within the set. The
centroid is the point determined by the mean of each feature
dimension. The images in the set are then ranked according
to their Euclidean distance from the centroid.

6.5.2 Low-Level Discriminative Modeling
One shortcoming of the low-level self-similarity method

mentioned above is that each example image and each fea-
ture dimension is considered to be equally important for cen-
troid discovery and ranking. While this approach can still be
quite powerful, recent efforts have suggested that sampling
pseudo-negative examples from outside of the initial candi-
date set and learning light-weight discriminative models can
actually greatly improve the performance of image ranking
for a number of applications [16, 8, 10]. Intuitively, cen-
troids can be adversely affected by the existence of outliers
or bi-modal distributions. Similarly, the distances between
examples in one dimension may be less meaningful than
the distances in another dimension. Learning a discrimi-
native model against pseudo-negatives can help to alleviate



these effects and better localize the prevailing distribution
of positive examples in feature space and eliminating non-
discriminative dimensions. In our implementation, we take
the photos PV from within the candidate set and treat them
as pseudo-positives for learning. We then sample images
randomly from the global pool, P, and treat these images as
pseudo-negatives. We take the same concatenated and nor-
malized feature vector from the previous distance-ranking
model as the input feature space. We randomly partition
this data into two folds, training a support vector machine
(SVM) classifier [26, 4] with the contents of one fold and
then applying the model to the contents of the other fold.
We repeat the process, switching the training and testing
folds. The images can then be ranked according to their
distance from the SVM decision boundary.

6.5.3 Point-wise Linking
The above-mentioned low-level self-similarity and discrim-

inative modeling methods do not make use of the SIFT in-
terest point descriptors that we have extracted. The most
powerful approach for our application, where we are model-
ing specific locations to find representative images, is most
likely a matching of images of the same real-world structure
or scene through the identification of correspondences be-
tween interest points in any two given images. Given two
images, each with a set of interest points and associated de-
scriptors, we can use a straight-forward approach to discover
correspondences between interest points. For each interest
point in an image, we can take the Euclidean distance be-
tween it and every interest point in the second image. The
closest point in the second image is a candidate match for
the point if the distance between it and the original inter-
est point is significantly less than the distance between the
second-closest point and the original interest point, by some
threshold. This matching from points in one image to an-
other is asymmetric, however, so the process can then be
repeated, finding candidate matches for each point in the
second image through comparison with each point in the
first image. When a pair of points is found to be a can-
didate both through matching the first image against the
second and through matching the second image against the
first, then we can take the candidate match as a set of cor-
responding points between the two images.

Once these correspondences are determined between points
in various images in the set, we can establish links between
images as coming from the same real-world scene when three
or more point correspondences exist between the two im-
ages. The result is a graph of connections between images
in the candidate set based on the existence of corresponding
points between the images. We can then rank the images
according to their rank, or the total number of images to
which they are connected. The intuition behind such an
approach is that representative views of a particular loca-
tion or landmark will contain many important points of the
structure which can be linked across various images. Non-
representative views (such as extreme close-ups or shots pri-
marily of people), on the other hand, will have fewer links
across images.

6.5.4 Fusion of Ranking Methods
The ranking methods described above each capture vari-

ous complementary aspects of the repeated views of the real-
world scenes. To leverage the power of each of the methods,
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Figure 4: Precision at 10 for representative images
selected for locations using various methods.

we apply each of them independently and then fuse the re-
sults. Each method effectively returns a score for each of the
images in the set. We normalize the results returned from
each method via a logistic normalization and then take the
average of the scores resulting from each method to give a
fused score for each image.

The end result of this process is a ranked list of clusters,
representing different views for each location, from which
the most representative images can be sampled to arrive at
a set of images summarizing the location. This resulting set
of images is our representative set, Rx.

7. EVALUATION
The goal of the system is to generate a set of represen-

tative images for automatically discovered tagged locations.
To evaluate the performance, we use a set of over 110,000
geo-referenced photos from the San Francisco area. We dis-
cover landmark locations via location-based clustering of the
photos, generating 700 clusters (the number was chosen as
a tradeoff between span of geographic coverage and the ex-
pected number of photos per cluster). For each location
cluster, representative tags are determined by scoring fre-
quent tags within the cluster. Tags with scores exceeding
a threshold, α, are retained as a tag/location pair, (x,C).
For the purposes of this paper, we evaluate the system using
only a subset of 10 manually selected landmarks (listed in
Figure 4), though, in principle the system could be applied
to all of the discovered tag/location pairs. Representative
images for each location are extracted using three different
techniques:

• Tag-Only. In the baseline version of representative im-
age selection, we choose representative images randomly
from the set of all images with the corresponding tag.

• Tag-Location. In this second baseline, we choose rep-
resentative images for a tag randomly from all images
that are labeled with the tag and fall within a location
cluster where the tag is found to be representative.

