$$
\begin{aligned}
f(t) & =\sum_{n=1}^{\infty} c_{n} x_{n}(t), \quad t \in\left[t_{1}, t_{2}\right] \\
& c_{n}
\end{aligned}=\frac{1}{\varepsilon_{n}} \int_{t_{1}}^{t_{2}} f(t) x_{n}(t) d t \quad \begin{array}{r}
\text { real-valued } \\
\text { signals }
\end{array}
$$

(2) Complex-valued siguals

- $\left\{x_{n}(t)\right\}$ is an orthogmal set if

$$
\int_{t_{1}}^{t_{2}} x_{m}(t) \xlongequal{x_{n}(t)^{*}} d t= \begin{cases}0, & m \neq n \\ \varepsilon_{n}, & m=n\end{cases}
$$

- If the set is complete, then

$$
\begin{aligned}
f(t) & =\sum_{n=1}^{\infty} c_{n} x_{n}(t), t \in\left[t_{1}, t_{2}\right] \\
c_{n} & =\frac{1}{\varepsilon_{n}} \int_{t_{1}}^{t_{2}} f(t) \underline{x_{n}(t)^{*}} d t
\end{aligned}
$$

\& 2.2. Trigonometric Fourier Series.
(1) Trigonometric Set

$$
\left\{\begin{array}{lll}
1, & \cos \omega_{0} t, & \cos 2 \omega_{0} t, \\
& \sin \omega_{0} t, & \sin 2 \omega_{0} t, \\
n \omega_{0} t, \cdots & \sin n \omega_{0} t, \cdots
\end{array}\right\}
$$

FACT 1: This set is orthogonal over any interval of duration $T_{0}=\frac{2 \pi}{\omega_{0}}$. ω_{0} is called the fundamental free.

$$
\begin{aligned}
& \int_{T_{0}} \cos n \omega_{0} t \cdot \cos m \omega_{0} t= \begin{cases}0, & m \neq n \\
\left.\frac{T_{0}}{2}\right) & m=n \neq 0 \\
\text { en erg }\end{cases} \\
& \int_{T_{0}} \sin n \omega_{0} t \cdot \sin m \omega_{0} t= \begin{cases}0, & m \neq n \\
\frac{T_{0}}{2} & m=n \neq 0\end{cases} \\
& \int_{T_{0}} \sin n \omega_{0} t \cdot \cos m \omega_{0} t=0 \\
& \forall m, n . \quad \int_{T_{0}} \equiv \int_{t_{1}}^{t_{1}+T_{0}}
\end{aligned}
$$

for any t_{1}
(2) Trignometric Fowier Series

FACT 2: Trignometric set is complete.

$$
\begin{aligned}
& \text { FACT 2: Trignometric sec } \\
& \therefore f(t)=a_{0}+\sum_{n=1}^{\infty}\binom{\left.a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t\right)}{t_{1}} t \leqslant t_{1}+T_{0} \\
& a_{0}=\frac{1}{T_{0}} \int_{T_{0}} f(t) d t \quad T_{0}=\frac{2 \pi}{\omega_{0}} \\
& a_{n}=\frac{2}{T_{0}} \int_{T_{0}} f(t) \cos n \omega_{0} t d t \\
& n=1,2_{1} \ldots
\end{aligned}
$$

$$
b_{n}=\frac{2}{T_{0}} \int_{T_{0}} f(t) \sin n \omega_{0} t d t
$$

(3) Compact Trigonometric Foxier series $a_{n} \cos n \omega_{0} t+b_{n} \sin n \omega_{0} t$

$$
=C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)
$$

where $\left\{\begin{array}{l}c_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}} \\ \theta_{n}=\tan ^{-1}\left(\frac{-b_{n}}{a_{n}}\right) \\ c_{0}=a_{0}\end{array}\right.$

$$
\begin{array}{r}
f(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right) \\
t_{1} \leqslant t \leqslant t_{1}+T_{0} .
\end{array}
$$

(4) Founier series representation of peniodic signals
Denote $\varphi(t)=c_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)$ then $\varphi(t)$ is perialic $\omega /$ peniod T_{0}

- If $f(t)$ is also penidic $w /$ penid T_{0}. then $f(t) \nLeftarrow \varphi(t)$ are equal everyutere

$$
\therefore f(t)=C_{0}+\sum_{n=1}^{\infty} C_{n} \cos \left(n \omega_{0} t+\theta_{n}\right)
$$

- Fonvier Spectrum: $\quad-\infty<t<\infty$
plot $C_{n}-\omega=n \omega_{0} \rightarrow$ amplitude spectrun
plot $\theta_{n}-\omega=n \omega_{0} \rightarrow$ phese spectimm frive. desmpinion $f f(t)$
(5) Existence conditions of Fowion Series

Theorem: If the periodic signal $f(t)$ satisfies $\int_{T_{0}}|f(t)|^{2} d t<\infty$ then the Foumien series coefficients $\left\{c_{n}\right\}$ are finite, and the apporximation emos signal's energy $\varepsilon_{e} \rightarrow 0$ as $N \rightarrow \infty$

But $f(t) \& \varphi(t)$ many NOT d equal at orang t.
(6) Deterring the fundamental frequency /period.

