$\xi \%$ Signal Size

- Signal: A function of some independent variables (e.g., time. span)

Ex: telephone sigil $f(t)$ television sigil $f(x, y, t)$

- System: An entity the processes a set of sigules (inputs) to yield an. other set of sigurd (out puts)

(1) Sigul Enagy

$$
\begin{aligned}
& E_{f}=\int_{-\infty}^{+\infty} f^{\prime}(t) d t \text { - real-valual sipuls } \\
& E_{f}=\int_{-\infty}^{+\infty}|f(t)|^{2} d t \text { - caplex-vchual siparts }
\end{aligned}
$$

Necussang andition for Ėf t be finite:

$$
|f(t)| \rightarrow 0 \text { as }|t| \rightarrow \infty
$$

ε_{x}

$$
\begin{aligned}
& E_{y}=\int_{-\infty}^{+\infty} f(t)^{2} d t \\
& =\underbrace{\int_{-1}^{0} 2^{2} d t}_{4}+\underbrace{\int_{0}^{\infty}\left(2 e^{-t / 2}\right)^{2} d t}_{4} \\
& =8 \underbrace{\int_{0}^{\infty}}_{-\left.e^{-t}\right|_{0} ^{\infty} e^{-t} d t}
\end{aligned}
$$

(2) Sigul Pomar

$$
P_{f}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|f(t)|^{2} d t
$$

-mean-spuaned vodu $f f(t)$
$\sqrt{P_{f}}:$ not meen-squaed value $f f(t)$

- If $f(t)$ is perioulis with period T. then

$$
P_{f}=\frac{1}{T} \int_{-T / 2}^{T / 2}|f(t)|^{2} d t
$$

$$
\begin{aligned}
P_{f} & =\frac{1}{2} \int_{-1}^{1} f(t)^{2} d t \\
& =\frac{1}{2} \underbrace{t^{2}}_{\left.\frac{1}{3} t^{3}\right|_{-1} ^{1}=\frac{2}{3}} d t \\
& =\frac{1}{3} \\
\text { rms } & =\sqrt{P_{f}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

E1.2 Classifications of Siguls
(1) Contimuns-time us disconce-tine siguals

(2) Analy us $\underbrace{\text { digital siguls }}$
$f(t)$ tokes any $f(t)$ takes disconte valhe $f(t)$ valius

(3) Reviodic us Apriodic sigures

- $f(t)$ is parialic if for sore $T>0$

$$
f(t)=f(t+T) \quad \text { for all } t
$$

- The suallest volue of such T is the painol of $f(t)$
- A sigual is apariodic if no such T exists.
- A perioclic sigul is everlasting, i.e, the sigul exists over $-\infty<t<\infty$
(4) Cansal vs Non-causal siguls
- Cansal sipal: $f(t)=0$ for all $t<0$
- nom-cansel sigual: $f(t) \neq 0$ for sone $t<0$
- arti-cansal sigual: $f(t)=0$ for all $t>0$

(5) Enagy vs. Poure sigals
- $f(t)$ is an enery sigul if $E_{f}<\infty$
- $f(t)$ is a pomen signal if $0<p_{f}<\infty$

Enyy sigul \Rightarrow paner $=0$
Poner sigat \Rightarrow eneryy $=\infty$
$\Longrightarrow A$ sigul cen NOT be both!

- A sigul can be neither enegy or pomer sigual

$$
\begin{aligned}
& \text { Ex: } f(t)=t \\
& \frac{1}{T} \int_{-T / 2}^{T / 2} f(t)^{2} d t \\
& =\frac{1}{T} \underbrace{\int_{-T / 2}^{T} d t}_{\left.\frac{1}{3} t^{3}\right|_{-T / 2} ^{T / 2}}=\frac{T^{2}}{12} \rightarrow \infty
\end{aligned}
$$

(6) Deterministic us Randon Signls
V. deterministic sigul: $f(t)$ is completely keran for ayt

- randon sigul: $f(t)$ is NOT keron precisely but is kawn only pubabilistically

E1.3 Usefal Sigual Opuntions
(1) Time shifting

$$
f(t) \longrightarrow \phi(t)=f\left(t-t_{0}\right)
$$

- $t_{0}>0$ shift to the night (dely)
- to <0 shift to the loft (adrence)

(2) Tim sading

$$
f(t) \longrightarrow \phi(t)=f(a t) \quad a>0
$$

. $a>1$: shinik in tine by a facter of a

- $0<a<1$: expand in time by a fucter of $\frac{1}{a}$
- origin $t=0$ remains unclaged

(3) Tine Reversal

$$
f(t) \longrightarrow \phi(t)=f(-t)
$$

- reflect $f(t)$ about the vertich axis

(4) Conbined Opuntions:

$$
\begin{array}{r}
f(t) \longrightarrow \phi(t)=f(a t-b) \\
a \neq 0
\end{array}
$$

