Signals and Svstems
Homework 4

Solutions
3.4-1 Here Tp = 2, so that wp = 27/2 = 7, and
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Figure 53.4-1 shows f(t} = t* for all t and the corresponding Fourier series representing f(t) over (—1, 1)
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Fig. 83.4-1

3.4-3 (a) To =4, wo = }—: = Z. Because of even symmetry, all sine terms are zero.
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f(t) = ag + E an Ccos (%t
n=1

ap = 0 (by inspection}
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Therefore, the Fourier series for f(#) is
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Here b, = 0, and we allow 7, to take negative values. Figure S3.4-3a shows the plot of Cx.
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(d) To = m, wo = 2 and f(t) = 3¢
ag =0 (by inspection).
an =0 (n=0) because of odd symmetry.
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Figure 53.4-3d shows the plot of €, and 8.
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(f) To =6, wa = n/3, ag = 0.5 (by inspection). Even symmetry; b, = 0.

B
a
[
1
oy
—
-
—
o
=]
w
B
>

8 Jo

=3[f -::us——dt+f (2—t}oos—tdt]
3 a

= a2n? 3 } 3
6 w 2 o 1 7w
f(l]=0.5+;§(cus§t—gowﬂ+ﬁ 3f+—4-§cuﬁ—5~t+---)

Observe that even harmonics vanish. The reason is that if the de (0.5) is subtracted from f(#}, the resulting
function has half-wave symmetry. (See Prob. 3.4-7). Figure 53.4-3f shows the plot of Cy.
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3.4-8 (a) Here, we need only cosine termes and wo = §

Hence, we must construct a pulse such that it is an even

function of ¢, has a value ¢t over the interval 0 < ¢t < 1, and repeats every 4 seconds as shown in Fig. 53.4-Ba. We
selected the pulse width W = 2 seconds. But it can be anywhere from 2 to 4, and still satisfy these conditions.
Each value of W results in different series. Yet all of them converge to ¢ over O to 1, and satisfy the other
requirements. Clearly, there are infinite number of Fourier series that will satisfy the given requirements. The

present choice yields
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By inspection, we find apg = 1/4. Because of symmetry b, = 0 and
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(c) Here, we need both sine and cosine terms and wo =
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efce, we must construct a pulse such that it has no

symmetry of any kind, has a value ¢ over the interval 0 = ¢t = 1, and repeats every 4 seconds as shown in Fig.
S$3.4-8c. As usual, the pulse width can be have any value in the range 1 to 4,
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By inspection, ag = 1/8 and
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(c)
==
F(t) = Dy 4 E D™ where, by inspection Dig = 0.5
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3.5-2 In compact trigonometrie form. all terms are of cosine form and amplitudes are positive. We can express f(t) as
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From this expression we sketch the trigonometric Fourler spectra as shown in Fig. 33.5-2a. By inspection of
these spectra, we sketch the exponential Fourier spectra shown in Fig. S3.5-2b. From these exponential spectea,

we can now write the exponential Fourier series as
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Fig. 53.5-2



