2x: Find the freg. resp. for
(4) an idal thley of T see.
(b) an idod differentictos
(c) an idual integnotos

$$
|H(j \omega)|=1
$$

$$
\begin{aligned}
& \text { (a) } \xrightarrow{f(t)} \xrightarrow{(\delta(t-T)} \xrightarrow{f(t-T)} \mid H\left(1 j^{(\omega)} \mid f^{\prime} H(j \omega)=-\omega T\right. \\
& \Rightarrow H(j \omega)=e^{-s T}
\end{aligned}
$$

(b)

$$
\text { b) } \begin{aligned}
H(s) & =s \\
H(j \omega) & =j \omega=\omega \cdot e^{j \frac{\pi}{2}} \\
\therefore|H(j \omega)| & =\omega
\end{aligned}
$$

$$
|H(j \omega)| \dot{\gamma} H(j \omega)=\frac{\pi}{2}
$$

©

$$
\begin{aligned}
& H(s)=\frac{1}{s} \\
& H(j \omega)=\frac{1}{j^{\omega}}
\end{aligned}
$$

(2) Steady-state respane to cansal simusoids

$$
\xrightarrow{f(t)} H(s)=\frac{P(s)}{Q(s)} \xrightarrow{y(t) .}
$$

$$
\begin{aligned}
& f(t)=e^{j \omega t} u(t) \\
& F(s)=\frac{1}{s-j \omega} \\
& \therefore Y_{2 s}(s)=F(s) \cdot H(s)=\underbrace{\left(s-\lambda_{1}\right) \cdots\left(s-\lambda_{n}\right)}_{Q(s)}(s-j \omega)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \frac{k_{i}}{s-\lambda_{i}}+\frac{\alpha}{s-j \omega} \\
& \alpha=H(j \omega)
\end{aligned}
$$

$$
\therefore y_{s s}(t)=H(j \omega) e^{j \omega t} u(t)
$$

Similarly, if the inputt is a cancal sinuswid, $f(t)=\cos (\omega t+\theta) u(t)$ then the steady-state reppore is

$$
y_{s s}(t)=|H(j \omega)| \cos (\omega t+0+\Varangle H(j \omega)) U(t)
$$

Chap. 5. Introduction A Discrate-time siguals $\&$ gsstems.

\{ 5.1. Useful discaete-tine signal moolels.
(1) discorte-tine iuppule finc. $f(k)$:

$$
\delta(k)= \begin{cases}1, & k=0 \\ 0, & k \neq 0\end{cases}
$$

(2) unit-step $u(k)$.

$$
u(k)= \begin{cases}1, & k=0,1,2,3, \cdots \\ 0, & k=-1,-2, \cdots\end{cases}
$$

(3) exponential: $f(k)=\gamma^{k}$
(4)-tine dinusoid $\longrightarrow f(k)=A \cdot \cos (\Omega \cdot k+\theta)$.

$$
k=0, \pm 1, \pm 2_{1}
$$

reall contimons-tive sinusord:

$$
\begin{aligned}
f(t)= & A \cos (\omega t+\theta),-\infty<t<\infty \\
& \omega=2 \pi \cdot f_{\&} \\
& \begin{array}{l}
\mathrm{radiam} \mathrm{fr}^{2} v \\
(\mathrm{rad} / \mathrm{s})
\end{array}
\end{aligned}
$$

Properties: (a) $f(t)$ is periodic: $T=\frac{2 \pi}{w}$ $f(t+T)=f(t)$
(b) different fug's give diff.
signues
(c) lncrese f. \Rightarrow hifur rote of ocsillation, i.e., mane ocsillation periods are includud in a giter
internal
for disucte-time simsoids:
propenties:
(a) $f(k)$ is peniolic iff its f ry. $F=\frac{\Omega}{2 \pi}$ is a rational number

$$
\begin{gathered}
F=\frac{k}{N} \\
\Rightarrow f(k+N)=f(k)
\end{gathered}
$$

(b)

$$
\begin{aligned}
& f_{1}(k)=A \cos \left(\Omega_{1} k+\theta\right) \\
& f_{2}(k)=A \cos \left(\Omega_{2} k+\theta\right) \\
& \text { if } \Omega_{1}=\Omega_{2}+2 \pi \cdot n \\
& \Rightarrow f_{1}(k)=f_{2}(k) .
\end{aligned}
$$

\therefore Only need to enside $|\omega| \leqslant \pi$.
or $|F| \leqslant \frac{1}{2}$
fundemente frees. rage for discocth-tiee jiplo
(c) higlut rate of ocsillation

$$
|\omega|=\pi \text { or } \quad|F|=1 / 2
$$

Ex: $f(k)=3 \cos \left(5 k+\frac{\pi}{6}\right)$ $\Omega=5 . \quad F=\frac{\Omega}{2 \pi}=\frac{5}{2 \pi} \rightarrow$ aperiokic
Ex: $\quad f(k)=e^{j\left(\frac{2 \pi}{3} n+\frac{9}{2}\right)}$

$$
\Omega=\frac{2 \pi}{3}, F=\frac{\Omega}{2 \pi}=\frac{1}{3} \quad p^{\min \operatorname{cod}} N=3 .
$$

- sigul engy:

$$
E_{f}=\sum_{k=-\infty}^{+\infty}|f(k)|^{2}
$$

sipul porens.

$$
P_{f}=\lim _{N \rightarrow \infty} \frac{1}{2^{N+1}} \sum_{k=-N}^{N}|f(k)|^{2}
$$

Usfful Sigal operations:
(1) tin-shift:

$$
f(n) \rightarrow f(n-k)
$$

(2) time-reversal

$$
f(n) \rightarrow f(-n)
$$

Discrect-tine convolution:

$$
f(k) * h(k)=\sum_{m=-\infty}^{+\infty} f(m) h(k-m)
$$

properties are the sare as coritimuns-tine coulix.

Difference $E q_{n}$'s to moldel disconte-tine LTI spstens:

$$
\begin{aligned}
& a_{0} y(k)+a_{1} y(k-1)+\cdots+a_{n} y(k-n) \\
& =b_{0} f(k)+b_{1} f(k-1)+\cdots+b_{n} f(k-n) \\
& y(k)=\underbrace{y_{25}(k)}_{f(k) * h(k)}+\underbrace{y_{2 i}(k)}_{\text {initial caditios }}
\end{aligned}
$$

unilatered z-transfom (comupmaliy it Leplace).

$$
\begin{aligned}
F(z) & =Z\{f(k)\}=\sum_{k=0}^{\infty} f(k) z^{-k} \\
z & =e^{j \omega} \Rightarrow F(\omega)=\sum_{k=0}^{\infty} f(k) e^{-j \omega k}
\end{aligned}
$$

 $\left.+40 F_{1}\right\}$

