Ex:
(a) $(D+1)\left(D^{2}+4 D+8\right) y(t)=(D-3) f(t)$
poles: - -1

$$
\begin{aligned}
& \left(D^{2}+4 D+4\right)+4 \\
= & (D+2)^{2}+2^{2} \\
\Rightarrow & -2 \pm 2 j
\end{aligned}
$$

stable

(b) $(D-1)\left(D^{2}+4 D+8\right) y(t)=(D+2) f(t)$ poles. 1 unstable
(c) $(D+2)\left(D^{2}+4\right) y(t)=\left(D^{2}+D+1\right) f(t)$ poles: -2

$$
\pm 2 j
$$

marginally stable

(d) $(D+1)\left(D^{2}+4\right)^{2} y(t)=\left(D^{2}+2 D+1\right) f(t)$ poles: -1

$$
\pm 2 j . \pm 2 j .
$$

unstable

(2) BIBO stability

Def: A sptem is BBO (bounded input bounded ouput) stoble iff a bounded input always produces a bounded ortput.

- Condition for BIBD stafility.

An LTI system is BIBO stable iff

$$
\int_{-\infty}^{+\infty}|h(t)| d t<\infty
$$

(3) Relatimstip between aryoppotic stefility \ddagger BIBO stafility

$$
\left\{\begin{array}{l}
\text { - Asy-ptotic stable } \Longrightarrow \text { BIBO stable } \\
\text { Margially stable } \Longrightarrow \text { BIBO mstable } \\
\text { - BIBO stability, does NOT inply } \\
\text { exteral dosciption }
\end{array}\right.
$$ $\underbrace{\text { aryuptotic stability }}$ isternal desaiption

\{4.5. Block Diagrams.
(1) Three elementary intercomeetions.

- cascale

- parallel

$$
\begin{gathered}
E(s)=F(s)-H(s) \cdot Y(s) \\
Y(s)=E(s) \cdot G(s) \\
\Rightarrow \frac{Y(s)}{F(s)}=\frac{G(s)}{1+G(s) \cdot H(s)}
\end{gathered}
$$

(2) System Realgations
a) Direct-form realigation

Ex: $\quad H(s)=\frac{b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}$

$$
X(s) \cdot \underbrace{\left(b_{3} s^{3}+b_{2} s^{2}+b_{1} s+b_{0}\right)}_{H_{2}(s) .}=Y(s)
$$

\therefore can combine $H_{1}(s) \nmid H_{2}(s)$ as follows:

Ingaeral: $H(s)=\frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}$
Need n integutors.
Ex: $\quad H(s)=\frac{5}{s+2}$

$\Sigma_{x}:$

b) Cascade \& paralld realoutions.

$$
\begin{aligned}
\text { Ex: } & H(s)
\end{aligned}=\frac{4 s+28}{s^{2}+6 s+5}, ~ \begin{aligned}
\text { cascade }: & =\frac{4 s+28}{s+1} \cdot \frac{1}{s+5} \\
\text { parallel : } & =\frac{6}{s+1}-\frac{2}{s+5}
\end{aligned}
$$

caseade:

