Clapter 4 System Analysis by Laplace Trunsform

Fowner trasiform:
$\left\{\begin{array}{l}\text { (1) Exists only for a retrioted clan } f \\ \text { signals }\end{array}\right.$
(2) Can not be nud to aralyge nostathe systems.

Y41. Unilateral Laplace Tran form
(9) Definition:

$$
\begin{aligned}
& F(s)=\mathcal{L}\{f(t)\} \\
&=\int_{0-}^{\infty} f(t) e^{-s t} d t \\
& \text { whee } s=\sigma+j \omega \\
& t_{\text {complex }} \text { frey. }
\end{aligned}
$$

Recall

$$
\begin{aligned}
F(\nu) & =\xi\{f(t)\} \\
& =\int_{-\infty}^{+\infty} f(t) e^{-j \omega t} d t
\end{aligned}
$$

(2) Region of convergace

$$
F(s)=\int_{0-}^{\infty}\left[f(t) e^{-\sigma t}\right] e^{-j \omega t} d t
$$

5^{σ} this integral converges if

$$
\underset{\longrightarrow}{j \omega} \int_{0}^{\infty}\left|f(t) e^{-\sigma t}\right| d t<\infty(*)
$$

Let σ_{0} is the smallest value of σ for whir (*) is finite, then the regin of convergace for $F(s)$ is $R R_{e}\{s\}>\sigma_{0}$
$\delta:$

$$
\begin{aligned}
& \mathcal{L}\{\delta(t)\} \\
= & \int_{0}^{\infty} \delta(t) e^{-s t} d t=1 .
\end{aligned}
$$

$$
f\{\{(H)\}=1 .
$$

$\varepsilon x:$

$$
\begin{aligned}
& \mathcal{L}\{u(t)\} \quad s=\sigma+j \omega \\
= & \left.\int_{0}^{\infty} u(t) e^{-s t} d t \quad=\frac{1}{j \omega}+\pi j(t)\right\} \\
= & \int_{0}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty} \\
& f_{m} \operatorname{Re}[s\}>_{0}=\frac{1}{s}-\left.\frac{1}{s} e^{-s t}\right|_{s=\infty} ^{s}
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& \mathcal{L}\left\{e^{a t} u(t)\right\} \quad \mathcal{q}\left\{e^{a t} u(t)\right\} \\
= & \int_{0-}^{\infty} e^{a t} e^{-s t} d t=\frac{1}{j \omega-a} \frac{a<0}{} \\
= & \int_{0^{-}}^{\infty} e^{(a-s) t} d t \\
= & \left.\frac{1}{a-s} e^{(a-s) t}\right|_{t=0^{-}} ^{\infty} \\
= & \frac{1}{s-a}\left[1-\left.e^{(a-s) t}\right|_{t=\infty} ^{j u}\right] \\
= & \frac{1}{s-a} \operatorname{Re}\{s\}>\operatorname{Re}\{a\}
\end{aligned}
$$

94.2. Roparties of Leplan Trunform
(1) Linemity:

$$
\begin{aligned}
& f_{1}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F_{1}(s) \\
& f_{2}(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F_{2}(s) \\
& \text { the } \quad a_{1} f_{1}(t)+a_{1} f_{2}(t) \leftrightarrow a_{1} F_{1}(s)+a_{2} F_{2}(s) .
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { (2) Time-shiftig. } \quad \stackrel{t=t-t_{0}}{=} \int_{-t_{0}}^{\infty} f(\tau) u(\tau) e^{-s\left(t_{0}+\tau\right)} d \tau \\
& f(t) \stackrel{L}{\leftrightarrows} F(s)=e^{-s t_{0}} \int_{0}^{\infty} \int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau \\
& \text { te } f_{\text {or }} t_{0}>0 \\
& f\left(t-t_{0}\right) \cdot u\left(t-t_{0}\right)
\end{aligned}
$$

Rrof: $\underset{\sim}{\mathcal{L}}\left\{\overline{f\left(t-t_{0}\right)} u\left(t-t_{0}\right)\right\}$

$$
=\int_{0-}^{\infty} f(t-t .) u(t-t) e^{-s t} d t
$$

Ex: Given $\mathcal{L}\{t u(t)\}=\frac{1}{s^{2}}$

$$
\begin{aligned}
f(t) & =(t-1)[u(t-1)-u(t-2)]+[u(t-2)-u(t-4)] \\
& =(t-1) \cdot u(t-1)-(t-2+1) u(t-2)+u(t-2)-u(t-4) \\
& =\underbrace{(t-1) u(t-1)}-\underbrace{(t-u(t-4)}_{\left.\frac{1}{s^{2}} e^{-s}-2\right) u(t-2)}-\underbrace{}_{\frac{1}{5} e^{-4 s}}
\end{aligned}
$$