• Tag-Location-Visual. This is the approach detailed in
the previous section.

We use each of the three above-described methods to ex-
tract ten representative images for each of the ten land-
marks and evaluate the results in terms of precision at 10
(P@10). This metric measures the percentage of the top-ten
selected images that are indeed representative of the land-
mark. The ground-truth judgments of image representative-
ness are defined manually by human evaluators. If images



Tag-Location-VisionTag-Location-Vision

Tag-Location (Baseline) Tag-Location (Baseline)

(a) Palace of Fine Arts (b) Golden Gate Bridge

Figure 5: Comparison of recommended representative images resulting from the tag-location filtering and
Fixed-size clustering approaches for the Palace of Fine Arts and the Golden Gate Bridge.

contain views of the location that are recognizable to viewers
familiar with the location, then they are marked as repre-
sentative, otherwise, they are marked as non-representative.
The results of the evaluation are shown in Figure 4.

The results show a clear added benefit of location-based
constraints for the selection of representative images. In the
baseline case, the tag-only approach, the P@10 is slightly
less than 0.5, on average. This finding confirms many recent
observations about the accuracy of tags. Constraining the
selection of representative images to come only from images
associated with a tag-location pair (as in the tag-location
approach) yields a 30% increase in the precision of the se-
lected images, which indicates that location information can
help refine the representativeness of a set of related images.

More striking, though, is the improvement we get with
the technique that utilizes the visual analysis (tag-location-
visual). On average, across all of the landmarks, there
is a clear relative increase in precision of more than 45%
gained over the tag-location baseline by adding visual fea-
tures. Across most of the locations, the visual-based selec-
tion of representative images gives perfect P@10 score (all
top-ten ranked images are representative). A comparison
of the summaries from the best non-visual technique (tag-
location) and the visual technique (tag-location-visual) for
two sample tags is shown in Figure 5.

For some geographic features, the visual-based methods
still do not provide perfect precision in the summaries. For
instance, some geographic landmarks can act as a point from
which to photograph, rather than the target of the photo;
such photographs are often tagged with the geographic land-
mark which is the source of the photo. For example, Coit
Tower is a frequently-photographed landmark, but many of
the photographs associated with the tag Coit Tower are ac-
tually photographs of the city skyline taken from the ob-
servation deck at the top of the tower. Similarly, for mu-

seums, such as De Young and SF MOMA, the representative
views are defined to be outside views of the building and
recognizable internal architectural aspects; however, users
also like to photograph particular artworks and other non-
representative views while at museums. The trend across
these failure cases is that some of the frequently-taken pho-
tograph views associated with the landmark are not neces-
sarily representative of the landmark. It is arguable, and
could be left for human evaluation, whether these images
are desireable for representation of the location. Do users
wish to see images taken from Coit Tower when they search
for that phrase? Do they want to see images from inside the
De Young?

A related issue is the fact that precision does not capture
all of the aspects that could impact the perceived quality
of a set of representative images. For example, the notion
of representativeness is not binary. If we compare the top-
left images for each set of results in Figure 5a, it is fair
to argue that the visual-based result, which shows the en-
tire structure, is more representative than the tag-location
result, which shows only a close-up. The precision metric
does not capture this aspect, since both images are techni-
cally considered to be representative. Also, repetition in a
set of images can impact the perceived quality of the sum-
mary. Repeated, nearly-identical images will not convey ad-
ditional information to the viewer, so it may be preferable to
display images from diverse views. These issues of relative
quality of representative images and the diversity of results
can be evaluated with human subjects. We leave such an
evaluation for future work.

8. CONCLUSIONS
We have shown how community-contributed collections of

photographs can be mined to successfully extract practical



knowledge about the world. We have seen how geograph-
ical labels and tagging patterns can lead us to summaries
of important locations and events. We further introduce
the use of visual analysis in a controlled manner, using the
knowledge extracted from tags and locations to constrain
the visual recognition problem into a more feasible task. We
have shown that the use of visual analysis can increase the
precision of automatically-generated summaries of represen-
tative views of locations by more than 45% over approaches
in the absence of visual content. All of these benefits are
observed despite the fact that the user-provided labels in
such collections are highly noisy.

In future work, we plan to further explore the impact
of visual content on retrieval and summarization of geo-
referenced photographs. In particular, we will investigate
the perceived quality of a wider variety of approaches to
discovering and presenting related views for a single land-
mark. Beyond that, we will examine whether visual analysis
can help in the discovery of meaningful locations and tags,
perhaps by eliminating geographical clusters that are too vi-
sually diverse to be a single landmark, or by using visual di-
versity as part of the criteria used in distinguishing between
landmark- and event-oriented tags. We will also explore au-
tomatically tagging photographs or suggesting tags to the
user based on the visual content of the image, a difficult
task to perform based on visual content alone, but one that
can be simplified with contextual and geographical cues.
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