EE 3801 Fall 2006

Final Exam

December 21, 2006

INSTRUCTIONS:

- Carry only one $8 \frac{1}{2} " \times 11^{\prime \prime}$ note (two sides) and a pencil or a pen with you. The exam is closed-book, closed-note. No calculator is allowed.
- The duration of the exam is 180 minutes.

Problem	Points
I	$/ 10$
II	$/ 10$
III	$/ 10$
IV	$/ 10$
V	$/ 10$
VI	$/ 10$
VII	$/ 10$
VIII	$/ 10$
IX	$/ 10$
X	$/ 10$
Total	$/ 100$

Problem I [10 pts]
Consider a continuous-time system whose input-output relationship is given by

$$
y(t)=\int_{-10}^{10} f(\tau) d \tau
$$

Classify this system according to the following criteria. Justify your answers.

1. Is this system linear or nonlinear?
2. Is this system time-invariant or time-variant?
3. Is this system instantaneous or dynamic?
4. Is this system causal or noncausal?
5. Is this system BIBO stable or BIBO unstable?

Problem II [10 pts]
Given

$$
f_{1}(t)=e^{2 t}[u(t+1)-u(t-1)], \text { and } f_{2}(t)=e^{-t}[u(t-2)-u(t-3)],
$$ calculate the convolution $f_{1}(t) * f_{2}(t)$.

Problem III [10 pts]
Consider the signal $f(t)=\cos (3 \pi t) \sin (5 \pi t)$.

1. Find the Fourier transform of $f(t)$.
2. Find the exponential Fourier series of $f\left(t-\frac{1}{10}\right)$.

Problem IV [10 pts] (Note: we solved this problem in class.)
Given the following assumptions about $f(t)$, find $f(t)$.
(a) $f(t)$ is real;
(b) $f(t)$ is periodic with period $T=4$;
(c) $F_{n}=0$ for $|n|>1$;
(d) The signal with Fourier coefficients $G_{n}=e^{-j \pi n / 2} F_{-n}$ is odd;
(e) $\frac{1}{T} \int_{T}|f(t)|^{2}=\frac{1}{2}$.

Problem V [10 pts]
An LTI system has the following transfer function

$$
\left(D^{2}-5 D-8\right) y(t)=D(3 D-4) f(t) .
$$

Draw the block diagrams corresponding to the following implementations of this system, and write down the corresponding state-space equations.

1. Direct form.
2. Cascade form.
3. Parallel form.

Problem VI [10 pts]
An LTI system has the following transfer function

$$
H(s)=\frac{s^{3}\left(1+e^{-2 s}\right)}{(s+1)^{2}(s+2)}
$$

1. Find the input-output relationship in terms of a differential equation.
2. Find the impulse response $h(t)$ of this system.

Problem VII [10 pts]
An LTI system is described by the following differential equation and initial conditions

$$
\left(D^{2}+4 D+4\right) y(t)=D f(t), \quad \text { and } \quad y\left(0^{-}\right)=\dot{y}\left(0^{-}\right)=1 .
$$

The input signal is $f(t)=e^{-3 t} u(t)$. Calculate the zero-input response and the zero-state response.

Problem VIII [10 pts]
An LTI system has the following transfer function

$$
H(s)=\frac{s+5}{s^{3}+5 s^{2}+6 s} .
$$

1. Characterize the asymptotic stability and BIBO stability of this system.
2. If the input signal $f(t)=\left[3+2 \cos \left(3 t+\frac{\pi}{4}\right)-\sin \left(t-\frac{\pi}{5}\right)\right] u(t)$, calculate the steady state output signal $y_{s s}(t)$.

Problem IX [10 pts]
The signal $f(t)=\cos \omega_{0} t$ is sampled at the angle frequency ω_{s}, and then passed through an idea lowpass filter with cutoff frequency $\omega_{c}=\omega_{s} / 2$. Find the output signal $y(t)$ for the following sampling frequencies: (a) $\omega_{s}=3 \omega_{0}$, and (b) $\omega_{s}=3 \omega_{0} / 2$.

Problem X [10 pts]
Let $F(\omega)$ denote the Fourier transform of the signal $f(t)$ shown below. Perform the following evaluations without explicitly evaluating $F(\omega)$.

2. Find $F(0)$.
3. Find $\int_{-\infty}^{\infty} F(\omega) d \omega$.
4. Sketch the inverse Fourier transform of $\Re\{F(\omega)\}$.