(3) Frequent - shifting

$$
\begin{array}{ll}
f(t) \stackrel{1}{\longleftrightarrow} F(s) . \quad \text { fo } F(s) \text { is } \\
\operatorname{Re}\{s\}>\sigma_{0}
\end{array}
$$

then $f(t) e^{s_{0} t} \leftrightarrow F\left(s-s_{0}\right)$ the Roc of
Prof:

$$
\begin{aligned}
& f(t) e \\
& \mathcal{L}\left\{f(t) e^{\text {sit }}\right\} \quad \begin{array}{r}
F\left(s-s_{0}\right) \\
\operatorname{Re}\left\{s-s_{0}\right\}>\sigma_{0} \\
=
\end{array} \int_{0}^{\infty} f(t) e^{s_{0} t} e^{-s t} d t \Rightarrow \operatorname{Re}\{s\}>\sigma_{0}+\operatorname{Re}_{2}\left(s_{0}\right) \\
= & \int_{0}^{\infty} f(t) e^{-\left(s-s_{0}\right) t} d t=F\left(s-s_{0}\right)
\end{aligned}
$$

Ex: $\mathcal{L}\left\{\cos \omega_{0} t h(t)\right\}$ canal simsoid.

$$
\begin{aligned}
& =\mathcal{L}\left\{\frac{1}{2} e^{j \omega \cdot t} u(t)+\frac{1}{2} e^{-j \omega \cdot t} u(t)\right\} \\
& =\frac{1}{2} \cdot \frac{1}{s-j \omega_{0}}+\frac{1}{2} \cdot \frac{1}{s+j \omega_{0}} \\
& =\frac{1}{2} \frac{\not 2 s}{(s-j \omega \cdot)\left(s+j \omega_{0}\right)} \\
& =\frac{s}{s^{2}+\omega_{0}^{2}}
\end{aligned}
$$

(4) Scaling

$$
\begin{aligned}
& f(t) \longleftrightarrow F(s) \\
\Rightarrow & f(a t) \longleftrightarrow \frac{1}{a} F\left(\frac{s}{a}\right) . a>0
\end{aligned}
$$

(5) Convolution.

$$
\begin{aligned}
& f_{1}(t) \leftrightarrow F_{1}(s), \quad f_{2}(t) \leftrightarrow F_{2}(s) . \\
\Rightarrow & f_{1}(t) * f_{2}(t) \leftrightarrow F_{1}(s) \cdot F_{2}(s) .
\end{aligned}
$$

Poof: same as is Fomientrantiv.
(6) Tine differentiation

$$
\begin{aligned}
f(t) & \leftrightarrow F(s) . \\
\Rightarrow \frac{d}{d t} f(t) & \leftrightarrow s \cdot F(s)-f\left(0^{-}\right)
\end{aligned}
$$

Rot:

$$
\begin{aligned}
& \quad \mathcal{L}\left\{\frac{d f(t)}{d t}\right\}=\int_{0}^{\infty}\left(\frac{d f(t)}{d t} e^{-s t} d t\right. \\
& =\int_{0}^{\infty} e^{-s t} d f(t)=\underbrace{\left.e^{-s t} f(t)\right|_{0} ^{\infty}}_{0-f\left(0^{-}\right)}-\underbrace{\int_{0}^{\infty} f(t) e^{-s t} d t}_{s \cdot 0^{-}} \\
& =s \cdot F(s)-f\left(0^{-}\right) d e^{-s t}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left\{\frac{d^{2} f(t)}{d t}\right\}=\mathcal{L}\left\{\frac{d}{d t}\left(\frac{d f(t)}{d t}\right)\right\} \\
& =s \cdot \underbrace{\mathcal{L}\left\{\frac{d f(t)}{d t}\right\}}_{s \cdot F(s)-f(0)}-\dot{f}\left(0^{-}\right) \\
& \text {Inganal: } \quad=s^{2} \cdot F(s)-s \cdot f\left(0^{-0}\right)-\dot{f}\left(0^{\circ}\right) \\
& \mathcal{L}\left\{\frac{d^{n} f(t)}{d t^{n}}\right\}=s^{n} \cdot F(s)-s^{n-1} f(0)-s^{n} \cdot \dot{f}\left(0^{(0)}\right) \\
& \cdots-s \cdot f^{(n-2)}(\sigma)-f^{(n-1)}\left(0^{-}\right)
\end{aligned}
$$