FACT: A sum of sinusoids of some frag's is periodic iff the ratio of any two fry's is a rational number. (ie., the ratio of two integers)
When the ratio of two frs's is a rational ruben, they are said $t t$ be harmonically related.
Σ_{x}

$$
\begin{aligned}
& x: f(t)=2+7 \cos \left(\frac{1}{2} t+\theta_{1}\right)+3 \cos \left(\frac{2}{3} t+\theta_{2}\right) \\
&+5 \cos \left(\frac{7}{6} t+\theta_{3}\right) \\
& \omega_{1}=\frac{1}{2} \Rightarrow T_{1}=\frac{2 \pi}{\omega_{1}}=4 \pi \\
& \omega_{2}=\frac{2}{3} \Rightarrow T_{2}=\frac{2 \pi}{\omega_{2}}=3 \pi \\
& \omega_{3}=\frac{7}{6} \Rightarrow T_{3}=\frac{2 \pi}{\omega_{3}}=\frac{12 \pi}{7} \\
& \therefore \text { pesinglic } 1
\end{aligned}
$$

\therefore periorlic!

$$
\begin{aligned}
\Longrightarrow T_{0} & =\text { leust common multiple }\left(T_{1}, T_{2}, T_{3}\right) \\
& =12 \pi r . \\
\Rightarrow \omega_{0} & =\frac{2 \pi}{T_{0}}=\frac{1}{6}
\end{aligned}
$$

Ex:

$$
\begin{aligned}
f(t) & =2 \cos \left(2 t+\theta_{1}\right)+5 \sin \left(\pi t+\theta_{2}\right) \\
\omega_{1} & =2 \\
\omega_{2} & =\pi
\end{aligned}
$$

\therefore aperiodic!
Ex:

$$
\begin{aligned}
& f(t)=3 \sin (3 \sqrt{2} t+\theta)+7 \cos \left(6 \sqrt{2}++\theta_{2}\right) \\
& \omega_{1}=3 \sqrt{2} \\
& \omega_{2}=6 \sqrt{2}
\end{aligned} \quad T_{1}=\frac{2 \pi}{3 \sqrt{2}} \Rightarrow T_{0}=\frac{2 \pi}{3 \sqrt{2} .} .
$$

$$
\begin{aligned}
T_{0} & =2 \pi \\
\omega_{0} & =\frac{2 \pi}{T_{0}}=1 \\
f(t) & =a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
\end{aligned}
$$

- The effect of symmetry

$$
\begin{aligned}
& a_{0}=\frac{1}{T_{0}} \int_{-T_{1} / 2}^{T / 2} f(t) d t \\
& a_{n}=\frac{2}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} f(t) \cos n \omega \cdot t d t \\
& b_{n}=\frac{2}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} f(t) \sin n \omega \cdot t d t \\
& 2 T_{0}^{T / 2}
\end{aligned}
$$

If $f(t)$ is even: $\left\{\begin{array}{l}a_{0}=\frac{2}{T_{0}} \int_{0}^{T / 2} f(t) d t \\ a_{n}=\frac{4}{T_{0}} \int_{0}^{T / 2} f(t) \cos n \omega t d t \\ b_{n}=\varnothing\end{array}\right.$

If $f(t)$ is odd:

$$
\left\{\begin{array}{l}
a_{0}=a_{n}=0 \\
b_{n}=\frac{4}{T_{0}} \int_{0}^{T / 2} f(t) \sin \omega \omega t d t
\end{array}\right.
$$

$$
\begin{aligned}
\left(c_{n} t\right) \quad r b_{n} & =0, \quad \forall n . \\
v a_{0} & =\frac{2}{T_{0}} \int_{0}^{T / 2} f(t) d t \\
& =\frac{2}{2 T} \int_{0}^{\pi} f(t) d t=\frac{1}{T} \int_{0}^{\frac{T}{2}} d \cdot d t=1 / 2 .
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =\frac{4}{T_{0}} \int_{0}^{\pi} f(t) \cos n \omega_{1} t d t \\
& =\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \cos n t d t \\
& =\left.\frac{2}{\pi} \cdot \frac{1}{n} \sin n t\right|_{0} ^{\frac{\pi}{2}} \\
& =\frac{2}{n \cdot \pi} \sin \left(\frac{n \pi}{2}\right), n=1,2, \cdots \\
& = \begin{cases}0 & n \text { is even } \\
\frac{2}{n \pi} \cdot & n=1,5, \cdots, 4 k+1 \\
-\frac{2}{n \pi}, & n=3,7, \cdots .4 k+3\end{cases}
\end{aligned}
$$

$$
\begin{array}{r}
\therefore f(t)=\frac{1}{2}+\frac{2}{\pi}\left(\cos t-\frac{1}{3} \cos 3 t+\frac{1}{5} \cos 5 t\right. \\
\left.-\frac{1}{7} \cos 7 t+\cdots\right) .
\end{array}
$$

